Методы регистрации частиц. Ускорители частиц

Сцинтилляционный, черенковский детектор частиц. Ионизационная камера, пропорциональный счетчик. Требования к детекторам. Каскадный ускоритель, электростатистический генератор. Ускорение протонов при облучении коротким лазерным импульсом тонкой фольги.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 16.11.2014
Размер файла 4,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В отличие от изоляционных конструкций, работающих в сжатом газе, простое секционирование изолятора ускорительной трубки металлическими электродами оказывается малоэффективным. При u>4-5 MB в трубке резко возрастает интенсивность разрядных процессов, а допустимая величина электрического поля в ней снижается. Это явление, получившее назв. эффекта полного напряжения, объясняется наличием сквозного вакуумного канала, в котором происходит обмен вторичными заряженными частицами и их размножение. (Причины появления вторичных частиц - облучение поверхности трубки рассеянными частицами пучка, эмиссия электронов с загрязнённых поверхностей, разряд по поверхности изолятора и т. д.) Для борьбы с этим эффектом предлагались различать конструкции ускорительных трубок. Наибольшую известность получили трубки с "наклонным полем", предложенные P. Ванде-Граафом (R. Van de Graaf). B них электроды устанавливаются под небольшим углом к плоскости поперечного сечения трубки, периодически изменяемым на противоположный. Ускоряемые частицы, имеющие большую энергию, проходят по каналу такой трубки, не задевая его стенок, а вторичные частицы с меньшей энергией, возникающие внутри трубки, задерживаются электродами.

Устранения эффекта полного напряжения удалось добиться также в ускорительных трубках с плоскими электродами, в которых электроды и изоляторы соединены пайкой или сваркой. Ускоряющая и вакуумная системы высоковольтных ускорителей, в которых используются такие трубки, не имеют элементов, содержащих органиченные материалы, и допускают прогрев до температур в несколько сотен 0C. Благодаря этому рабочее давление в системе составляет 10-6- 10-7 Па и устраняется причина возникновения вторичных заряженных частиц в канале трубки.

Однако изготовление сварных и паяных ускорительных трубок технологически значительно сложнее.

2.2 Каскадный генератор

а б

Рис. 42 - а - схема умножителя напряжения, б - фотография каскадного генератора

Каскадный генератор - ускоритель прямого действия, т.е. частицы в нем ускоряются непосредственно за счет прохождения высокой разности потенциалов. В каскадных генераторах высокое постоянное напряжение получают из низкого переменного напряжения c помощью умножителей напряжения, которые также называются каскадными генраторами.

Первый каскадный генератор (ускоритель) на энергию 700 кэВ - был создан в 1931 г. в Англии Дж. Кокрофтом и Э. Уолтоном.

На рис. 1а показана схема умножителя напряжения, который использовали Кокрофт и Уолтон*. Когда на входе отрицательная полуволна переменного напряжения, первый диод открыт и нижний левый конденсатор заряжается до пикового значения входного напряжения. При смене полярности первый диод закрывается, а второй открывается и левый конденсатор заряжается до двойного напряжения. При каждой смене полярности входного напряжения заряды емкостей последовательно суммируются. Таким образом выходное напряжение - удвоенное произведение входного напряжения на количество каскадов.

2.3 Электростатический генератор (генератор Ван де Граафа)

Наиболее известным ускорителем прямого действия является электростатический генератор (генератор Ван де Граафа), где частицы или ионы ядер ускоряются непосредственно за счет одно- или двукратного (в тандемах) прохождения огромной постоянной разности потенциалов V, достигающей 20 миллионов вольт. Частица, имеющая заряд Ze, приобретает в таком ускорителе кинетическую энергию T = ZeV. Cущественным преимуществом ускорителей прямого действия является непрерывность, высокая интенсивность и высокая стабильность по энергии ускоренного пучка

(?0.01%). Ток пучка на ускорителях Ван-де-Граафа может достигать нескольких миллиампер. Однако, в таких ускорителях трудно обеспечить энергию частиц больше 40-50 МэВ для протонов и для достижения ещё больших энергий используют линейные ускорители.

