Радиотехника и космос - история и современность
Зарождение радиоастрономии. Радиотелескопы и рефлекторы. Борьба с помехами. Зоркость радиотелескопов. Радиоэхо в астрономии. Радиолокация Луны и планет. Наблюдение метеоров днем. Поиски внеземных цивилизаций.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.07.2007 |
Размер файла | 270,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Неведомые нам разумные существа живут на пла-нете, окруженной атмосферой. Значит, и они, вероятно, могут радировать в космос только сквозь узкое «ра-диоокно» их атмосферы. Значит, возможный диапа-зон радиоволн для «межзвездной» радиосвязи, скорее всего, ограничивается длинами от нескольких санти-метров до 30 м. Космические естественные источники радиоволн, как уже известно читателю, ведут посто-янную интенсивную «радиопередачу» на волнах мет-рового диапазона. Чтобы она не создавала досадные помехи, радиосвязь обитаемых миров разумно вести па длинах волн короче 50 см. Но очень короткие радиоволны, в несколько сантиметров, опять непри-годны -- ведь тепловое радиоизлучение планет совер-шается именно на таких волнах, и оно будет «глу-шить» искусственную радиосвязь.
И вот Моррисону и Коккони приходит в голову блестящая мысль. Радиосвязь надо вести на волнах, близких к 21 см, которые излучает межзвездный водород. Ведь разумные обитатели других планет должны понимать огромную роль межзвездного водорода в изучении Вселенной. Значит, и у них должна быть мощная радиоаппаратура, работающая именно на этой волне. Так как водород--самый распространенный элемент в наблюдаемой нами части вселенной, то его излучение на волне длиной 21 см может рассматриваться как некий природный, «кос-мический» эталон длин. Значит, вероятнее всего прием радиосигналов с других обитаемых планет надо вести на волне длиной 21 см.
Трудно, конечно, предсказать, какой шифр будет скрыт в этих сигналах. Надо думать, что наши далекие «братья по космосу» воспользуются универсальным языком всех мыслящих существ--языком ма-тематики. Может быть, их сигналы будут давать по-следовательность цифр 1, 2, 3... Или они передадут через бездны космоса шифрованное значение такого замечательного числа, как ?. Во всяком случае ис-кусственные радиосигналы на волне 21 см можно бу-дет отличить от естественных. В частности, так как радиопередатчик установлен к а планете и вместе с ней обращается вокруг звезды, то благодаря эффекту Доплера искусственные радиосигналы должны перио-дически менять свою частоту.
Проект Моррисона и Коккони вызвал в среде астрономов огромный интерес. С конца 1960 года в Национальной радиоастрономической обсерватории США Франк Дрейк начал систематические «прослу-шивания» некоторых звезд с целью обнаружить ис-кусственные радиосигналы. Для начала были выбра-ны две звезды, весьма похожие на Солнце. Это Тау из созвездия Кита и Эпсилон из созвездия Эридана. До каждой из них около одиннадцати световых лет. Прослушивание велось на радиотелескопе с диамет-ром зеркала 26 м.
Космос безмолвствовал. Впрочем, надеяться на бы-стрый успех было бы слишком наивно. Пройдут голы, а может быть, многие десятилетия, прежде чем удастся принять искусственные радиопередачи из глу-бин Вселенной. Да и расшифровав эти сигналы и по-слав в ответ свои, мы не можем ожидать быстрого, «оперативного» разговора. Наши вопросы и их ответы будут распространяться со скоростью спета, а это значит, что от посылки вопроса до получения ответа пройдут десятилетия! К сожалению, ускорить разго-вор невозможно -- в природе нет ничего быстрее радиоволн,
С 1967 года поиски радиосигналов от инопланетян начались и в нашей стране. Эти работы ведутся под руководством известного советского ученого члена-корреспондента АН СССР В. С. Троицкого. В насто-ящее время на всенаправленных (а не на параболиче-ских) радиотелескопах ведется прием радиосигналов в диапазоне от 3 до 60 см. Одновременно подобные наблюдения проводятся и в других местах Советс-кого Союза. Если на всех этих далеких друг от друга радиотелескопах одновременно будут приняты зага-дочные «всплески» радиоизлучения, есть основания считать, что приняты радиосигналы (или какие-то радиопомехи) из космоса.
Пока что и эти эксперименты не привели к желан-ному результату, хотя обнаружено новое явление-- всплески радиоизлучения естественного происхожде-ния, приходящие на Землю из ближнего космоса.
Крупнейший в мире кольцевой 600-метровый ра-диотелескоп Специальной астрофизической обсервато-рии АН СССР уже с самого начала своей работы включился в поиски космических радиосигналов ис-кусственного происхождения.
