Баллистическое движение тел

История возникновения баллистического движения. Баллистика как наука. История открытия закона всемирного тяготения. Применение баллистики на практике. Траектория полета снаряда, баллистической ракеты. Перегрузки, испытываемые космонавтами в невесомости.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 27.05.2010
Размер файла 624,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Актуальность выбранной темы

Механика является наукой о движении, а движение охватывает все происходящее во Вселенной, начиная от простого перемещения и кончая мышлением. По образному выражению академика А.Ю. Ишлинского, «механика - основа познания природы и база творений техники».

На всем протяжении истории науки механика была, есть и будет фундаментом физики, наиболее тесно связанной с окружающим нас миром.

Механика является тем разделом физики, который благодаря строгости и логичности своего построения в сильной степени способствует развитию мышления учащихся. От его усвоения зависит успешность изучения всех разделов курса физики.

Что касается опытов, то «опыты в механике предназначены для того, чтобы облегчить учащимся освоение основных понятий, связать эти понятия с реальными движениями. Кроме того, и это не менее важно, цель ряда опытов заключается в том, чтобы показать принципиальную возможность измерения основных величин».

Изучая баллистику, учащиеся повторяют основные теоретические положения и законы кинематики, а также исследуют и выводят новые закономерности, которые можно и даже необходимо проверять на опыте.

Лабораторные работы, представленные ниже, дают возможность глубоко исследовать баллистическое движение и основные физические величины его характеризующие, а также мотивируют учащихся к более детальному исследованию аспектов этой и других тем.

Работы предусматривают не только измерение основных величин и подтверждение теории на основе эксперимента, но также и привитие экспериментальных умений. К ним относят не только умения, связанные непосредственно с выполнением эксперимента, но и умения высказывать и обосновывать гипотезы, совместно решать проблемы, выбирать и конструировать способ деятельности, оценивать результаты собственной и коллективной деятельности.

Цель работы:

Изучение баллистического движения на уроках физики у нас вызвало большой интерес. Но, к сожалению, эта тема в учебнике нам дана поверхностно и мы в серьёз решили заинтересоваться ей. Мы хотим рассказать про баллистику как науку, показать баллистическое движение в практической части.

Теоретическая часть

История возникновения баллистического движения

В многочисленных войнах на протяжении всей истории человечества враждующие стороны, доказывая своё превосходство, использовали сначала камни, копья, и стрелы, а затем ядра, пули, снаряды, и бомбы.

Успех сражения во многом определялся точностью попадания в цель.

При этом точный бросок камня, поражение противника летящим копьём или стрелой фиксировались воином визуально. Это позволяло при соответствующей тренировке повторять свой успех в следующем сражении.

Значительно возросшая с развитием техники скорость и дальность полёта снарядов и пуль сделали возможным дистанционные сражения. Однако навыка война, разрешающей способности его глаза было недостаточно для точного попадания в цель артиллерийской дуэли первым.

Желание побеждать стимулировало появление баллистики (от греческого слова ballo-бросаю).

Баллистика как наука

Возникновение баллистики относится к 16 в.

Баллистика-наука о движении снарядов, мин, пуль, неуправляемых ракет при стрельбе (пуске). Основные разделы баллистики: внутренняя баллистика и внешняя баллистика. Исследованием реальных процессов, происходящих при горении пороха, движении снарядов, ракет (или их моделей) и т. д., занимается эксперимент баллистики. Внешняя баллистика изучает движение снарядов, мин, пуль, неуправляемых ракет и др. после прекращения их силового взаимодействия со стволом оружия (пусковой установкой), а также факторы, влияющие на это движение. Основные разделы внешней баллистики: изучение сил и моментов, действующих на снаряд в полёте; изучение движения центра масс снаряда для расчета элементов траектории, а также движение снаряда относит. Центра масс с целью определения его устойчивости и характеристик рассеивания. Разделами внешней баллистики являются также теория поправок, разработка методов получения данных для составления таблиц стрельбы и внешнебаллистическое проектирование. Движение снарядов в особых случаях изучается специальными разделами внешней баллистики, авиационной баллистикой, подводной баллистикой и др.

Внутренняя баллистика изучает движение снарядов, мин, пуль и др. в канале ствола оружия под действием пороховых газов, а также другие процессы, происходящие при выстреле в канале или камере пороховой ракеты. Основные разделы внутренней баллистики: пиростатика, изучающая закономерности горения пороха и газообразования в постоянном объёме; пиродинамика, исследующая процессы в канале ствола при выстреле и устанавливающая связь между ними, конструктивными характеристиками канала ствола и условиями заряжания; баллистическое проектирование орудий, ракет, стрелкового оружия. Баллистика (изучает процессы периода последствия) и внутренняя баллистика пороховых ракет (исследует закономерности горения топлива в камере и истечения газов через сопла, а также возникновение сил, действий на неуправляемые ракеты).

Баллистическая гибкость оружия - свойство огнестрельного оружия, позволяющее расширять его боевые возможности повышать эффективность действия за счёт изменения баллистич. характеристик. Достигается путем изменения баллистич. коэффициента (напр., введением тормозных колец) и начальной скорости снаряда (применением переменных зарядов). В сочетании с изменением угла возвышения это позволяет получать большие углы падения и меньшее рассеивание снарядов на промежуточные дальности.

Баллистическая ракета, ракета, полет которой, за исключением относительно небольшого участка, совершается по траектории свободно брошенного тела. В отличие от крылатой ракеты баллистическая ракета не имеет несущих поверхностей для создания подъёмной силы при полёте в атмосфере. Аэродинамическая устойчивость полёта некоторых баллистических ракет обеспечивается стабилизаторами. К баллистическим ракетам относят ракеты различного назначения, ракеты-носители космических аппаратов и др. Они бывают одно- и многоступенчатыми, управляемые и неуправляемыми. Первые боевые баллистические ракеты ФАУ 2- были применены фашисткой Германией в конце мировой войны. Баллистические ракеты с дальностью полёта св.5500 км (по иностранной классификации - св.6500 км) называются межконтинентальными баллистическими ракетами. (МБР). Современные МБР имеют дальность полёта до 11500 км (напр., амер. «Минитмен» 11500 км, «Титан -2» ок.11000 км, «Трайдер-1» около7400 км,). Их пуск производят с наземных (шахтных) пусковых установок или ПЛ. (из надводного или подводного положения). МБР выполняются многоступенчатыми, с жидкостными или твердотопливными двигательными установками, могут оснащаться моноблочными или многозарядными ядерными головными частями.