Рис. 43 - Схема генератора Ван-де-Граафа с диэлектрическим транспортёром зарядов: 1 - транспортёр; 2-устройства для нанесения и съёма зарядов; 3-валы транспортёра; 4 - высоковольтный электрод

2.4 Циклические ускорители

Циклический ускоритель - один из видов ускорителей заряженных частиц, в котором частицы во время ускорительного цикла движутся по траекториям, близким к окружности либо спирали. Все циклические ускорители (кроме бетатрона) резонансные: микротрон, синхротрон, циклотрон, фазотрон. В бетатроне частицы движутся по кольцевой орбите и ускоряются вихревым электрическим полем. В резонансных циклических ускорителей ускорение происходит в высокочастотном электрическом поле, в ускоряющих промежутках, к которым частицы многократно возвращаются. При этом частота обращения частиц и частота колебаний электрического поля должны быть так согласованы друг с другом (резонанс), чтобы при каждом последующем обороте частицы проходили ускоряющий промежуток при одной и той же равновесной фазе ускоряющего поля (или вблизи неё). Принцип многократного ускорения частиц небольшими электрическими полями позволил ускорять частицы в циклическом ускорителе до энергий, измеряемых сотнями ГэВ и даже несколькими ТэВ. Л. Л. Гольдин.

Циклотрон.

Циклотрон - циклический ускоритель нерелятивистских тяжёлых заряженных частиц (протонов, ионов), в котором частицы двигаются в постоянном и однородном магнитном поле, а для их ускорения используется высокочастотное электрическое поле неизменной частоты.

В 1930 году Э. Лоуренсом (США) был создан и первый циклический ускоритель - циклотрон на энергию протонов 1 МэВ (его диаметр был 25 см). На рис.1 показана первая работающая модель циклотрона. На рис.2 циклотрон следующего поколения, который позволял ускорять протоны и дейтроны до энергий в несколько МэВ.

Рис. 44 - Первая работающая модель циклотрона

Рис. 45 - С. Ливингстоун и Э. Лоуренс у 27-дюймового циклотрона, который широко использовался в экспериментальных исследованиях ядерных реакций и искусственной радиоактивности

Рис. 46 - Схема циклотрона: вид сверху и сбоку: 1 - источник тяжелых заряженных частиц (протонов, ионов), 2 - орбита ускоряемой частицы, 3 - ускоряющие электроды (дуанты), 4 - генератор ускоряющего поля, 5 - электромагнит

Стрелки показывают силовые линии магнитного поля). Они перпендикулярны плоскости верхнего рисунка

Схема устройства циклотрона показана на рис.3. Тяжелые заряженные частицы (протоны, ионы) попадают в камеру из инжектора вблизи центра камеры и ускоряются переменным полем фиксированной частоты, приложенным к ускоряющим электродам (их два и они называются дуантами). Частицы с зарядом Ze и массой m движутся в постоянном магнитном поле напряженностью B, направленном перпендикулярно плоскости движения частиц, по раскручивающейся спирали. Радиус R траектории частицы, имеющей скорость v, определяется формулой,

(1)

где - релятивистский фактор.

В циклотроне для нерелятивистской (г ? 1) частицы в постоянном и однородном магнитном поле радиус орбиты пропорционален скорости (1), а период обращения

(2)

т. е. не зависит от энергии частицы. В зазоре между дуантами частицы ускоряются импульсным электрическим полем (внутри полых металлических дуантов электрического поля нет). В результате энергия и радиус орбиты возрастают. Повторяя ускорение электрическим полем на каждом обороте, энергию и радиус орбиты доводят до максимально допустимых значений. На последнем витке спирали включается отклоняющее электрическое поле, выводящее пучок наружу. Постоянство магнитного поля и частоты ускоряющего поля делают возможным непрерывный режим ускорения. Пока одни частицы двигаются по внешним виткам спирали, другие находятся в середине пути, а третьи только начинают движение.

