Проверочный расчет котла БКЗ 75-39

Котельный агрегат водочный конструкции типа БКЗ-75–39ФБ, его характеристика и технические особенности. Расчет объёма воздуха, энтальпий и продуктов сгорания. Сепаратор пыли. Тепловой баланс котлоагрегата. Схемы приготовления пылевидного топлива.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 23.01.2011
Размер файла 153,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С целью улучшения условий воспламенения и горения влажных

С целью улучшения условий воспламенения и горения влажных и малореакционных топлив, а также при необходимости снижения потерь теплоты с уходящими газами, котлоагрегаты оборудуются воздухоподогревателями. Дымовые газы в таких воздухоподогревателях проходят внутри расположенных в шахматном порядке вертикальных труб диаметром 29:40 мм, омываемых снаружи в поперечном направлении воздушным потоком [3]. Скорость газов в воздухоподогревателях принимаются в пределах

WГ= 8:12 м/с, а скорость воздуха-

WB= (0,5·0,7)· WГ.

Расчет воздухоподогревателя, по аналогии с расчетом водяного экономайзера, основывается на условии равенства количества теплоты, определяемых по уравнениям Поверочный тепловой расчет воздухоподогревателя, ведется с целью определения конечных температур нагреваемого воздуха и дымовых газов.

Таблица 1.5. Расчёт теплообмена в газоходах котла, твёрдое топливо

Рассчитываемая величина

Обозначение

Размерность

Формула или обоснование

Расчёт

Результат

Первый котельный пучок (первый газоход)

Температура газов перед котельным пучком

х1,

0С

х1, = хтр»

-

840

Энтальпия газов на выходе в котельный пучок

J1'

кДж/кг

J1' = Jт»

-

6400

Температура газов на выходе из пучка

х1»

0С

Задаёмся двумя значениями

-

400:600

Энтальпия газов на выходе из пучка

J1»

кДж/кг

По табл. 1.2

При бт =1,2

2910

4483

Тепловосприятие пучка (по уравнению теплового баланса)

Q1б

"

ц·(J1' - J1»)

0,98 (6400-2910)

0,98 (6400-4483)

3462,08

1901,66

Температура насыщения

tн

0С

По табл. 8.2

При Р =3,9

248,8

Температурный напор на входе в пучок

Дtб

"

х1, - tн

840-248,8

591,2

Проверочный тепловой баланс.
ДQ=Qрр зка - (Qл+ QI+ QII+ Qэ)•=12820•0,728 - (3468+664+3436+1204) •(=7,8

2.7 Аэродинамический расчёт газо-воздушного тракта

Как известно, в зависимости от типа и конструкции котельного агрегата, его мощности, сложности газового и воздушного трактов могут применятся различные схемы тяги и дутья в котельных установках.

При незначительной величине суммарного аэродинамического сопротивления газового и воздушного трактов используется обычно схема с естественной тягой и дутьём. В некоторых случаях осуществляется только искусственная тяга. В большинстве же котельных установок используется схема так называемой уравновешенной тяги, в которой дутьевой вентилятор преодолевает сопротивление воздуховодов, калорифера, воздухоподогревателя и топочного устройства, а дымосос - всего газового тракта таким образом, что в верхней части топки создаётся небольшое, близкое к нолю разряжение.

В любом случае тяга - дутьевые устройства должны обеспечивать перемещение требуемых количеств воздуха и дымовых газов в котельной установке. Выбор типа этих устройств осуществляется при аэродинамическом расчёте котельной установки на основе определения производительности тягодутьевых систем и перепада полных давлений в газовом и воздушном трактах.

В котлах с уровновешанной тягой аэродинамический расчёт выполняется раздельно для воздушного и газового трактов, а в установках, работающих под наддувом, весь газовоздушный тракт рассчитывается совместно.

Производительность тягодутьевой системы Q, мі/ч определяется по данным теплового расчёта для номинальной нагрузки котельного агрегата.

Перепад полных давлений по тракту котельной установки ?Нп, Па находятся по общей формуле:

?Нп = ?Н - Нс

Слив происходит под действием силы тяжести, как в обычном водосливе, только сила тяжести обычной текущей пароводяной смеси, погружённый пар, равна (сСТ-с?).Сечение сливных коробов должна быть достаточным для того, чтобы скорость воды в них не превышала 0,1 м/с, иначе возможны значительный захват пара с опускающейся водой, подъём уровня в коробе выше кромки водослива и затопление промывочного устройства.