Баллистическая трасса, спец. оборудованный на арт. полигоне участок местности для эксперимент, изучения движения арт. снарядов, мини др. На баллистической трассе устанавливаются соответственные баллистические приборы и баллистич. мишени, с помощью которых на основе опытных стрельб определяются функция (закон) сопротивления воздуха, аэродинамические характеристики, параметры поступательного и колебат. движения, начальные условия вылета и характеристики рассеивания снарядов.

Баллистические условия стрельбы, совокупность баллистич. характеристик, оказывающих наибольшее влияние на полёт снаряда (пули). Нормальными, или табличными, баллистическими условиями стрельбы считаются условия, при которых масса и начальная скорость снаряда (пули) равны расчётной (табличной), температура зарядов 15°С, а форма снаряда (пули) соответствует установленному чертежу.

Баллистические характеристики, основные данные, определяющие закономерности развития процесса выстрела и движения снаряда (мины, гранаты, пули) в канале ствола (внутрибаллистические) или на траектории (внешнебаллистические). Основные внутрибаллистические характеристики: калибр оружия, объём зарядной каморы, плотность заряжания, длина пути снаряда в канале ствола, относительная масса заряда (отношение её к массе снаряда), сила пороха, макс. давление, давление форсирования, характеристики прогрессивности горения пороха и др. К основным внешнебаллистическим характеристикам относятся: начальная скорость, баллистический коэффициент, углы бросания и вылета, срединные отклонения и др.

Баллистический вычислитель, электронный прибор стрельбы (как правило, прямой наводкой) из танков, БМП, малокалиберных зенитных пушек и др. Баллистический вычислитель учитывает сведения о координатах и скорости цели и своего объекта, ветре, тем-ре и давлении воздуха, начальной скорости и углах вылета снаряда и др.

Баллистический спуск, неуправляемое движение спускаемого космического аппарата (капсулы) с момента схода с орбиты до достижения заданной относительно поверхности планеты.

Баллистическое подобие, свойство артиллерийных орудий, заключающееся в сходстве зависимостей, характеризующих процесс горения порохового заряда при выстреле в каналах стволов различных артиллерийных систем. Условия баллистического подобия изучаются теорией подобия, основу которой составляют уравнения внутренней баллистики. На основании этой теории составляются баллистические таблицы, используемые при баллистич. проектировании.

Баллистический коэффициент (С), одна из основных внешнебаллистических характеристик снаряда (ракеты), отражающая влияние его коэффициент формы(i), калибра (d),и массы(q) на способность преодолевать сопротивление воздуха в полёте. Определяется по формуле

С=(id/q)1000,

где d в м, a q в кг.

Чем меньше баллистич. коэффициент, тем легче снаряд преодолевает сопротивление воздуха.

Баллистическая фотокамера, специальное устройство для фотографирования явления выстрела и сопровождающих его процессов внутри канала ствола и на траектории с целью определения качественных и количественных баллистических характеристик оружия. Позволяет осуществлять мгновенное одноразовое фотографирование к.-л. фазы изучаемого процесса или последовательное скоростное фотографирование (более 10 тыс. кадровс) различных фаз. По способу получения экспозиции Б.Ф. бывают искровые, с газосветными лампами, с электрооптическими затворами и рентгенографичные.

Исаак Ньютон - краткая биография

Исаак Ньютон (1642 - 1727) - великий ученый, сделавший большой вклад в развитие физики, математики, астрологии. Родился в местечке Вулсторп Англии.

После школы образование в биографии Ньютона было получено в колледже святой Троицы при Кембриджском университете. Под влиянием физиков, Ньютон еще в студенчестве сделал несколько открытий, в большей степени математических.

В период с 1664 по 1666 год он вывел формулу бинома Ньютона, формулу Ньютона-Лейбница, вывел закон всемирного тяготения. В 1668 году в биографии Исаака Ньютона получена степень магистра, в 1669 - профессора математических наук. Благодаря созданному Ньютоном телескопу (рефлектору) были сделаны значительные открытия в астрономии. Ученый был членом Королевского двора (с 1703 - президент), смотрителем Монетного.

Законы Ньютона являют собой основы классической механики. Первый закон Ньютона объясняет сохранение скорости тела при скомпенсированных внешних воздействиях. Второй закон Ньютона описывает зависимость ускорения тела от приложенной силы. Из 3х законов Ньютона могут быть выведены другие законы механики.

Любовь Ньютона к математике обусловила величайших ряд его открытий в данной науке. Так он описал интегральное, дифференциальное исчисление, метод разностей, метод поиска корней уравнения (метод Ньютона).

История открытия закона всемирного тяготения

Огромный рост числа молодых энергичных работников, подвизающихся на научной ниве, есть счастливое следствие расширения научных исследований в нашей стране, поощряемых и лелеемых Федеральным правительством. Измотанные и задерганные научные руководители бросают этих неофитов на произвол судьбы, и они часто остаются без лоцмана, который мог бы провести их среди подводных камней государственного субсидирования. По счастью, они могут вдохновляться историей сэра Исаака Ньютона, открывшего закон всемирного тяготения. Вот как это произошло.

В 1665 году молодой Ньютон стал профессором математики в Кембриджском университете - своей альма-матер. Он был влюблён в работу, и способности его как преподавателя не вызывали сомнений. Однако нужно заметить, что это ни в коей мере не был человек не от мира сего или же непрактичный обитатель башни из слоновой кости. Его работа в колледже не ограничивалась только аудиторными занятиями: он был деятельным членом Комиссии по Составлению Расписаний, заседал в управлении университетского отделения Ассоциации Молодых Христиан Благородного Происхождения, подвизался в Комитете Содействия Декану, в Комиссии по Публикациям и прочих и прочих комиссиях, которые были необходимы для надлежащего управления колледжем в далёком 17 веке. Тщательные исторические изыскания показывают, что всего за пять лет Ньютон заседал в 379 комиссиях, которые занимались изучением 7924 проблем университетской жизни, из коих решена 31 проблема.