Недостатком циклотрона является ограничение существенно нерелятивистскими энергиями частиц, так как даже не очень большие релятивистские поправки (отклонения г от единицы) нарушают синхронность ускорения на разных витках и частицы с существенно возросшими энергиями уже не успевают оказаться в зазоре между дуантами в нужной для ускорения фазе электрического поля. В обычных циклотронах протоны можно ускорять до 20-25 МэВ.

Для ускорения тяжёлых частиц в режиме раскручивающейся спирали до энергий в десятки раз больших (вплоть до 1000 МэВ) используют модификацию циклотрона, называемую изохронным (релятивистским) циклотроном, а также фазотрон. В изохронных циклотронах релятивистские эффекты компенсируются радиальным возрастанием магнитного поля.

Бетатрон.

Рис. 47 - Схема бетатрона: а) вид сверху, б) сечение по линии АА. Показаны вектора Е и Н напряженностей электрического и магнитного полей. 1 - электромагнит, 2 - вакуумная камера, 3 - орбита электрона, 4 - инжектор, 5 - тормозная мишень, 6 - тормозное излучение

Первым циклическим ускорителем электронов явился бетатрон. Его первый экземпляр был построен в 1940 г. Д. Керстом. Бетатрон - это индукционный ускоритель, в котором энергия электронов увеличивается за счет вихревого электрического поля, создаваемого изменяющимся магнитным потоком, направленным перпендикулярно к плоскости орбиты частиц. Электроны двигаются по круговой орбите постоянного радиуса в нарастающем во времени по синусоидальному закону магнитном поле (обычно промышленной частоты 50 Гц). Удержание электронов на орбите постоянного радиуса обеспечивается определенным образом подобранным соотношением между величинами магнитного поля на орбите и внутри неё. Рабочим циклом является первая (нарастающая) четверть периода магнитного поля.

Бетатрон конструктивно представляет собой большой электромагнит, между полюсами которого расположена тороидальная вакуумная камера (см. рисунок). Электромагнит создаёт в зазоре между полюсами переменное (меняющееся со временем по закону синуса, обычно с промышленной частотой 50 Гц) магнитное поле напряженностью H, которое в плоскости вакуумной камеры создаёт вихревое электрическое поле Е (э.д.с. индукции). В вакуумную камеру с помощью инжектора (электронная пушка) в начале каждого периода нарастания магнитного поля (т.е. с частотой 50 Гц) впрыскиваются электроны, которые увлекаются вихревым электрическим полем Е в процесс ускорения по круговой орбите. В момент, когда магнитное поле достигает максимального значения (в конце первой четверти каждого периода), процесс ускорения электронов прекращается и сменяется их замедлением, так как вихревое поле Е меняет направление, а э.д.с. индукции - знак.

Электроны, достигшие наибольшей энергии, смещаются с равновесной орбиты и либо выводятся из камеры, либо направляются на специальную мишень внутри камеры, называемую тормозной. Торможение электронов в этой мишени в кулоновском поле ядер и электронов приводит к возникновению электромагнитного тормозного излучения, максимальная энергия которого равна кинетической энергии Ее электронов в конце ускорения: = Ее. Тормозные фотоны летят в направлении движения первичных электронов в узком конусе. Их энергетический спектр непрерывен, причем, чем меньше энергия фотонов, тем их больше в тормозном излучении. Формирование высокоэнергичного электромагнитного г-излучения торможением высокоэнергичных электронов в мишени - наиболее простой и эффективный способ создания пучка г-квантов высокой энергии для экспериментов в области ядерной физики и физики частиц.

Бетатроны преимущественно и используются как источники тормозного излучения. Благодаря простоте конструкции и управления, а также дешевизне бетатроны получили широкое применение в прикладных целях в диапазоне энергий 20-50 МэВ. Создание бетатронов на более высокие энергии сопряжено с необходимостью использования электромагнитов слишком большого размера и веса (магнитное поле приходится создавать не только на орбите, но и внутри неё).

Микротрон.