В США обсуждается проект «Циклоп», реализу-емый с помощью Научно-исследовательского центра НАСА (Национальное управление по астронавтике и исследованию космического пространства). По про-екту «Циклоп» система для приема радиосигналов от инопланетян состоит из тысячи радиотелескопов, установленных на расстоянии 15 км друг от друга II работающих совместно. В сущности, эта система радиотелескопов подобна одному исполинскому пара-болическому радиотелескопу с площадью зеркала 20 квадратных километров! Проект «Циклоп» предпола-гается реализовать в течение ближайших 10--20 лет. Такие Сроки не должны казаться чрезмерными, так как стоимость намечаемого сооружения поистине астрономическая -- не менее 10 миллиардов долларов!
Если система «Циклоп» станет реальностью, удастся в принципе принимать искусственные радио-сигналы в радиусе 1000 световых лет. В таком огром-ном объеме космического пространства содержится свыше миллиона солнце подобных звезд, часть которых, возможно, окружена обитаемыми планетами. Чувст-вительность системы «Циклоп» поразительна. Если бы вокруг ближайшей к нам звезды Альфа Центавра обращалась планета, подобная Земле (с таким же уровнем развития радиотехники), то система «Циклоп» была бы способна уловить радиопередачи, про-водимые друг для друга обитателями этой планеты!
Пока проект «Циклоп» не осуществлен, группа американских радиоастрономов пытается принять ра-диосигналы примерно от 500 ближайших звезд (в радиусе до 80 световых лет). Прием ведется на 100метровом параболическом радиотелескопе, одном из крупнейших в мире.
Предпринята и первая попытка активной радиосвязи с инопланетянами. Как уже говорилось, 300метровый радиотелескоп в Аресибо может работать как радиолокатор на волне 10 см, причем его сигнал (с помощью радиотелескопов, подобных земным!)может быть уловлен в пределах всей нашей Галактики.
16 ноября 1974 года, когда состоялось официальное открытие радиообсерватории в Аресибо, гигантский радиолокатор послал шифрованное радиосообщение к инопланетянам. В этом сообщении в двоичной системе счисления закодированы важнейшие сведения о Земле и ее обитателях. Сигнал послан на шаровое звездное скопление в созвездии Геркулеса, содержащее около 30000 звезд. Если хотя бы около одной из этих звезд есть высокоразвитая цивилизация , способная принять и расшифровать сигнал, ответ на него мы получим не ранее, чем через 48000 лет -- так далеки от нас эти звезды!
И все таки жажда общения со внеземным Разумом так сильна, что все технические и временные трудности кажутся преодолимыми. К тому же разумные наши собратья могут оказаться и по соседству с нами.
Заключение.
А с чего все таки началась радиоастрономия!? А началось все с того, что американский радиоинженер Карл Янский в декабре 1931г. Обнаружил какие-то странные радиошумы, мешавшие передаче на волне 14,7 м. Выяснилось, что источником радиопомех было радиоизлучение Млечного Пути.
Во время второй мировой войны радиолокаторы широко вошли в практику и были приняты на вооружение всех армий. В 1943г. Советские академики Л.И. Мандельштам и И.Д. Папалекси теоретически обосновали возможность радиолокации Луны, что и было осуществлено три года спустя. В после военные годы прогресс радиоастрономии приобрел бурный, почти взрывной характер.
Вслед за радиолокацией метеоров (1945) и Венеры (1958) последовала радиолокация Юпитера (1963) и Меркурия (1963). В 1946г. На волне длиной 4,7 м был открыт мощный космический источник радиоизлучения в созвездии Лебедя. Еще годом раньше голландский астрофизик Ван Де Хюлст теоретически обосновал возможность космического излучения на волне длиной 21 см, которое было обнаружено в 1951г. Радиоизлучение Солнца на волне длиной 18,7 м, открытое еще в 1947г., стало одним из важных явлений, характеризующих физическую природу центрального тела Солнечной системы.
Современные радиотелескопы принимают космические радиоволны в шести диапазонах -- от субмиллимитрового (длина волны меньше миллиметра) до декаметрового (длина волны более десяти метров). Земная атмосфера пропускает радиоволны в диапазонах от 1, 4 и 8 мм и в интервале от 1 см до 20 м. Иначе говоря, наибольшая пропускаемая атмосферой длина радиоволны в 20000 раз больше наименьшей. Между тем в оптическом диапазоне аналогичное отношение крайних длин электромагнитных волн близко к двум. Таким образом, в этом смысле «радиоокно» в 10000 раз шире оптического «окна».
Для приема космического радиоизлучения имеются различные типы радиотелескопов. Некоторые из них напоминают рефлекторы. В таких радиотелескопах радиоволны собирает металлическое вогнутое зеркало, иногда решетчатое. Как и рефлекторов поверхность его имеет параболическую форму. Зеркало концентрирует радиоволны на маленькой дипольной антенне, облучая ее. По этой причине приемная антенна в радиотелескопах называется облучателем. Меняя облучатель можно вести радиоприем на разных длинах волн. Возникающие в облучателе токи передаются на приемное устройство и там исследуются.