3. Организация производство

3.1 Схемы приготовления пылевидного топлива

Схемы пылеприготовления могут быть индивидуальные или центральные.

При индивидуальной схеме пылеприготовительное оборудования расположено непосредственно перед котлом, пневмотранспорт и сушка топлива производится горячими воздухом или дымовыми газами котла.

При центральной схеме подготовка пыли для всей котельной осуществляется на специальном заводе. Готовая пыль в котельную подается с помощью специальных устройств. Эта схема применяется для котлов большой производительности.

При индивидуальной схеме системы пылеприготовления разделяются на системы с промежуточным пылевом бункером и системы прямым вдувания топлива в топку. Система с промежуточном пылевом бункером имеют запас пыли в бункере и, с случае отключения одной или нескольких мельниц, могут снабжать некоторые время котлы пылью. Запас пыли в бункерах должны быть рассчитан на работу котлов в течения менее 2 ч. При переполнении одного бункера пылью и невозможности передачи ее другой мельница, производящая размол, останавливается. Таким образом, мельница работает в экономичном режиме, причем работа котла не зависит от остановки мельницы, что является большим преимуществам этой схемы. Недостатком её является громоздкость, наличие большого количества оборудования, повышенный расход электроэнергии, большой объем здания.

Индивидуальные схемы пылеприготовления с промежуточным пылевым бункером применяются для котлов производительностью от 20 т/ч пара и выше.

На рис. 7.1 показано схема с промежуточными пылевым бункером для шаровых барабанных мельниц и транспортировкой выли от мельничного вентилятора. Схема применяется для сухих углей с рабочей влажностью Wp<16% и при съеме влаги Wp?0,15 кг/кг. При более влажных углях с Wp<40% и съеме влаги Wp?0,25 кг/кг в схему дополнительно устанавливается газоход отбора горячих газов из топки, которые направляются в смесительный воздуховод для повышения температуры сушильного агента, идущего барабанную мельницу.

Индивидуальные схемы пылеприготовления с прямыми вдуванием топлива в топку. В таких схемах подача пыли к горелкам осуществляется дутьевым вентилятором котлов или специального установленными мельничными вентиляторами. В первом случае система работает подавлениям, во втором - под разрежением. В схеме с мельницей - вентилятором размол топливо, а также подача пыли в топку осуществляются самой мельницей.

На рис. 7.5, а показана индивидуальная схема пылеприготовления с прямыми вдуванием топлива для молотковой мельницы с гравитационным сепаратором, а на рис. 7.5, б - с центробежным сепаратором. Сушка топлива в мельницах обеспечивают горячим воздухом котла температурой 350-400 °С. Подача пыли в топку осуществляется за счет напора, создаваемого дутьевым вентилятором.

При использований такой же схеме для молотковых мельница с инерционном сепаратором горячий воздух для сушки поступает в сепаратор. В мельницу поступает холодный воздух, взятый перед воздухоподогревателям. Часто в схемах для понижения температуры аэросмеси добавляют слабоподогретый воздух, взятый после 1-й ступени воздухоподогревателя.

При работе системы под давлением подача воздуха в мельницу и транспортировку пыли в топку осуществляются дутьевым вентилятором, установленным перед мельницей. Температура сушильного агента по условиям надежности работы оборудования не должна превышать 400 °С. Система считается взрывоопасным, поэтому взрывные клапаны не устанавливаются.

Проверка готовности к пуску оборудования пылеприготовительных установок. В предпусковой период проверяются привязка оборудования согласно проекту, правильность установки на фундаменте, крепление отдельных узлов и деталей, зазоры между элементами согласно паспортным данным, уплотнения, узлы регулирования количества подаваемого топлива, запорные органы, установленные на входе и выходе топлива, запорные органы, установленные на входе и выходе топлива, система охлаждения подшипников или валов, система смазки узлов, приводы оборудования, обеспечения взрывными клапанами, установка контрольно - измерительных приборов и расположение приборов аварийной остановки. Кроме того, проверяется техническая характеристика оборудования, обращается внимание на производительность, для некоторого оборудования а зависимости от применяемого топлива должна быть пересчитана.

3.1 Предохранительные клапаны

Предохранительные клапаны должны устанавливаться на всех пылеприготовительных установках, работающих под разрежением или при давлении 15 кПа и выше, кроме установок, работающих на антрацитах и полуантрацитах. Конструкция клапанов должна обеспечивать плотность системы и надежность открытия при их срабатывании.

Проверка правильности установки предохранительных клапанов является важной работой важной работой накладного персонала, проводимой в предпусковой период. Для проверки составляется таблица, в которой указывается расположения клапанов, их сечение согласно проекту и действительные размеры по данным замера.