Рис. 48 - Схема микротрона

В циклотронах нельзя ускорять электроны по той же схеме, как и протоны, так как они быстро достигают релятивистских скоростей. Тем не менее существуют ускорители (микротроны), в которых электроны, также как и протоны в циклотроне, многократно ускоряются импульсами высокочастотного электрического поля в постоянном однородном магнитном поле (принцип действия микротрона предложен в 1944 г. В. Векслером). В микротроне (рис. 1) частицы вводятся в ускорительную камеру не в центральной части магнитного поля, как в циклотроне, а на его краю. В месте ввода частиц помещается полый ускоряющий резонатор. При каждом обороте электроны получают энергию » 0.5 МэВ и попадают в резонатор точно в момент ускорения на каждом витке (период n-го оборота кратен периоду первого оборота). Электроны движутся по окружности увеличивающегося радиуса, причём все окружности касаются внутри резонатора. Энергии электронов в “классических” микротронах обычно не превышают 30 МэВ и ограничиваются размерами постоянного магнита и возрастающими требованиями к однородности его поля при увеличении габаритов ускорителя.

Рис. 49 - Схема разрезного микротрона

В настоящее время ограничения на энергии микротронов сняты использованием его варианта, названного разрезным микротроном (предложен А. Коломенским). Переход от классического микротрона к разрезному можно пояснить с помощью рис. 2.

Если магнит классического микротрона “разрезать” на две одинаковые части вдоль пунктирной линии АА и две эти части раздвинуть, оставив ускоряющий резонатор между половинками магнита, то приходим к схеме разрезного микротрона.

Теперь пространство между магнитами позволяет заменить небольшой резонатор, допускающий лишь малый ?0.5 МэВ) прирост энергии за оборот, на самостоятельный (линейный) ускоритель с энергией ?10 МэВ и более и это позволит многократно увеличить конечную энергию электронов (есть разрезные микротроны на энергию ?1 ГэВ).

Ускорение электронов по схеме разрезного микротрона или сходной с ней в настоящее время используется для генерации пучков электронов большой энергии в непрерывном режиме. Дело в том, что ускорители, как правило, работают в импульсном режиме, т. е., например, электроны в них ускоряются в течение короткого временнoго промежутка ?t, когда возможно ускорение, после чего следует сравнительно длительная пауза для возврата в режим нового цикла ускорения.

Период времени Т между циклами ускорения обычно много больше длительности электронного импульса (Т >> ?t). Характерная величина D = ?t/T, называемой рабочим циклом, ?10-3. Таким образом, для физических экспериментов удается использовать лишь ?0.1% времени работы ускорителя.

Ускорение электронов по схеме разрезного микротрона позволяет осуществить непрерывный режим работы ускорителя, когда D равен или близок к единице.

Это достигается непрерывностью режима работы основной ускорительной структуры (линейного ускорителя), расположенной между разделенными частями постоянного магнита микротрона.

В микротроне непрерывного действия вся ускорительная камера заполнена электронами, находящимися на всех стадиях ускорения - от начальной (т.е. с наименьшей энергией) до максимально возможной. Непрерывный режим работы такого ускорителя позволяет использовать для экспериментов все время его работы и, тем самым, повысить количество актов изучаемого взаимодействия за фиксированное время в ?1/D103 раз, что особенно важно для исследования редких событий.

Крупнейшим ускорителем электронов, работающим в непрерывном режиме (D = 1) является ускоритель Национальной лаборатории им. Томаса Джеферсона (TJNAF) в г. Ньюпорт-Ньюс (США).

Он использует сверхпроводящие ускорительные структуры и позволяет ускорять электроны до энергии 5.71 ГэВ. Ток его электронного пучка 200 мкА.

Энергетическое разрешение ?E/E = 2.5*10-5.

Синхротрон.

Рис. 50 - Схема синхротрона

Синхротрон - кольцевой циклический ускоритель заряженных частиц, в котором частицы двигаются по орбите неизменного радиуса за счёт того, что темп нарастания их энергии в ускоряющих промежутках синхронизован со скоростью нарастания магнитного поля на орбите. Он позволяет ускорять как лёгкие заряженные частицы (электроны, позитроны), так и тяжёлые (протоны, антипротоны, ионы) до самых больших энергий. В настоящее время все циклические ускорители на максимальные энергии - это ускорители синхротронного тип (их принцип предложен в 1944 г. В. Векслером (СССР) и независимо в 1945 г. Э. Макмилланом (США).