Однажды (а было это в 1680 году) после очень напряжённого дня заседание комиссии, назначенное на одиннадцать часов вечера - раньше времени не было, не собрало необходимого кворума, ибо один из старейших членов комиссии внезапно скончался от нервного истощения. Каждое мгновение сознательной жизни Ньютона было тщательно распланировано, а тут вдруг оказалось, что в этот вечер ему нечего делать, так как начало заседания следующей комиссии было назначено только на полночь. Поэтому он решил немного пройтись. Эта коротенькая прогулка изменила мировую историю.

Была осень. В садах многих добрых граждан, живших по соседству со скромным домиком Ньютона, деревья ломились под тяжестью спелых яблок. Всё было готово к сбору урожая. Ньютон увидел, как на землю упало очень аппетитное яблоко. Немедленной реакцией Ньютона на это событие - типичной для человеческой стороны великого гения - было перелезть через садовую изгородь и сунуть яблоко в карман. Отойдя на приличное расстояние от сада, он с наслаждением надкусил сочный плод.

Вот тут его и осенило. Без обдумывания, без предварительных логических рассуждений в мозгу его блеснула мысль, что падение яблока и движение планет по своим орбитам должны подчиняться одному и тому же универсальному закону. Не успел он доесть яблоко и выбросить огрызок, как формулировка гипотезы о законе всемирного тяготения была уже готова. До полуночи оставалось три минуты, и Ньютон поспешил на заседание Комиссии по Борьбе с Курением Опиума Среди Студентов Неблагородного Происхождения.

В последующие недели мысли Ньютона все снова и снова возвращались к этой гипотезе. Редкие свободные минуты между двумя заседаниями он посвящал планам её проверки. Прошло несколько лет, в течение которых, как показывают тщательные подсчёты, он уделил обдумыванию этих планов 63 минуты 28 секунд. Ньютон понял, что для проверки его предположения нужно больше свободного времени, чем то, на которое он может рассчитывать. Ведь требовалось определить с большой точностью длину одного градуса широты на земной поверхности и изобрести дифференциальное исчисление.

Не имея ещё опыта в таких делах, он выбрал простую процедуру и написал краткое письмо из 22 слов королю Карлу, в котором изложил свою гипотезу и указал на то, какие великие возможности она сулит, если подтвердится. Видел ли король это письмо - неизвестно, вполне возможно, что и не видел, так как он ведь был перегружен государственными проблемами и планами грядущих войн. Однако нет никакого сомнения в том, что письмо, пройдя по соответствующим каналам, побывало у всех начальников отделов, их заместителей и заместителей их заместителей, которые имели полную возможность высказать свои соображения и рекомендации.

В конце концов письмо Ньютона вместе с объёмистой папкой комментариев, которыми оно успело обрасти по дороге, достигло кабинета секретаря ПКЕВИР/КИНИ/ППАБИ (Плановая Комиссия Его Величества по Исследованиям и Развитию, Комитет по Изучению Новых Идей, Подкомитет по Подавлению Антибританских Идей). Секретарь сразу же осознал важность вопроса и вынес его на заседание Подкомитета, который проголосовал за предоставление Ньютону возможности дать показания на заседании Комитета. Этому решению предшествовало краткое обсуждение идеи Ньютона на предмет выяснения, нет ли в его намерениях чего-нибудь антибританского, но запись этой дискуссии, заполнившая несколько томов in quarto, с полной ясностью показывает, что серьёзного подозрения на него так и не упало.

Показания Ньютона перед ПКЕВИР/КИНИ следует рекомендовать для прочтения всем молодым учёным, ещё не знающим, как вести себя, когда придёт их час. Колледж проявил деликатность, предоставив ему на период заседаний Комитета двухмесячный отпуск без сохранения содержания, а зам декана по научно-исследовательской работе проводил его шутливым напутственным пожеланием не возвращаться без ''жирного'' контракта. Заседание Комитета проходило при открытых дверях, и публики набилось довольно много, но впоследствии оказалось, что большинство присутствующих ошиблось дверью, стремясь попасть на заседание КЕВОРСПВО -- Комиссии Его Величества по Обличению Разврата Среди Представителей Высшего Общества.

После того как Ньютон был приведён к присяге и торжественно заявил, что он не является членом Лояльной Его Величества Оппозиции, никогда не писал безнравственных книг, не ездил в Россию и не совращал молочниц, его попросили кратко изложить суть дела. В блестящей, простой, кристально ясной десятиминутной речи, произнесённой экспромтом, Ньютон изложил законы Кеплера и свою собственную гипотезу, родившуюся при виде падающего яблока. В этот момент один из членов Комитета, импозантный и динамичный мужчина, настоящий человек действия, пожелал узнать, какие средства может предложить Ньютон для улучшения постановки дела по выращиванию яблок в Англии. Ньютон начал объяснять, что яблоко не является существенной частью его гипотезы, но был прерван сразу несколькими членами Комитета, которые дружно высказались в поддержку проекта по улучшению английских яблок. Обсуждение продолжалось несколько недель, в течение которых Ньютон с характерным для него спокойствием и достоинством сидел и ждал, когда Комитет пожелает с ним проконсультироваться. Однажды он опоздал на несколько минут к началу заседания и нашёл дверь запертой. Он осторожно постучал, не желая мешать размышлениям членов Комитета. Дверь приотворилась, и привратник, прошептав, что мест нет, отправил его обратно. Ньютон, всегда отличавшийся логичностью мышления, пришёл к заключению, что Комитет не нуждается более в его советах, а посему вернулся в свой колледж, где его ждала работа в различных комиссиях.

Спустя несколько месяцев Ньютон был удивлён, получив объемистый пакет из ПКЕВИР/КИНИ. Открыв его, он обнаружил, что содержимое состоит из многочисленных правительственных анкет, в пяти экземплярах каждая. Природное любопытство - главная черта всякого истинного учёного - заставило его внимательно изучить эти анкеты. Затратив на это изучение определённое время, он понял, что его приглашают подать прошение о заключении контракта на постановку научного исследования для выяснения связи между способом выращивания яблок, их качеством и скоростью падения на землю. Конечной целью проекта, как он понял, было выведение сорта яблок, которые не только имели бы хороший вкус, но и падали бы на землю мягко, не повреждая кожуры. Это, конечно, было не совсем то, что Ньютон имел в виду, когда писал письмо королю. Но он был человеком практичным и понял, что, работая над предлагаемой проблемой, сможет попутно проверить и свою гипотезу. Так он соблюдет интересы короля и позанимается немножко наукой - за те же деньги. Приняв такое решение, Ньютон принялся заполнять анкеты без дальнейших колебаний.

