Механізм суперіонної провідності твердих діелектриків

Електроліти, їх поняття та характеристика основних властивостей. Особливості побудови твердих електролітів, їх різновиди. Класифікація суперпріонних матеріалів. Анізотпрапія, її сутність та основні положення. Методи виявлення суперіонної провідності.

Рубрика Физика и энергетика
Вид дипломная работа
Язык украинский
Дата добавления 12.02.2009
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Отже, рентгенівські промені надали можливість виразно побачити картину того, що відбувається у твердому тілі при суперіонному переході, і ця картина в загальному виявилася в дивно гарній згоді з якісними представленнями про часткове плавлення.

Результати рентгеноструктурного аналізу були в суттєвій частині підтверджені даними, отриманими за допомогою інших методов.дослідження кристалів, особливо нейтронографії. Нейтронографія базується на вивченні будівлі молекул, рідин і твердих тіл за допомогою розсіювання нейтронів. Нейтрони -- це елементарні частки з масою, приблизно рівній масі ядра водню (протона), але не мають, як ясно вже з назви, електричного заряду. Нейтрони входять до складу атомних ядер і можуть бути вибиті з них при бомбардуванні ядер потоком часток ззовні. Саме таким шляхом (бомбардуванням ядер берилия ядрами атома гелію) у 1932 р. уперше були отримані «вільні» нейтрони.

Перші роботи в області нейтронографії були виконані незабаром після закінчення другої світової війни і належать в основному чудовому італійському фізику Энрико Фермі. Як джерело нейтронів Фермі використовував ядерний реактор, їм же вперше сконструйований. Нейтронографічні експерименти також здійснюються на пучках нейтронів, що випускаються з ядерних реакторів (зрозуміло, незрівнянно більшої потужності).

Сутть методу структурної нейтронографії ґрунтується на явищі дифракції нейтронів, аналогічної по своїй фізичній природі дифракції рентгенівських променів. І хоча рентгенівські промені -- це електромагнітні хвилі, а нейтрони-згустки речовини, «кульки», вони, виявляється, теж можуть формувати дифракційну картину.

Як було встановлено ще на зорі розвитку квантової механіки, усі частки, зокрема, нейтрони, виявляють хвильові властивості. Такого роду подвійність закладена в самій природі матерії й іменується у фізику корпускулярно-хвильовим дуалізмом (корпускула по-латинському означає «тільце», «маленька частка»). Зв'язані з рухом часток хвилі називаються хвилями де Бройля по імені французького фізика-теоретика, що уперше ввів представлення про ці хвилі. Довжина хвиль де Бройля ?в залежить від маси і швидкості частинки. Нейтрони, які рухаються з такою швидкістю, що їхня кінетична енергія приблизно дорівнює чи трохи перевищує типові для твердого тіла енергії теплових коливань, називаються тепловими (звичайно згадані енергії складають декілька сотих часток электронвольта). Виявляється, що для теплових нейтронів довжина хвилі ?в складає 10-6 - 10-7 нм, що приблизно збігається з міжатомними відстанями в кристалі.Отже, завдяки наявності у нейтронів хвильових властивостей потоки теплових нейтронів, як і потоки рентгенівських променів, можна використовувати для вивчення структури кристалів. Зокрема, спектр їхнього розсіювання на періодичних структурах, як і спектр розсіювання рентгенівських променів, містить дифракційні максимуми, тому будова твердих електролітів вивчається методами як рентгенівського, так і нейтронного аналізу.

Разом з тим фізична природа взаємодії нейтронів з речовиною інша, чим рентгенівських променів, що визначає специфіку і найбільш ефективні області застосування кожного з методів. Рентгенівські промені розсіюються завдяки дії електричних полів, тобто електронними оболонками атомів і іонів, а нейтрони-- через ядерні сили і тому -- атомними ядрами. Унаслідок такої вибірковості структурна нейтронографія має ряд особливостей.Специфічний характер взаємодії нейтронів з атомними ядрами призводить до того, що інтенсивність нейтронного розсіяння для різних хімічних елементів несистематичним чином залежить від порядкового номера, Z елемента в періодичній системі Менделєєва.