В синхротронах (рис. 1) магнитное поле переменное и частицы двигаются по одной и той же замкнутой траектории, многократно проходя прямолинейные промежутки с ускоряющим электрическим полем радиочастотного диапазона. Частицы, увеличивающие свою энергию, удерживаются на фиксированной орбите с помощью нарастающего поля мощных отклоняющих (в том числе и сверхпроводящих) кольцевых магнитов. Для удержания частиц на орбите постоянного радиуса темп нарастания поля синхронизован с темпом нарастания энергии частиц (отсюда происходит название этого типа ускорителя). По достижении максимального магнитного поля ускоренные частицы либо направляются на неподвижную мишень, либо (в коллайдерах) сталкиваются со встречным пучком, после чего цикл ускорения повторяется. В синхротронах есть два типа чередующихся кольцевых магнитов: отклоняющие двухполюсные (дипольные), удерживающие частицы на орбите, и фокусирующие четырёхполюсные (квадрупольные). Последние фокусируют частицы (как линзы свет), собирая их в узкий пучок, циркулирующий в вакуумной камере.

Когда скорость частицы близка к скорости света, соотношение между кинетической энергией частицы Е и радиусом траектории R имеет в системе СИ вид

E = cqHR (1)

где H - величина напряженности магнитного поля, а q - заряд частицы. Поэтому максимально достижимая энергия частицы пропорциональна радиусу траектории и величине магнитного поля. Сократить размеры установки можно, увеличивая величину поля, а она ограничена эффектом насыщения металла (обычно, железа), используемого в качестве материала сердечника электромагнита. В самых современных ускорителях, в этой связи, используются электромагниты с катушкой из сверхпроводящего материала, работающие при температуре жидкого гелия.

Синхротроны используют как для ускорения тяжелых заряженных частиц (протонов, ионов), так и для ускорения электронов. Однако в случае электронов при высоких энергиях становятся существенными потери ими энергии на излучение (называемое синхротронным) при криволинейном движении по орбите. Мощность синхротронного излучения Р для релятивистской частицы следующим образом зависит от её массы m энергии Е и радиуса траектории R:

~ (2)

Таким образом, если электроны и протоны одинаковых энергий, двигаются по орбитам одного радиуса, то потери энергии на синхротронное излучение у электронов будут в (mp/me)4?1013 раз больше. Поэтому на синхротронах пока не удалось ускорить электроны до энергий бoльших 100 ГэВ. Крупнейшим современным синхротроном является синхротрон в Батавии (США). Он ускоряет протоны и антипротоны до энергии 1 ТэВ = 1012 эВ и называется Теватрон. Радиус круговой орбиты в этом ускорителе 1 км.

В 80-е годы ХХ века было предложено сразу нескольких проектов строительства коллайдеров с энергией соударения, достигающей десятков ТэВ. Однако сложность их реализации привела к тому, что в настоящее время сооружается лишь один такой коллайдер, где будут сталкиваться протоны с суммарной энергией соударения 14 ТэВ в системе центра инерции. Он носит название “Большой адронный коллайдер” (LHC -- Large Hadron Collider) и создается в CERN.

На рис. 2 показан фрагмент кольца протонного синхротрона на энергию 7 ТэВ в ЦЕРН (г. Женева, Швейцария), который входит в состав установки LHC (Large Hadron Collider). Длина его кольца 26.7 км.

Синхофазатрон.

Синхрофазотрон - циклический резонансный ускоритель тяжелых заряженных частиц (протонов, ионов), в котором объединяются свойства фазотрона и синхротрона. Здесь управляющее магнитное поле и частота ускоряющего электрического поля одновременно изменяются во времени так, чтобы радиус равновесной орбиты частиц оставался постоянным.