Однажды в 1865 году точный распорядок дня Ньютона был нарушен. В четверг после обеда он готовился принять комиссию вице-президентов компаний, входивших во фруктовый синдикат, когда пришло повергшее Ньютона в ужас и всю Британию в скорбь известие о гибели всего состава комиссии во время страшного столкновения почтовых дилижансов. У Ньютона, как это уже было однажды, образовалось ничем не занятое ''окно'', и он принял решение прогуляться. Во время этой прогулки ему пришла (он сам не знает как) мысль о новом, совершенно революционном математическом подходе, с помощью которого можно решить задачу о притяжении вблизи большой сферы. Ньютон понял, что решение этой задачи позволит проверить его гипотезу с наибольшей точностью, и тут же, не прибегая ни к чернилам, ни к бумаге, в уме доказал, что гипотеза подтверждается. Легко можно себе представить, в какой восторг он пришёл от столь блестящего открытия.

Вот так правительство Его Величества поддерживало и воодушевляло Ньютона в эти напряженные годы работы над теорией. Мы не будем распространяться о попытках Ньютона опубликовать своё доказательство, о. недоразумениях с редакцией ''Журнала садоводов'' и о том, как его статью отвергли журналы ''Астроном-любитель'' и ''Физика для домашних хозяек''. Достаточно сказать, что Ньютон основал свой собственный журнал, чтобы иметь возможность напечатать без сокращений и искажений сообщение о своём открытии.

Закон всемирного тяготения

Чтобы в полной мере оценить весь блеск этого прозрения, давайте ненадолго вернемся к его предыстории. Когда великие предшественники Ньютона, в частности Галилей, изучали равноускоренное движение тел, падающих на поверхность Земли, они были уверены, что наблюдают явление чисто земной природы -- существующее только недалеко от поверхности нашей планеты. Когда другие ученые, например Иоганн Кеплер (см. Законы Кеплера), изучали движение небесных тел, они полагали что в небесных сферах действуют совсем иные законы движения, нежели законы, управляющие движением здесь, на Земле. История науки свидетельствует, что практически все аргументы, касающиеся движения небесных тел, до Ньютона сводились в основном к тому, что небесные тела, будучи совершенными, движутся по круговым орбитам в силу своего совершенства, поскольку окружность -- суть идеальная геометрическая фигура. Таким образом, выражаясь современным языком, считалось, что имеются два типа гравитации, и это представление устойчиво закрепилось в сознании людей того времени. Все считали, что есть земная гравитация, действующая на несовершенной Земле, и есть гравитация небесная, действующая на совершенных небесах.

Прозрение же Ньютона как раз и заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование.

Результаты ньютоновских расчетов теперь называют законом всемирного тяготения Ньютона. Согласно этому закону между любой парой тел во Вселенной действует сила взаимного притяжения. Как и все физические законы, он облечен в форму математического уравнения. Если M и m -- массы двух тел, а D -- расстояние между ними, тогда сила F взаимного гравитационного притяжения между ними равна:

= GMm/D2

где G -- гравитационная константа, определяемая экспериментально. В единицах СИ ее значение составляет приблизительно 6,67 ? 10-11.

Относительно этого закона нужно сделать несколько важных замечаний. Во-первых, его действие в явной форме распространяется на все без исключения физические материальные тела во Вселенной. В частности, сейчас вы и эта книга испытываете равные по величине и противоположные по направлению силы взаимного гравитационного притяжения. Конечно же, эти силы настолько малы, что их не зафиксируют даже самые точные из современных приборов, -- но они реально существуют, и их можно рассчитать. Точно так же вы испытываете взаимное притяжение и с далеким квазаром, удаленным от вас на десятки миллиардов световых лет. Опять же, силы этого притяжения слишком малы, чтобы их инструментально зарегистрировать и измерить.

Второй момент заключается в том, что сила притяжения Земли у ее поверхности в равной мере воздействует на все материальные тела, находящиеся в любой точке земного шара. Прямо сейчас на вас действует сила земного притяжения, рассчитываемая по вышеприведенной формуле, и вы ее реально ощущаете как свой вес. Если вы что-нибудь уроните, оно под действием всё той же силы равноускоренно устремится к земле. Галилею первому удалось экспериментально измерить приблизительную величину ускорения свободного падения (см. Уравнения равноускоренного движения) вблизи поверхности Земли. Это ускорение обозначают буквой g.

Для Галилея g было просто экспериментально измеряемой константой. По Ньютону же ускорение свободного падения можно вычислить, подставив в формулу закона всемирного тяготения массу Земли M и радиус Земли D, помня при этом, что, согласно второму закону механики Ньютона, сила, действующая на тело, равняется его массе, умноженной на ускорение. Тем самым то, что для Галилея было просто предметом измерения, для Ньютона становится предметом математических расчетов или прогнозов.

Наконец, закон всемирного тяготения объясняет механическое устройство Солнечной системы, и законы Кеплера, описывающие траектории движения планет, могут быть выведены из него. Для Кеплера его законы носили чисто описательный характер -- ученый просто обобщил свои наблюдения в математической форме, не подведя под формулы никаких теоретических оснований. В великой же системе мироустройства по Ньютону законы Кеплера становятся прямым следствием универсальных законов механики и закона всемирного тяготения. То есть мы опять наблюдаем, как эмпирические заключения, полученные на одном уровне, превращаются в строго обоснованные логические выводы при переходе на следующую ступень углубления наших знаний о мире.

Картину устройства солнечной системы, вытекающую из этих уравнений и объединяющую земную и небесную гравитацию, можно понять на простом примере. Предположим, вы стоите у края отвесной скалы, рядом с вами пушка и горка пушечных ядер. Если просто сбросить ядро с края обрыва по вертикали, оно начнет падать вниз отвесно и равноускоренно. Его движение будет описываться законами Ньютона для равноускоренного движения тела с ускорением g. Если теперь выпустить ядро из пушки в направлении горизонта, оно полетит -- и будет падать по дуге. И в этом случае его движение будет описываться законами Ньютона, только теперь они применяются к телу, движущемуся под воздействием силы тяжести и обладающему некой начальной скоростью в горизонтальной плоскости. Теперь, раз за разом заряжая в пушку всё более тяжелое ядро и стреляя, вы обнаружите, что, поскольку каждое следующее ядро вылетает из ствола с большей начальной скоростью, ядра падают всё дальше и дальше от подножия скалы.