У описанных радиотелескопов применяются два типа установок азимутная и параллактическая. В отличие от рефлекторов, зеркала радиотелескопов имеют очень большие размеры -- метры и даже десятки метров. Один из самых больших радиотелескопов с подвижной антенной имеется в Радиоастрономическом институте им. Планка (Германия). Поперечник его зеркала равен 100 м. Еще больше неподвижный радиотелескоп на острове Пуэрто-Рико. Его зеркало сделано из кратера потухшего вулкана, оно имеет поперечник 305 м и занимает площадь более 7 га! В фокусе зеркала на высоте 135 м при помощи специальных стальных мачт укреплена гондола с облучателями. Гондола может перемещаться над зеркалом и потому принимать излучение с достаточно большой зоны неба.
«Ратан-600»-- радиоастрономический телескоп Академии наук СССР. Он состоит из 895 отдельных зеркал общей площадью 10000 м2, которые установлены по окружности диаметром 600 м. Специальное устройство из отдельных зеркал позволяет формулировать параболическую поверхность, которая фокусирует космическое радиоизлучение на небольшом облучателе. «Ратан-600» может принимать радиоволны в диапазоне от 8 мм до 30 см.
В радиоастрономии широко применяется давно известный в физике принцип интерференции, т.е. сложение электромагнитных волн с разными фазами.
Радиоастрономия позволила исследовать радиоизлучение отдельных космических тел, а также изучить спиральное строение Галактики. Кроме того, радиоастрономы зафиксировали поразительно малые потоки энергии. Например, за всю полувековую историю радиоастрономии на волне длиной 21 см принято энергии 10-7.
Использованная литература.
Детская энциклопедия. Издательство «Просвещение»
Занимательно об астраномии. Издательство ЦК ВЛКСМ «Молодая гвардия».
Астрономы наблюдают. Издательство «Наука».
«Советская Энциклопедия».
Пароль-БТА Издательство «Детская литература».
Астрономия в ее развитии. Издательство «Просвещение»
Подобные документы
История возникновения и перспективные направления электрокардиографии. Сетевые помехи при регистрации и методы их устранения. Активные, пассивные и полосовые фильтры шумов при снятии электрокардиограммы. Борьба с помехами на собранном электрокардиографе.
дипломная работа [1,4 M], добавлен 01.12.2014Область применения ультракоротких волн - радиовещание с частотной модуляцией, телевидение, радиолокация, связь с космическими объектами. Формула определения затухания на радиолинии ультракоротких волн. Выбор диапазонов волн для линий связи Земля-Космос.
реферат [446,0 K], добавлен 01.06.2015Борьба с помехами, использование методов компенсации (параллельная, последовательная, путем вычисления отношения, в цепях обратной связи). Классическая теория проводимости. Характеристика сплавов высокого сопротивления, термоэлектрические явления.
презентация [7,4 M], добавлен 02.08.2012Определение лучшего фотодиода для модернизации дальномера и фотодиода с усилителем для модернизации систем регистрации лазерного излучения. Управление частотным шумом, возникающим при работе усилителя. Борьба с помехами, вызванными внешними воздействиями.
дипломная работа [5,9 M], добавлен 15.05.2015Способы организации контроля технического состояния высоковольтных кабельных линий. Аппаратные средства, борьба с помехами при регистрации частичных разрядов. Техническое исполнение системы "КМК-500". Управление затратами на поддержание оборудования.
презентация [4,2 M], добавлен 07.03.2016Основные сферы деятельности Галилео Галилея, его открытия в области механики и астрономии. Галилей как создатель первого телескопа. Наблюдения ученого в телескоп за крупными спутниками Юпитера. Протекание болезни итальянского физика, механика и астронома.
презентация [253,0 K], добавлен 23.03.2012Численное решение уравнений движения планет и их спутников по орбите. Влияние возмущений на характер орбиты. Возмущения в пространстве скоростей. Радиальные, тангенциальные возмущения. Законы движения Кеплера и Ньютона. Влияние "солнечного ветра".
курсовая работа [486,0 K], добавлен 22.07.2011История использования человеком источников энергии на протяжении своего исторического развития – от каменного века до нашего времени. Огонь и способы его добывания. Тепловые и реактивные двигатели. Химические источники тока. Энергия термоядерного синтеза.
реферат [3,0 M], добавлен 15.11.2009Основное назначение программного комплекса "Космос" - решение задач краткосрочного планирования и оперативного управления на основе телеметрической информации. Расчет установившегося режима и оценка состояния режима энергосистемы по данным телеизмерений.
курсовая работа [1,4 M], добавлен 26.02.2012История открытия закона всемирного тяготения. Коэффициент пропорциональности как гравитационная постоянная. Сущность и особенности эксперимента Генри Кавендиша. Определение массы земли и планет. Анализ расчета первой и второй космической скорости.
презентация [205,8 K], добавлен 03.12.2013