Зокрема, у різкому контрасті з випадком розсіяння , рентгенівських променів для нейтронів здібності легких і, розсіюючих, важких елементів виявляються близькими один до одного. Тому вивчення структури сполук легких елементів з важкими є специфічною областю структурної нейтронографії; багато матеріалів, у яких здійснюється швидкий іонний транспорт, відносяться до сполук саме такого типу. З іншої сторони (і це теж практично важливо при дослідженні твердих електролітів), нейтронографічно дуже зручно вивчати сполуки елементів, що мають великі, але близькі номера Z у періодичній системі; для рентгенівських променів такі елементи помітити дуже важко, тому що їх електронні оболонки містять майже однакові числа електронів.

Граничний випадок тут -- дослідження сполук різних ізотопів одного і того ж елемента, чи ізотопічних домішок. Атомні ядра ізотопів мають однаковий електричний заряд і відрізняються лише кількістю нейтронів. Найпростіший і в той же час найважливіший приклад -- звичайний водень і так званий важкий водень -- дейтерій D. Ядро першого являє собою «голий» протон, ядро другого -- сполука протона і нейтрона (існує ще третій ізотоп -- надважкий водень, чи тритій, ядро якого складається з протона і двох нейтронів). Оскільки ізотопи одного елемента мають однаковий електричний заряд ядра і тому однакова електронна будівля, рентгенографно вони абсолютно нерозрізнені. Нейтронографічно, однак, вони розпадаются так , як різні елементи.

Щільність потоку нейтронів у пучках навіть самих могутніх ядерних реакторів на кілька порядків менше щільності потоку випромінювання від рентгенівської трубки, тому нейтронографическая апаратура й експеримент досить складні. Інтенсивність розсіювання нейтронів під різними кутами фіксується не на фотопластинку або фотоплівку, а за допомогою спеціальних лічильників. Обробка сукупності отриманих результатів, як і більшості інших обчислень у структурному аналізі, здійснюється на комп'ютерах по спеціальних програмах. У результаті можуть бути отримані карти розподілу ядерної щільності (мал. 11), аналогічні картам зарядової щільності (див. мал. 8), одержуваним з даних по дифракції рентгенівських променів.

На мал. 11, а приведена карта ядерної щільності, знайденої для сполуки ванадію V з дейтерієм D. Атоми ванадію в цій сполуці формують объемно-центрированную кубічну ґратку (ОЦК-решітку). Така ґратка утворюється, якщо формуючі її частки розміщаються в кутах і в центрі куба. Структурний елемент ОЦК-решітки виходить із зображеної на мал. 2, а, якщо центральний атом (світлий кружок) уявно замінити на чорний. Безліч таких підбудованих один до одного центрованих кубів і утворюють Оцк-решітку. Атоми дейтерію розміщаються між атомами ванадію усередині утворених ними чотиригранників (тетраедрів). Площина, для якої побудована карта, перетинає чотири атоми дейтерію.

Дейтерид ванадію не має іонну провідність, і це чітко видно на представленій карті: атоми дейтерію локалізовані в малій області усередині тетраедрів, а ядерна густина у мівузільному просторі надзвичайно низька. Інша картина виникає при нейтронографічному дослідженні йодиду срібла AgІ при температурі 160° С, тобто в суперіонному стані (?-фазі) трохи вище температури переходу (147° С). Атоми йоду

тут, як і атоми ванадію утворюють ОЦК решітку, і тому карти ядерноі густини побудовані для тієї ж січної площини, добре порівнянні. Як видно з мал. 11, б, в альфа-фазі чітко спостерігається безперервність у розподілі щільності срібла між тетраедричними позиціями. Цей факт саме і відповідає наявності переходів іонів Ag+ однієї позиції в іншу, чи, іншими словами, їхній делокалізації.