Теперь представьте, что вы забили в пушку столько пороха, что скорости ядра хватает, чтобы облететь вокруг земного шара. Если пренебречь сопротивлением воздуха, ядро, облетев вокруг Земли, вернется в исходную точку точно с той же скоростью, с какой оно изначально вылетело из пушки. Что будет дальше, понятно: ядро на этом не остановится и будет и продолжать наматывать круг за кругом вокруг планеты. Иными словами, мы получим искусственный спутник, обращающийся вокруг Земли по орбите, подобно естественному спутнику -- Луне. Так мы поэтапно перешли от описания движения тела, падающего исключительно под воздействием «земной» гравитации (ньютоновского яблока), к описанию движения спутника (Луны) по орбите, не изменяя при этом природы гравитационного воздействия с «земной» на «небесную». Вот это-то прозрение и позволило Ньютону связать воедино считавшиеся до него различными по своей природе две силы гравитационного притяжения.

Остается последний вопрос: правду ли рассказывал на склоне своих дней Ньютон? Действительно ли всё произошло именно так? Никаких документальных свидетельств того, что Ньютон действительно занимался проблемой гравитации в тот период, к которому он сам относит свое открытие, сегодня нет, но документам свойственно теряться. С другой стороны, общеизвестно, что Ньютон был человеком малоприятным и крайне дотошным во всем, что касалось закрепления за ним приоритетов в науке, и это было бы очень в его характере -- затемнить истину, если он вдруг почувствовал, что его научному приоритету хоть что-то угрожает. Датируя это открытие 1666-м годом, в то время как реально ученый сформулировал, записал и опубликовал этот закон лишь в 1687 году, Ньютон, с точки зрения приоритета, выгадал для себя преимущество больше чем в два десятка лет.

Я допускаю, что кого-то из историков от моей версии хватит удар, но на самом деле меня этот вопрос мало беспокоит. Как бы то ни было, яблоко Ньютона остается красивой притчей и блестящей метафорой, описывающей непредсказуемость и таинство творческого познания природы человеком. А является ли этот рассказ исторически достоверным -- это уже вопрос вторичный.

Генри Кавендиш

10 октября 1731 г. - 24 февраля 1810 г.

Английский физик и химик Генри Кавендиш родился в Ницце; второй сын лорда Чарлза Кавендиша, герцога Девонширского. В 1749-1753 гг. обучался в Кембриджском университете, где заинтересовался естественными науками (надо отметить, что отец Кавендиша довольно успешно занимался метеорологией). В 1860 г. Кавендиш стал членом Лондонского королевского общества, а в 1802 г. был избран в Парижскую академию наук. Унаследовав в 1773 г. от своего дяди крупное состояние, Кавендиш тратил почти все доходы на проведение экспериментов; в своем доме в Лондоне он устроил лабораторию, где собрал лучшие приборы и инструменты того времени. Один из биографов Кавендиша, французский физик Жан Батист Био, назвал его самым учёным среди и богачей и самым богатым среди учёных. В то же время Кавендиш вёл очень скромный и уединённый образ жизни. В частной жизни Кавендиш слыл чудаком и оригиналом; со своими домашними он объяснялся исключительно знаками, раз навсегда выработанными, дабы не терять напрасно времени и слов, и охотно беседовал только с коллегами по науке.

Основные труды Кавендиша относятся к химии газов и различным разделам экспериментальной физики. В 1766 г. Кавендиш опубликовал первую важную работу по химии - «Искусственный воздух», где сообщалось об открытии «горючего воздуха» (водорода). Он разработал методику собирания, очистки и изучения газов, с помощью которой в 1766 г. ему удалось получить в чистом виде водород и углекислый газ, установить их удельный вес и другие свойства. В 1781 г. Кавендиш определил состав воздуха, а в 1784 г., сжигая водород, установил химический состав воды, опровергнув представления об её элементарности. Оставаясь твёрдым приверженцем теории флогистона, он тем не менее не оспаривал взгляды своего современника Антуана Лавуазье, допуская, что его кислородная теория имеет право на существование.

В 1772 г. одновременно с Даниилом Резерфордом Кавендиш открыл азот, однако опубликовал свои результаты с большим опозданием. В 1785 г. с помощью электрической искры он получил оксиды азота и исследовал их свойства. Он показал, что при пропускании электрического разряда через воздух над поверхностью воды азот реагирует с кислородом с образованием азотной кислоты. При этом Кавендиш обратил внимание на то, что 1/120 часть первоначального объема воздуха не вступает в реакцию. Вследствие несовершенства методов анализа и приборов Кавендиш не смог обнаружить в непрореагировавшем остатке новый элемент - аргон, который был открыт в 1894 г. Уильямом Рамзаем.

Большинство работ Кавендиша в области теплоты и электричества были опубликованы лишь через много лет после его смерти (труды по электричеству - в 1879 г. Джеймсом Максвеллом, собрание трудов - в 1921 г.). Кавендиш ввёл в науку понятие электрического потенциала, исследовал зависимость ёмкости электрического конденсатора от среды, изучал взаимодействие электрических зарядов, предвосхитив закон Ш. Кулона. Он впервые сформулировал понятие теплоёмкости. В 1790 г. Кавендиш сконструировал крутильные весы и измерил с их помощью силу притяжения двух сфер, подтвердив закон всемирного тяготения, а также определил гравитационную постоянную, массу и среднюю плотность Земли. Именем Кавендиша названа организованная Максвеллом в 1874 г. физическая лаборатория в Кембриджском университете.

Опыт Г. Кавендиша

Установление Ньютоном закона всемирного тяготения явилось важнейшим событием в истории физики. Его значение определяется, прежде всего универсальностью гравитационного взаимодействия. На законе всемирного тяготения основывается один из центральных разделов астрономии -- небесная механика. Мы ощущаем силу притяжения к Земле, однако притяжение малых тел друг к другу неощутимо. Требовалось экспериментально доказать справедливость закона всемирного тяготения и для обычных тел. Именно это и сделал Г.Кавендиш, попутно определив среднюю плотность Земли.