Рассмотрим действие лоренцевой силы и рассчитаем энергию протонного ускорителя, представляющего собой кольцевой магнит диаметром 2 км. Между полюсами этого магнита расположена тороидальная вакуумная камера, в которую инжектирован пучек протонов. Если смотреть на ускоритель сверху (рис. 4.6), то пучок протонов движется по часовой стрелке со скоростью х, близкой к скорости света.

На протон действует центростремительная сила, направленная к центру. Если поле направлено из плоскости чертежа, то сила Лоренца всегда направлена к центру.

Рис. 51

Центростремительная сила равна:

где mr - релятивистская масса протона. Так как эта сила обусловлена действием магнитного поля, она равна . Тогда

Поскольку , то можно записать - так можно рассчитать полную релятивистскую энергию протонов:

Заметим при этом, что магнитное поле не увеличивает скорость или энергию частиц. Ускорение протонов осуществляется при каждом их обороте в кольце за счет электростатического поля, которое действует на коротком участке кольца.

Планируется построить в г. Серпухове протонный синхрофазотрон на энергию примерно 3 000 ГэВ (диаметр установки примерно 6 000 м).

В фазотронах, микротронах, синхротронах и синхрофазотронах частицы ускоряются до релятивистских скоростей.

Масса частицы m зависит от ее скорости :

где - масса покоя частицы; - отношение скорости частицы к скорости света в вакууме.

Кинетическая энергия частицы K: , где - полная энергия частицы; - энергия покоя частицы.

Импульс релятивистской частицы

.

Период обращения релятивистской частицы

Радиус окружности траектории релятивистской частицы

Линейные ускорители.

Линейные ускорители - ускорители заряженных частиц, в которых частица движется по прямолинейной траектории. Линейные ускорители можно разбить на две категории - ускорители прямого действия и собственно линейные ускорители.

Наиболее известным ускорителем прямого действия является электростатический генератор (генератор Ван де Граафа), где частицы или ионы ядер ускоряются непосредственно за счет одно- или двукратного (в тандемах) прохождения разности потенциалов, достигающей 20 миллионов вольт. Однако, в таких ускорителях трудно обеспечить энергию частиц больше 40 - 50 МэВ для протонов и для достижения ещё больших энергий используют собственно линейные ускорители.

Рис. 52 - Схема линейного ускорителя

В линейных ускорителях (рис. 53) частица подвергается многократному ускорению, пролетая сквозь ряд цилиндрических трубок, присоединенных к электрическому генератору высокой частоты (используют радиочастотные генераторы). Пучок частиц двигается вдоль оси трубок. Внутри каждой трубки электрическое поле равно нулю. Соседние трубки имеют противоположную полярность. Таким образом, ускорительное поле находится в зазорах между трубками. Частота генератора и размеры трубок подбираются так, чтобы сгусток ускоряемых частиц подходил к очередному зазору в тот момент, когда полярность трубок изменяется на противоположную. Длина трубки l, скорость частицы v и период высокочастотного поля T связаны соотношением l = vT/2. В линейных ускорителях частицы могут ускоряться также электромагнитной волной, распространяющейся внутри цилиндрических полостей (ускорители бегущей волны).

Рис. 53 - Стэнфордский линейный ускоритель (SLAC)

Для достижения больших энергий приходится строить линейные ускорители большой длины. Наибольший линейный ускоритель был построен в Стэнфорде (США). Он работал в период 1989-1998 гг., имел длину около 3 км и ускорял как электроны, так и позитроны до энергии 50 ГэВ. Для достижения такой энергии частицы испытывают около 80 000 актов ускорения. Этот ускоритель работал в режиме коллайдера, когда пучок электронов с энергией 50 ГэВ сталкивается с пучком позитронов такой же энергии.

2.5 Ускоритель на встречных пучках (коллайдер)

Существует два типа ускорительных установок: ускорители с неподвижной мишенью и ускорители со встречными пучками (или коллайдеры). В ускорителях первого типа частицы после ускорения выводят из ускорительной камеры и направляют на неподвижную мишень, например, металлическую пластину. В этом случае далеко не вся кинетическая энергия ускоренной частицы может быть “вложена” в изучаемый процесс, например, во внутреннее возбуждение атомного ядра или частицы-мишени или в рождение новой частицы, так как значительная, а часто и подавляющая часть этой энергии не может быть “изъята” у частицы, поскольку идёт на “обеспечение” выполнения закона сохранения импульса - большой импульс частицы до столкновения должен сохраниться в виде большого импульса (а значит, и кинетической энергии) продуктов реакции.