Нарешті, на мал. 11, в представлена карта щільності іонів срібла в сульфіді срібла AgS, що також має подібну кристалічну структуру, причому Оцк-решітка утворена атомами сірки. Карта отримана при температурі 300° С, тобто досить далеко від температури суперіонного переходу (179° С). Вона свідчить про те, що щільність срібла як би розмазана по кристалі, і тому іони срібла поводяться як своєрідна «рідина» .

Таким чином, прямі експерименти дають безсумнівне підтвердження ідеї про можливість існування гібридного стану кристалічного тіла як суміші, сполуки твердого каркаса і рідиноподібного розплаву.Експериментатори, природньо, не обмежилися вивченням лише перерахованих сполук. У результаті всієї сукупності такого роду дослідів було незаперечно доведено, що суперіонна провідність зв'язана з ефектом делокалізації певної частини іонів у твердому тілі. Крім того, було встановлено, що існує визначений клас кристалів (будемо називати їх суперіонними кристалами), що можуть знаходитися в двох якісно різних станах. При досить низьких температурах вони поводяться багато в чому подібно традиційним, «звичайним» кристалам (діелектрична фаза). Однак існує визначена, характерна для кожного суперіонного кристала температура, при якій відбувається стрибкоподібне розпорядкування -- часткове чи повне -- однієї з його підрешіток. У результаті кристал переходить у новий стан, іменований суперіонним. Саме завдяки переходу в цей стан відбувається різке зростання іонної провідності і кристал стає суперіонним провідником (електролітична фаза).

Зрозуміло, що структурне розпорядкування можна інтерпретувати як своєрідне плавлення. При цьому «плавиться» звичайно підрешітка, утворена яким-небудь одним сортом іонів (у моїх конкретних прикладах катіонами срібла і міді). Інша підрешітка, тобто об'ємна структура, утворена іонами іншого сорту (чи декількох сортів), зберігає твердість і тим самим забезпечує механічну міцність твердого тіла як цілого.

Підведемо деякі підсумки. У надпровідному суперіонному стані кристал представляє, образно говорячи, «рідину» мобільних іонів, що знаходяться в кістяку, утвореному малорухомими іонами. Про іонну рідину, звичайно, можна говорити з відомим ступенем умовності, на зразок того, як говорять, наприклад, про електронну рідину чи електронний газ в металах. Традиційна концепція дефектів теорії Френкеля до розглянутих матеріалів у чистому виді, природньо, незастосовна. Якщо, однак, використовувати лише термінологію і якісні представлення цієї теорії, то мова йде про множинне утворення точкових дефектів, що представляють собою іони в міжузілля вакансії. Таких дефектів тут найчастіше виявляється більше, ніж у звичайних іонних кристалах, у мільярди і більше раз.

Разом з тим, оскільки поряд з «розплавленою» розглянуті сполуки містять також тверду підрешітку, остільки їхньої властивості у визначеній. частині збігаються з властивостями традиційних кристалів. Так, у жорсткій підрешітці обов'язково існують (у дуже малій концентрації) власні чи теплові дефекти:

там можуть бути спеціально створені примісні точкові дефекти, завдяки чому іони, що утворюють жорстку підґратку, здобувають можливість переміщатися як у звичайних кристалах. Внесок цих іонів у результуючу іонну провідність, звичайно, мізерно малий. Проте вони можуть, зокрема, впливати на властивості границь розділу твердих електролітів з іншими середовищами (наприклад, металевими електродами) і брати участь у різних процесах поблизу цих границь (про що піде мова трохи нижче).

Повернемося, однак, до розупорядкованої підрешітки. Іони, що звільнилися, можуть під впливом теплових коливань переміщатися усередині твердого тіла, переносячи заряд і забезпечуючи тим самим іонну провідність. З урахуванням уже відомих даних про механізм руху іонів у твердих тілах можна стверджувати, що для реалізації швидкого іонного транспорту необхідне виконання декількох умов.

По-перше, у жорсткій структурі повинне міститися значно більше вакантних позицій, чим іонів, що можуть їх зайняти. Тільки в цьому випадку не буде гострої конкуренції за ці позиції й іони зможуть рухатися «не заважаючи» один одному.