Диафрагмы клапанов при диаметре на более 1 м выполняются из мягкой жести толщиной 0,5 мм с одинарным надрезом посредине. Жесть иногда заменяется алюминиевым листом толщиной 0,8 - 1 мм. При этом лист должен иметь надрез по диагоналям на глубину 40-50%. Диафрагмы, не подвергающиеся воздействию атмосферных осадков, могут быть выполнены из асбестового плотного картона толщиной 3-5 мм. При этом они должны поддерживаться металлическими сетками.

Все клапаны должны быть установлены так, чтобы можно было легко производить замену диафрагм после хлопка. К местам установки клапанов должен быть обеспечен свободной доступ. Площадки и лестницы должны иметь ограждения.

4. Экология региона

4.1 Схема очистки сточных вод от нефтепродуктов

Каждый из методов очистки сточных вод от нефтепродуктов наиболее эффективен в определенным диапазоне исходных концентраций и дисперсного состава нефтепродуктов. Так, нефтеловушки эффективно улавливают частицы 80-100 мкм и выше. Стремление к уменьшению размеров улавливаемых частиц приводит к неоправданному увеличению объема нефтеловушек. По этому следующей ступенью очистки должна быть флотация нефтепродуктов, позволяющая резко увеличивать скорость выделения более мелких частиц из воды. Наиболее же мелкие частицы удаляются из воды методом фильтрования.

Таким образом, применение всех этих методов при очистке воды может составить полную схему ее очистки. Однако состав схему очистных сооружений может быть и неполным в зависимости от конкретных условий на ТЭС. Но в любом случае очищенная по принятой схеме вода должна удовлетворять качествам, к ней предъявляемым.

Полная типовая схема очистки сточных вод, содержащих вод, содержащих нефтепродукты, показана на рис. 8.18. Так как загрязненные нефтепродуктами сточные воды поступают на очистные сооружения из разных источников и характеризуются непостоянством расхода и концентраций нефтепродуктов, то перед очисткой они собираются в буферные усреднительные баки (дав бака), рассчитываемые на двухчасовую производительность каждый.

В баках происходит выделение части наиболее крупных грубодисперсных примесей и частиц нефтепродуктов. Сточная вода, частично освобожденная от примесей, направляется в нефтеловушек, где выделяются наиболее крупные частицы нефтепродуктов и осаждаются грубодисперсные примеси. Затем вода поступает в промежуточный бак и оттуда насосом подается на флотатор.

В приведенной схеме показан флотатор ЦНИИ-5, работающий по принципу напорной флотации с возможностью рециркуляции части очищенной воды обратно через флотатор с целью повышения её очистки. При необходимости использования коагуляция во флотационном процессе в схеме предусмотрено реагентное хозяйство для приготовления и подачи коагулянта (сернокислый алюминий). Выделенные нефтепродукты направляются в мазутоприемник, куда также подаются всплывающие нефтепродукты из усреднительного бака и нефтеловушки. Эти нефтепродукты подогреваются паром для снижения вязкости и эвакуируются из установки для утилизации (сжигания).

Очищенная вода поступает во второй промежуточной бак и оттуда насосом подается на фильтровальную установку, состоящую из двух ступеней очистки. Первая ступень представляет фильтр с двухслойной загрузкой из кварцевого песка и антрацита. Сорбционный фильтр загружают активированным углем высотой слоя до 2,5 м. Вместо сорбционных фильтров на последней ступени очистки можно применять намывные фильтры.

В схеме на рис. 8.19 промывка фильтрующих загрузок осуществляется горячей водой температура 60 - 70 °С, для чего предусмотрен ее подогрев. Предусмотрена также возможность интенсификации промывки сжатым воздухом. Промывочная вода сбрасывается в усреднительный бак и вторично проходит очистку.

Ступень очистки воды по этой схеме составляет около 95% и мало зависит от исходной концентрации нефтепродуктов. Поэтому последняя накладывает известные ограниченная на возможность дальнейшего использования воды. Так, при наличии фоновый концентрации нефтепродуктов в водоеме, равной или выше ПДК, возможность этого водоема к разбавлению сточной воды равна нулю, и сбор очищенной воды в водоем может быть осуществлен с концентрацией нефтепродуктов в ней также не выше этой ПДК. Для получения остаточной концентрации, равной 0,005 мг/кг, на сооружения должна поступать сточная вода с концентрацией не более 1 мг/кг, которая практически не встречается в условиях работы ТЭС.