Конкретные оценки (см. эквивалентная энергия) позволяют увидеть огромную разницу между кинетическими энергиями, например, протонов в ускорителе с неподвижной мишенью и со встречными пучками, которые необходимы для рождения частиц большой массы.

Рис. 54 - Два типа ускорителей на встречных пучках: а - для частиц, имеющих одинаковые заряды или разные массы (например, протон-протон или электрон-протон); б - для частиц с противоположными по знаку зарядами и равными массами, т. е. частиц и античастиц (электрон-позитрон, протон-антипротон)

Огромное энергетическое преимущество ускорителей на встречных пучках сделало их совершенно необходимым атрибутом ведущих современных центров исследования физики элементарных частиц. Есть две основные схемы реализации коллайдеров (рис. 1). Если встречные пучки состоят из частиц, имеющих равные массы и противоположные по знаку заряды (т.е. античастицы, например, электрон-позитрон или протон-антипротон), то для обоих пучков используется одно кольцо магнитов (рис. 1б). В некоторых точках этого кольца имеются участки взаимодействия ускоренных встречных пучков. Если же встречные частицы имеют одинаковые заряды или разные массы (например, протон-протон или электрон-антипротон), то необходимы два кольца магнитов и в некоторых местах создаются области столкновения (пересечения) пучков (рис. 1а).

Во встречных пучках, двигающихся навстречу друг другу, накапливается максимально возможное число частиц (до 1015 в пучке). Однако накапливаемые плотности частиц малы и при каждом обороте реальные столкновения испытывают немногие частицы. Взаимодействие пучков почти не нарушает динамику их движения в ускорительном кольце и пучки многие часы и даже сутки могут циркулировать в ускорителе без пополнения.

Важной характеристикой коллайдеров является светимость, обозначаемая буквой L (от англ. Luminosity).

Рис. 55 - К понятию “светимость”. Два сталкивающихся сгустка частиц (банча) в коллайдере

Встречные пучки состоят из отдельных сгустков частиц, называемых банчами (от англ. bunch), двигающихся с определенным интервалом (частотой) друг за другом. Рассмотрим два цилиндрических банча одинакового сечения, летящих навстречу друг другу и затем сталкивающихся (рис. 2). Будем считать, что банчи равномерно заполнены частицами и при столкновении полностью перекрываются. В левом банче n1 частиц, а в правом n2. Вначале положим, что на орбите коллайдера банчи сталкиваются один раз в единицу времени. Число взаимодействий N1 в единицу времени между частицами этих двух банчей (т. е. число актов реакций в единицу времени) можно вычислить по формуле (2) из раздела "Сечение реакции", приняв левый банч за частицы-снаряды, а правый - за мишень:

(1)

где у - эффективное сечение взаимодействия. Здесь учтено, что плотность потока падающих на правый банч частиц левого банча j = n1/S, а полное число частиц в правом банче (принятом в качестве мишени) n2 = nSl, где n - концентрация частиц в правом банче. Если банчи сталкиваются f раз в единицу времени (т. е. с частотой f), то число актов реакции N будет даваться выражением

(2)

где (3) и есть светимость коллайдера.

Пример. В коллайдере TEVATRON сталкиваются протоны и антипротоны с энергиями 1 ТэВ. Чему равно число актов их взаимодействия в 1 сек, если сечение полного взаимодействия протона и антипротона при этих энергиях = 75 мб, а светимость коллайдера L = 5.1031см-2сек-1.

Используем (2):

N = Lу= 5*1031 см-2сек-1*75*10-27 см-2 = 3.75*106 сек-1.