По-друге, вакантні позиції повинні бути такими, щоб іони мали можливість без особливих утруднень переходити з однієї позиції в іншу. Іншими словами, енергетичні бар'єри між сусідніми еквівалентними положеннями не повинні бути занадто високими (тут доречно помітити, що «переборення» бар'єра -- поняття відносне: чим вище температура, тим легше здійснюються перескоки; важливо, щоб ще до температури плавлення чи розпаду сполуки бар'єри між позиціями стали для іонів переборні).

Нарешті, по-третє, повинна існувати зв'язна сітка шляхів руху іонів у каркасі, створюваному жорскою підрешіткою, тобто вакантні і відносно легко доступні позиції повинні не групуватися окремими «островами», а як би просочувати весь матеріал. У противному випадку може мати місце лише велика частота перескоків між близькими позиціями без помітного іонного переносу заряду через провідник у цілому. При виконанні сформульованих умов рухливість іонів у твердому матеріалі виявляється досить високою -- практично такою ж, як, наприклад, у воді. Якщо число рухливих іонів велике, то електрична іонна провідність цього матеріалу природнім чином виявляється близька до провідності концентрованого розчину рідкого електроліту. Тверде тіло, що володіє такими властивостями, є всі підстави називати твердим електролітом.В даний час синтезовано і вивчено безліч сполук, що володіють високою -- більш 0,01 (Ом.см-1) - ионною провідністю, у яких носіями струму є позитивно заряджені іони срібла, міді, натрію, калію, літію, цинку, негативно заряджені іони фтору, брому, кисню і ряд інших іонів обох знаків. Сімейство твердих електролітів надзвичайно розширилося. Воно стало настільки ж численним (багато десятків поєднаннь), як і різноманітним, і має сенс ознайомитися з ним докладніше.

Почнемо знов-таки з «класичного» твердого електроліту Agl, що надає можливість найбільш чітко виявити структурні особливості, характерні для безлічі сполук такого роду. Високотемпературна ?-модифікація йодистого срібла, у якій він має аномально високу іонну провідність, вивчена дуже детально. Перші результати з залученням рентгеноструктурного аналізу були отримані Штроком у 1934 р., тобто більш ніж через 20 років після виявлення дивних аномалій у поводженні цього матеріалу. Штрок працював з порошковими зразками, потім його дані неодноразово перевірялися й уточнювалися на монокристалах, а також із залученням нейтронографічних методів. Установлено, що в цілому ранні дослідження відтворюють правильну картину будови ?-фази йодиду срібла, хоча. деякі деталі були, звичайно, уточнені.

Його тверда структура являє собою щільно упаковані аніони йоду І-, що утворюють об'ємно-центровану кубічну ґратку (мал. 12). Так званий елементарний осередок таких ґраток включає два іони -- центральний іон куба і по 1/8 від кожного з восьми іонів у вершинах куба. Усі ґратки відтворюються трансляціями (повтореннями) елементарного осередку в трьох взаємно перпендикулярних напрямках.

Між відносно великими іонами йоду знаходиться велике число порожнеч, у яких можуть розташовуватися катіони срібла, що мають порівняно невеликі розміри (згадаємо про відносні розміри іонів хлору і натрію -- див. мал. 8). Такі порожнечі мають близькі об'єми, але відрізняються формою, а також числом їхніх найближчих навколишніх іонів йоду (координаційним числом). На один елементарний осередок доводиться 6 позицій, що знаходяться між двома аніонами, тобто з подвійною координацією (вони називаються b-позиції), 12 позицій з чотириразовою координацією (d-позиції) і 24 позицій із триразовою координацією (h-позиції). Усього позицій 42, а оскільки на один елементарний осередок, що містить два аніони йоду, приходиться два катіони срібла, то на кожний катион срібла приходиться 21 позиція.