где m1 и m2 -- массы материальных точек, R -- расстояние между ними, a F -- сила взаимодействия между ними. До начала XIX века G в закон всемирного тяготения не вводилось, так как для всех расчетов в небесной механике достаточно использовать постоянные GM, имеющие кинематическую размерность. Постоянная G появилась впервые, по-видимому, только после унификации единиц и перехода к единой метрической системе мер в конце XVIII века. Численное значение G можно вычислить через среднюю плотность Земли, которую нужно было определить экспериментально. Очевидно, что при известных значениях плотности с и радиуса R Земли, а также ускорения свободного падения g на её поверхности можно найти G:

Первоначально эксперимент был предложен Джоном Мичеллом. Именно он сконструировал главную деталь в экспериментальной установке -- крутильные весы, однако умер в 1793 так и не поставив опыта. После его смерти экспериментальная установка перешла к Генри Кавендишу. Кавендиш модифицировал установку, провёл опыты и описал их в Philosophical Transactions в 1798.

Установка

Крутильные весы

Установка представляет собой деревянное коромысло с прикреплёнными к его концам небольшими свинцовыми шарами. Оно подвешено на нити из посеребрённой меди длиной 1 м. К шарам подносят шары большего размера массой 159 кг, сделанные также из свинца. В результате действия гравитационных сил коромысло закручивается на некий угол. Жёсткость нити была такой, что коромысло делало одно колебание за 15 минут. Угол поворота коромысла определялся с помощью луча света, пущенного на зеркальце на коромысле, и отражённого в микроскоп. Зная упругие свойства нити, а также угол поворота коромысла, можно вычислить гравитационную постоянную.

Для предотвращения конвекционных потоков установка была заключена в ветрозащитную камеру. Угол отклонения измерялся при помощи телескопа.

Списав закручивание нити на магнитное взаимодейстивие железного стержня и свинцовых шаров, Кавендиш заменил его медным, получив те же результаты.

Вычисленное значение

В «Британнике» утверждается, что Г. Кавендиш получил значение G=6,754·10-11 м?/(кг·с?)[1]. Это же утверждают Е. P. Коэн, К. Кроув и Дж. Дюмонд[2] и А. Кук. [3].

Л. Купер в своём двухтомном учебнике физики приводит другое значение: G=6.71·10-11м?/(кг·с?)[4].

О. П. Спиридонов -- третье: G=(6.6 ± 0.04)·10-11м?/(кг·с?)[5].

Однако в классической работе Кавендиша не было приведено никакого значения G. Он рассчитал лишь значение средней плотности Земли: 5.48 плотностей воды[6] (современное значение 5,52 г/см?). Вывод Кавендиша о том, что средняя плотность планеты 5,48 г/см? больше поверхностной ~2 г/см?, подтвердил, что в глубинах сосредоточены тяжёлые вещества.

Гравитационная постоянная была впервые введена, по-видимому, впервые только С.Д. Пуассоном в «Трактате по механике» (1811)[7]. Значение G было вычислено позже другими учеными из данных опыта Кавендиша. Кто впервые рассчитал численное значение G, историкам неизвестно.

Практическая часть

Применение баллистики на практике

Представим себе, что из одной точки выпустили несколько снарядов, под различными углами. Например, первый снаряд под углом 30°, второй под углом 40°, третий под углом 60°,а четвертый под углом 75°(рис № 6).

(рис№6) 1)

На рисунке №6 зеленым цветом изображен график снаряда выпущенного под углом 30°, белым под углом 45°, фиолетовым под углом 60°, а красным под углом 75°. А теперь посмотрим на графики полёта снарядов и сравним их.(начальная скорость одинакова, и равна 20 км/ч)

Сравнивая эти графики можно вывести некоторую закономерность: с увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается.

2)Теперь рассмотрим другой случай, связанный с различной начальной скоростью, при одинаковом угле вылета. На рисунке №7 зеленым цветом изображен график снаряда выпущенного с начальной скоростью 18 км/ч, белым со скоростью 20 км/ч, фиолетовым со скоростью 22 км/ч, а красным со скоростью 25 км/ч. А теперь посмотрим на графики полёта снарядов и сравним их (угол полёта одинаков и равен 30°). Сравнивая эти графики можно вывести некоторую закономерность: с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются.

(рис№7)

Вывод: с увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается, а с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются.

Применение теоретических расчётов к управлению баллистическими ракетами

А) траектория баллистической ракеты.

Наиболее существенной чертой, отличающей баллистические ракеты от ракет других классов, является характер их траектории. Траектория баллистической ракеты состоит из двух участков - активного и пассивного. На активном участке ракета движется с ускорением под действием силы тяги двигателей.

При этом ракета запасает кинетическую энергию. В конце активного участка траектории, когда ракета приобретёт скорость, имеющую заданную величину и направление, двигательная установка выключается. После этого головная часть ракеты отделяется от её корпуса и дальше летит за счёт запасённой кинетической энергии. Второй участок траектории (после выключения двигателя) называют участком свободного полёта ракеты, или пассивным участком траектории. Ниже для краткости будем обычно говорить о траектории свободного полёта ракеты, подразумевая при этом траекторию не всей ракеты, а только её головной части.

Баллистические ракеты стартуют с пусковых установок вертикально вверх. Вертикальный пуск позволяет построить наиболее простые пусковые установки и обеспечивает благоприятные условия управления ракетой сразу же после старта. Кроме того, вертикальный пуск позволяет снизить требования к жёсткости корпуса ракеты и, следовательно, уменьшить вес её конструкции.

Управление ракетой осуществляется так, что через несколько секунд после старта она, продолжая подъём вверх, начинает постепенно наклоняться в сторону цели, описывая в пространстве дугу. Угол между продольной осью ракеты и горизонтом (угол тангажа) изменяется при этом на 90? до расчетного конечного значения. Требуемый закон изменения (программа) угла тангажа задается программным механизмом, входящим в бортовую аппаратуру ракеты. На завершающем отрезке активного участка траектории угол тангажа выдерживается, постоянны и ракета летитпрямолинейно, а когда скорость достигает расчетной величины - двигательную установку выключают. Кроме величины скорости, на завершающем отрезке активного участка траектории устанавливают с высокой степенью точности также и заданное направление полёта ракеты (направление вектора её скорости). Скорость движения в конце активного участка траектории достигает значительных величин, но ракета набирает эту скорость постепенно. Пока ракета находится в плотных слоях атмосферы, скорость её мала, что позволяет снизить потери энергии на преодоление сопротивления среды.