При реальных исходных концентрациях до 30 мг/кг по полной схеме очистки можно получить остаточную концентрацию нефтепродуктов в очищенной воде не выше 1 мг/кг, что дает возможность использовать ее, например, для подпитки теплосетей, что уже применяется на некоторых ТЭС. При наличии в схеме водоподготовительных установок предочистки, включающих коагуляцию и известкования, такая вода может подмешиваться к природной, направляемой на водоподготовительные установки. Состав и схемы очистных сооружений могут видоизменяться в зависимости от концентрации нефтепродуктов в исходной воде и степени ее очистки.

Литература

1. Ю.М. Костриков «Водоподготовка и водный режим энергообъектов», - Энергоатомиздат, 1990.

2. Г.Н. Делягин, В.И. Лебедев, Б.А. Пермяков «теплогенерирующие установки», - Госиздат, 1986.

3. «Тепловой расчёт» - нормативный метод.

4. «Аэродинамический расчёт» - нормативный метод.

5. Л.Б. Сигалов «Сборник правил и руководящих материалов по котлонадзору», - Госиздат, 1978.


Подобные документы

  • Описание конструкции котлоагрегата, его поверочный тепловой и аэродинамический расчет. Определение объемов, энтальпий воздуха и продуктов сгорания. Расчет теплового баланса и расхода топлива. Расчет топочной камеры, разработка тепловой схемы котельной.

    курсовая работа [1,5 M], добавлен 07.01.2016

  • Описание конструкции котла и топочного устройства. Расчет объемов продуктов сгорания топлива, энтальпий воздуха. Тепловой баланс котла и расчет топочной камеры. Вычисление конвективного пучка. Определение параметров и размеров водяного экономайзера.

    курсовая работа [1,1 M], добавлен 20.01.2014

  • Характеристика рабочих тел котельного агрегата. Описание конструкции котла и принимаемой компоновки, техническая характеристика и ее обоснование. Расчет объемов и энтальпий воздуха и продуктов сгорания. Тепловой баланс котла, определение расхода топлива.

    курсовая работа [173,6 K], добавлен 18.12.2015

  • Расчет объема продуктов сгорания и воздуха. Тепловой баланс, коэффициент полезного действия и расход топлива котельного агрегата. Тепловой расчет топочной камеры. Расчет конвективных поверхностей нагрева и экономайзера. Составление прямого баланса.

    курсовая работа [756,1 K], добавлен 05.08.2011

  • Назначение, конструкция и рабочий процесс котла парового типа КЕ 4. Расчет объемов и энтальпий воздуха и продуктов сгорания. Тепловой баланс котла и расход топлива. Тепловой расчет топочной камеры, конвективного пучка, теплогенератора, экономайзера.

    курсовая работа [182,6 K], добавлен 28.08.2014

  • Характеристика котла ТП-23, его конструкция, тепловой баланс. Расчет энтальпий воздуха и продуктов сгорания топлива. Тепловой баланс котельного агрегата и его коэффициент полезного действия. Расчет теплообмена в топке, поверочный тепловой расчёт фестона.

    курсовая работа [278,2 K], добавлен 15.04.2011

  • Выбор расчетных температур и способа шлакоудаления. Расчет энтальпий воздуха, объемов воздуха и продуктов сгорания. Расчет КПД парового котла и потерь в нем. Тепловой расчет поверхностей нагрева и топочной камеры. Определение неувязки котлоагрегата.

    курсовая работа [392,1 K], добавлен 13.02.2011

  • Расчет объемов и энтальпии воздуха и продуктов сгорания. Расчетный тепловой баланс и расход топлива котельного агрегата. Проверочный расчет топочной камеры. Конвективные поверхности нагрева. Расчет водяного экономайзера. Расход продуктов сгорания.

    курсовая работа [1,9 M], добавлен 11.04.2012

  • Описание котлоагрегата до перевода на другой вид топлива. Характеристика принятых к установке горелок. Обоснование температуры уходящих газов. Расчет объемов воздуха и продуктов сгорания при сжигании двух видов топлива. Тепловой баланс и расход топлива.

    дипломная работа [3,3 M], добавлен 13.06.2015

  • Расчетные характеристики топлива. Расчёт объема воздуха и продуктов сгорания, КПД, топочной камеры, фестона, пароперегревателя I и II ступеней, экономайзера, воздухоподогревателя. Тепловой баланс котельного агрегата. Расчёт энтальпий по газоходам.

    курсовая работа [1,9 M], добавлен 27.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.