Найбільш тонким є питання про розподіл катіонів Ag+ по цих позиціях. Різні позиції мають різні координаційні числа, тому не потрібно затверджувати, що всі три групи цих позицій можуть бути зайняті катіонами срібла з рівною імовірністю. Спеціально проведені розрахунки показали, що потенційна енергія цих катіонів у позиціях різних типів повинна незначно розрізнятися -- лише на величину, порівнянну з енергією теплових коливань. Але це означає, що імовірності їхнього заповнення повинні бути близький одне до одного.

Таким чином, структура йодиду срібла містить велике число більш-менш еквівалентних, причому геометрично близько розташованих одне до одного, місць (позицій) для іонів срібла. Саме у цьому випадку й утворяться траєкторії майже безперешкодного руху іонів від позиції до позиції. Це показують строгі обчислення, але якісно це зрозуміло і без розрахунків: спробуйте мисленно зблизити між собою «дрібні» ямки, зображені на мал. 4. Очевидно, що висота бар'єра між ямками зменшиться, одночасно зменшиться енергія активації, тим самим перехід іонів між ямками-міжвузіллями полегшиться. У результаті катіони срібла в ?-фазі виявляються як би безупинно “кочують” по вільних позиціях у твердій підрешітці йоду. Деяке розходження в імовірностях перебування катіонів у позиціях різних типів означає просто різну відносну тривалість перебування їх у цих позиціях. Іншими словами, ?-Ag являє собою яскравий приклад твердого електроліту (чи суперіонного провідника), що містить жорстку аніонну підрешітку, що занурена в катіонну рідину.

ПРАКТИЧНЕ ЗНАЧЕННЯ.ПЕРСПЕКТИВИ ВИКОРИСТАННЯ СУПЕРІОННИХ ПРОВІДНИКІВ

З розказаного чітко видно, що фізика і хімія твердого тіла зтикнулися з надзвичайно цікавими й у багатьох відноеннях унікальними за своїми властивостями об'єктами. Їх дослідження ставлять перед ученими ряд проблем, що безпосередньо торкаються принципових проблем теоретичної фізики і хімії твердого тіла, кристалографії, фізичної хімії, а також багатьох прикладних областей знання.Насамперед сюди відноситься ціле коло питань, зв'язаних з ефектом структурної неупорядкованості. Дослідження властивостей неупорядкованих середовищ, таких, наприклад, як рідких і аморфних напівпровідників і металів, зайняло одне з центральних місць у фізиці конденсованих середовищ. Крім практичної важливості цих матеріалів, їхнє всебічне дослідження представляє природну логічну ступінь у послідовності усе більш складних для вивчення об'єктів: ідеальний газ-ідеальний кристал-рідина.

Ідеальні кристали характеризуються строгою періодичністю (далеким порядком) у розташуванні молекул, атомів чи іонів. У неупорядкованих середовищах, зокрема, рідинах, далекий порядок у розташуванні часток відсутній. Суперіонні матеріали у надпровідній (електролітичній) фазі, вивчення якої саме по собі дуже важливе, представляють, крім того, своєрідний гібрид твердого тіла і рідини. Тому з позицій вивчення закономірностей конденсованих середовищ суперіонні провідники -- дуже цікава ланка в згаданому ланцюзі об'єктів що ускладнюються: вони можуть розглядатися в деяких аспектах як структури, що заповнюють «щілину» між рідинами і кристалами, причому ступінь неупорядкованості цих структур контрольованим чиолм змінюється зі зміною температури.

Інша цікава проблема -- термодинамічний опис фазових переходів. Стрибкоподібне температурна неупорядкованість однієї з підрешіток і одночасна перебудова із збереженням періодичної структуриіншої підрешітки являють собою при певних умовах накладання фазових переходів першого і другого роду. У теорії фазових переходів, як і в теорії неупорядкованих середовищ, досягнуто істотного прогресу. Суперіонні провідники являють собою трохи несподіваний і дуже нетрадиційний об'єкт для відпрацьовування й експериментальної перевірки сформованих в теорії фазових переходів, нових концепцій. Те ж саме відноситься і до теорії невипромінюючих переходів у конденсованих середовищах, безпосередньо зв'язаної з проблемою іонного транспорту в суперіонних провідниках, особливо з урахуванням взаємодії між іонами, що переміщаються.«Фізика сьогодення -- це техніка майбутнього»,-- писав академік А. Ф. Иоффе. Вивчення суперіонної провідності нині знаходиться саме на тій стадії, коли одержання суто наукових результатів природним шляхом «переливається» у можливість прикладного, практичного їхнього використання, завдяки чому тут реалізується винятково плідне злиття науки і технології, що зароджується. Таким чином, тверді електроліти природним чином висуваються як об'єкти экспериметального і теоретичного дослідження на одне із провідних місць.