Момент выключения двигательной установки разделяет траекторию баллистической ракеты на активный и пассивный участки. Поэтому точку траектории, в которой выключаются двигатели, называют граничной точкой. В этой точке управление ракетой обычно заканчивается и весь дальнейший путь к цели она совершает в свободном движении. Дальность полёта баллистических ракет вдоль поверхности Земли, соответствующая активному участку траектории, равна не более чем 4-10% общей дальности. Основную часть траектории баллистических ракет составляют участок свободного полёта.

Для существенного увеличения дальности нужно применять многоступенчатые ракеты.

Многоступенчатые ракеты состоят из отдельных блоков-ступеней, каждая из которых имеет свои двигатели. Ракета стартует с работающей двигательной установкой первой ступени. Когда топливо первой ступени израсходуется, включается двигатель второй ступени, а первая ступень сбрасывается. После сброса первой ступени сила тяги двигателя должна сообщить ускорение меньшей массе, что приводит к значительному возрастанию скорости vв конце активного участка траектории по сравнению с одноступенчатой ракетой, имеющей ту же начальную массу.

Расчеты показывают, что уже при двух ступенях можно получить начальную скорость, достаточную для полёта головной части ракеты на межконтинентальные расстояния.

Идею применения многоступенчатых ракет для получения больших начальных скоростей и, следовательно, больших дальностей полёта, выдвинул К.Э. Циолковский. Эту идею используют при создании межконтинентальных баллистических ракет и ракет-носителей для запуска космических объектов.

Б) траектории управляемых снарядов.

Траектория ракеты - это линия, которую в пространстве описывает её центр тяжести. Управляемый снаряд - это беспилотный летательный аппарат, обладающий средствами управления, с помощью которых можно влиять на движение аппарата на всей траектории или на одном из участков полёта. Управление снарядом на траектории потребовалось для того, чтобы поразить цель, оставаясь на безопасном от неё расстоянии. Существуют два главных класса целей: подвижные и неподвижные. В свою очередь реактивный снаряд может запускаться с неподвижного стартового устройства или с подвижного (например, с самолёта). При неподвижных целях и стартовых устройствах данные, необходимые для поражения цели, получаются из известного относительного расположения места старта и цели. При этом траектория движения реактивного снаряда может быть заранее рассчитана, а снаряд снабжен устройствами, обеспечивающими его движение по определённой рассчитанной программе.

В других случаях относительное расположение места старта и цели непрерывно меняется. Для поражения цели в этих случаях необходимо иметь устройства, следящие за целью и непрерывно определяющие взаимное положение снаряда и цели. Сведения, получаемые от этих устройств, используются для управления движением снаряда. Управление должно обеспечивать движение ракеты к цели по наивыгоднейшей траектории.

Для того чтобы полностью охарактеризовать полёт ракеты, недостаточно знать только такие элементы её движения, как траектория, дальность, высота, скорость полёта и другие величины, характеризующие движение центра тяжести ракеты. Ракета может занимать в пространстве различные положения относительно своего центра тяжести.

Ракета представляет собой тело значительных размеров, состоящее из множества узлов и деталей, изготовленных с известной степенью точности. В процессе движения она испытывает различные возмущения, связанные с неспокойным состоянием атмосферы, неточностью работы силовой установки, различного рода помехи и т. п. Совокупность этих погрешностей, не предусмотренных расчётом, приводит к тому, что фактическое движение сильно отличается от идеального. Поэтому для эффективного управления ракетой необходимо устранить нежелательное влияние случайных возмущающих воздействий, или, как говорят, обеспечить устойчивость движения ракеты.

в) координаты, определяющие положение ракеты в пространстве.

Изучение разнообразных и сложных движений, совершаемых ракетой может быть значительно упрощено, если движение ракеты представить как сумму поступательного движения её центра тяжести и вращательного движения относительно центра тяжести. Примеры, приведенные выше, наглядно показывают, что для обеспечения устойчивости движения ракеты чрезвычайно важно иметь её устойчивость относительно центра тяжести, т. е. угловую стабилизацию ракеты. Вращение ракеты относительно центра тяжести можно представить как сумму вращательных движений относительно трёх перпендикулярных осей, имеющих определённую ориентацию в пространстве. На рис.№7 изображена идеальная оперенная ракета, летящая по рассчитанной траектории. Начало систем координат, относительно которой мы будем стабилизировать ракету, поместим в центр тяжести ракеты. Ось X направим по касательной к траектории в сторону движения ракеты. Ось Y проведём в плоскости траектории перпендикулярно к оси X, а ось

Z -перпендикулярно к первым двум осям, как показано на рис.№8.

С ракетой свяжем прямоугольную систему координат XYZаналогичную первой, причём ось Xдолжна совпадать с осью симметрии ракеты. В идеально стабилизированной ракете оси X ,Y ,Z совпадают с осями X, Y, Z, что показано на рис №8

Под действием возмущений ракета может поворачиваться вокруг каждой из ориентированных осей X, Y, Z. Поворот ракеты вокруг оси X называют креном ракеты. Угол крена  лежит в плоскости YOZ. Его можно определить, измерив в этой плоскости угол между осями Z и Z или Y и Y.Поворот вокруг оси

Y - рыскание ракеты. Угол рыскания  находится в плоскости XOZ как угол между осями X и Xили Z и Z . Угол поворота вокруг оси Z называют углом тангажа. Он определяется углом между осями X и X или Y и Y, лежащими в плоскости траектории.

(рис №8)

Автоматические устройства стабилизации ракеты должны придавать ей такое положение, когда  = 0 или . Для этого на ракете должны находиться чувствительные устройства, способные изменить её угловое положение.