Нарешті, підкресю, що не усі властивості цих матеріалів досить вивчені і їхні можливості цілком ще далеко не розкриті. Очевидно, що дослідників і практиків чекає в цій області ще чимало несподіваного і цікавого.


Подобные документы

  • Закони постійного струму. Наявність руху електронів у металевих проводах. Класифікація твердих тіл. Механізм проходження струму в металах. Теплові коливання грати при підвищенні температури кристала. Процес провідності в чистих напівпровідниках.

    реферат [33,6 K], добавлен 19.11.2016

  • Елементи зонної теорії твердих тіл, опис ряду властивостей кристала. Постановка одноелектронної задачі про рух одного електрона в самоузгодженому електричному полі кристалу. Основні положення та розрахунки теорії електропровідності напівпровідників.

    реферат [267,1 K], добавлен 03.09.2010

  • Природа твердих тіл, їх основні властивості і закономірності та роль у практичній діяльності людини. Класифікація твердих тіл на кристали і аморфні тіла. Залежність фізичних властивостей від напряму у середині кристалу. Властивості аморфних тіл.

    реферат [31,0 K], добавлен 21.10.2009

  • Впорядкованість будови кристалічних твердих тіл і пов'язана з цим анізотропія їх властивостей зумовили широке застосування кристалів в науці і техніці. Квантова теорія твердих тіл. Наближення Ейнштейна і Дебая. Нормальні процеси і процеси перебросу.

    курсовая работа [4,3 M], добавлен 04.01.2010

  • Прості матеріали високої провідності та їх сплави. Надпровідники та кріопровідники. Параметри надпровідникових матеріалів. Сплави високого опору та спеціальні сплави. Контактні матеріали. Неметалеві провідники. Характеристика, властивості інших металів.

    реферат [52,3 K], добавлен 25.11.2010

  • Найпростіша модель кристалічного тіла. Теорема Блоха. Рух електрона в кристалі. Енергетичний спектр енергії для вільних електронів у періодичному полі. Механізм електропровідності власного напівпровідника. Електронна структура й властивості твердих тіл.

    курсовая работа [184,8 K], добавлен 05.09.2011

  • Дослідження електричних властивостей діелектриків. Поляризація та діелектричні втрати. Показники електропровідності, фізико-хімічні та теплові властивості діелектриків. Оцінка експлуатаційних властивостей діелектриків та можливих областей їх застосування.

    контрольная работа [77,0 K], добавлен 11.03.2013

  • Поняття дифракції, її сутність і особливості, різновиди та характеристика, відмінні риси. Основні положення принципу Гюйгена-Френеля, його значення та практичне використання. Дифракція Фраунговера на щілині. Поняття та призначення дифракційної решітки.

    реферат [603,5 K], добавлен 06.04.2009

  • Поняття і класифікація діелектриків, оцінка впливу на них випромінювання високої енергії. Ознайомлення із властивостями діелектриків - вологопроникністю, крихкістю, механічною міцністю, в'язкістю, теплопровідністю, стійкістю до нагрівання та охолодження.

    реферат [124,3 K], добавлен 23.11.2010

  • Дослідження явищ діамагнетизму, феромагнетизму та парамагнетизму. Розгляд кривої намагнічування та форми петлі гістерезису. Виокремлення груп матеріалів із особливими магнітними властивостями. Вимоги до складу і структури магнітно-твердих матеріалів.

    дипломная работа [34,3 K], добавлен 29.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.