Траектория ракеты в пространстве определяется текущими координатами

X, Y, Z её центра тяжести. За начало отсчёта берут точку старта ракеты. Для ракет дальнего действия за ось X принимают прямую, касательную к дуге большого круга, соединяющего старт с целью. Ось Y направляют при этом вверх, а ось Z- перпендикулярно к двум первым осям. Эта система координат называется земной (рис№9).

(Рис.№9)

Расчётная траектория баллистических ракет лежит в плоскости XOY, называемой плоскостью стрельбы, и определяется двумя координатами X и Y.

Невесомость

Мы живем в век начала освоения космоса, в век полётов космических кораблей вокруг Земли, на Луну и на другие планеты Солнечной системы. Нам часто приходится слышать и читать о том, что лётчики-космонавты и все предметы на космическом корабле во время его полёта находятся в особом состоянии, называемом состоянием невесомости. Само слово невесомость говорит о том, что у тела отсутствует вес, то есть оно не давит на опору и не растягивает подвес. Причина невесомости заключается в том, что сила всемирного тяготения (взаимное притяжение всех тел во Вселенной) сообщает телу и его опоре одинаковые ускорения. Поэтому всякое тело, которое движется под действием только силы всемирного тяготения, находится в состоянии невесомости.

Длительную невесомость человек испытывает в космосе, в космическом корабле, на орбитальной станции. Невесомость - главное отличие космической жизни от земной. Она влияет на всё: на кровообращение, дыхание, настроение, физиологические и биологические процессы. Невесомость - уникальное явление космического полёта. На Земле мы привыкли, если, например, дождевая капля упадёт с ветки или листа, то она обязательно попадёт на землю. На орбитальной станции всё иначе: лети, куда хочешь, и не упадёшь. Тяжесть - самое надежное качество, которым обладает каждый предмет на Земле. Тяжесть - это то, что природа распределила равномерно: поровну на каждую единицу массы. В течение всего времени орбитального полёта космонавты находятся в состоянии невесомости. Они теперь не ходят, а плавают, отталкиваясь как от опоры, от стен или от заземлённых предметов. Космонавты могут, образно говоря, ходить по потолку. Сила притяжения отсутствует, тело делается непривычно лёгким, при этом кровь тоже делается невесомой.

Несмотря на кажущуюся лёгкость, передвижение в невесомости - дело непростое. Оказавшись в невесомости, - рассказывает космонавт - у космонавта вся кровь и жидкость приливает в голову. Голова тяжёлая, заложен нос, глаза красные, плохо думается. После длительного полёта в невесомости организм космонавта испытывает резкий переход к большим перегрузкам, которые будут вызваны включением тормозной установки корабля. Длительное пребывание в невесомости - отрицательно сказывается на здоровье космонавта. Влияние невесомости на организм человека так полностью и не разгадано.

Невесомость можно испытывать не только в космосе, но и на Земле. Но на Земле может быть получена только кратковременная невесомость. Например, она наблюдается в первые 1-2 секунды при свободном падении тела. Невесомость возникает при прыжках на батуте: здесь она длится 1-2 секунды. Более длительную невесомость можно получить на самолёте, когда он движется по специальной траектории. Самолёт стремительно набирает высоту, потом двигатели выключают, он начинает падать, и здесь возникает невесомость, которая длится около минуты. Некоторое подобие статической невесомости возникает, когда человека помещают в бассейн с жидкостью, равной средней плотности его тела.


Подобные документы

  • История открытия закона всемирного тяготения. Иоган Кеплер как один из первооткрывателей закона движения планет вокруг солнца. Сущность и особенности эксперимента Кавендиша. Анализ теории силы взаимного притяжения. Основные границы применимости закона.

    презентация [7,0 M], добавлен 29.03.2011

  • Законы движения планет Кеплера, их краткая характеристика. История открытия Закона всемирного тяготения И. Ньютоном. Попытки создания модели Вселенной. Движение тел под действием силы тяжести. Гравитационные силы притяжения. Искусственные спутники Земли.

    реферат [339,9 K], добавлен 25.07.2010

  • История открытия Исааком Ньютоном "Закона всемирного тяготения", события, предшествующие данному открытию. Суть и границы применения закона. Формулировка законов Кеплера и их применение к движению планет, их естественных и искусственных спутников.

    презентация [2,4 M], добавлен 25.07.2010

  • Явление тяготения и масса тела, гравитационное притяжение Земли. Измерение массы при помощи рычажных весов. История открытия "Закона всемирного тяготения", его формулировка и границы применимости. Расчет силы тяжести и ускорения свободного падения.

    конспект урока [488,2 K], добавлен 27.09.2010

  • Физическая сущность понятий: "пространство–время", "коэффициент пропорциональности". Уточнение закона всемирного тяготения. Масса ядра и материальной оболочки Земли. Луна – "нарушитель" правил орбитального движения. Параметры орбиты нашей Галактики.

    научная работа [32,5 K], добавлен 06.12.2007

  • Движение, возникающее при отделении от тела со скоростью какой-либо его части. Использование реактивного движения моллюсками. Применение реактивного движения в технике. Основа движения ракеты. Закон сохранения импульса. Устройство многоступенчатой ракеты.

    реферат [1,4 M], добавлен 02.12.2010

  • Реактивное движение, его применение: двигатели, оружие; проявление закона сохранения импульса тела при запуске многоступенчатой ракеты. История создания реактивной техники К.Э. Циолковским, Ю.А. Гагариным, С.П. Королевым. Реактивное движение в природе.

    реферат [93,1 K], добавлен 08.08.2011

  • История открытия закона всемирного тяготения. Коэффициент пропорциональности как гравитационная постоянная. Сущность и особенности эксперимента Генри Кавендиша. Определение массы земли и планет. Анализ расчета первой и второй космической скорости.

    презентация [205,8 K], добавлен 03.12.2013

  • Принципы реактивного движения, которые находят широкое практическое применение в авиации и космонавтике. Первый проект пилотируемой ракеты с пороховым двигателем известного революционера Кибальчича. Устройство ракеты-носителя. Запуск первого спутника.

    презентация [1,3 M], добавлен 23.01.2015

  • Законы динамики вращательного движения и определение скорости полета пули. Расчет угла поворота и периода колебаний крутильно-баллистического маятника. Определение момента инерции маятника, прямопропорционального расстоянию от центра масс до оси качания.

    контрольная работа [139,2 K], добавлен 24.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.