Крупнейшие современные центры, предназначенные для исследования физики элементарных частиц, представляют собой многоцелевые комплексы из нескольких ускорителей, функционально связанных между собой. Хорошим примером такого ускорительного комплекса является ЦЕРН (Женева). Схема комплекса приведена на рис. 56.

Рис. 56 - Ускорительный комплекс ЦЕРН

Самым крупным ускорителем этого комплекса является Большой Адронный Коллайдер LHC (Large Hadron Collider), на котором будут сталкиваться пучки ускоренных до энергии 7 ТэВ протонов, а также ядра свинца. Этот ускоритель сооружается в подземном кольцевом туннеле (его периметр 26.7 км) на месте другого недавно действовавшего крупнейшего е+е- - коллайдера. LEP - Large Electron Positron (Collider), ускорявшего электроны и позитроны до энергии 101 ГэВ.

Для инжекции протонов и ионов в LHC будет использоваться ускоритель SPS (Super Proton Synchrotron), на выходе которого протоны имеют энергию около 450 ГэВ. Его периметр 6.9 км и он расположен под землей на глубине 50 м. В SPS тяжелые частицы поступают от протонного синхротрона PS (он также упомянут в таблице), в который в свою очередь протоны и ионы попадают из бустера (ускорителя-инжектора) “Изольда”.

2.6 Вторичные пучки

В современных экспериментах широко используются вторичные пучки частиц, которые рождаются после взаимодействия первичного ускоренного пучка частиц с мишенью. Применяя электромагнитные сепараторы и коллиматоры, из огромного числа частиц, образующихся на мишени, можно выделить частицы определённого типа и определенного импульса. В ядерной физике таким способом получают вторичные пучки радиоактивных ядер, время жизни которых может составлять несколько миллисекунд. Аналогично можно получить вторичные пучки р- и K-мезонов. Вторичные пучки р-мезонов можно использовать для образования нейтринных пучков, которые получаются при распаде р-мезонов:

р->м- +н м, р+>м+ + нм.

Чистый пучок нейтрино можно получить, фильтруя образующиеся частицы через толстый поглотитель.

2.7 Лазерное ускорение электронов

Идея использования лазеров для ускорения электронов в плазме была выдвинута в 1979 г. американскими учеными [3]. Применительно к коротким лазерным импульсам первые аналитические исследования были опубликованы в 1987 г. [4] и в 1988 г. [5]. По сути, лазерное ускорение электронов в плазме очень близко к так называемому коллективному методу ускорению электронов, который разрабатывался в течение многих лет в Харьковском физико-техническом институте под руководством Я.Б.Файнберга. О тех проблемах, с которыми сталкивается традиционная вакуумная ускорительная техника, и о коллективных методах ускорения в плазме можно прочитать в статье, опубликованной в журнале “Природа” ранее [6].

Рис. 57 - Распространение короткого лазерного импульса в плазме и возбуждение кильватерных волн

Пунктиром показаны линии пониженной электронной плотности, сплошной - линии повышенной электронной плотности. Стрелка показывает направление распространения лазерного импульса.

Применительно к коротким лазерным импульсам ускорение электронов в плазме можно схематически представить следующим образом. Распространяясь в плазме, импульс выталкивает электроны из той области, где он в данный момент находится (рис.3). Кроме сил со стороны импульса, на электроны действует электрическое поле со стороны ионов плазмы, которые можно считать неподвижными из-за их большей массы. После того, как импульс покинул данную область, на электроны действует только поле разделения зарядов, стремящееся вернуть электроны в их исходное положение. Разогнавшись в этом поле, электроны проскакивают свое начальное положение и начинают колебаться относительно ионов на так называемой плазменной частоте. Поскольку импульс бежит по плазме и все время выталкивает те электроны, которые встречаются на его пути, он все время позади за собой запускает плазменные колебания. При этом начальная фаза этих колебаний различна в разных точках на пути импульса. В результате возбуждается волна разделения зарядов, фаза которой распространяется по плазме со скоростью импульса (так называемая кильватерная волна, рис.4). Электрическое поле этой волны в одной половине периода направлено по направлению распространения импульса, а в другой половине периода - навстречу направлению распространения импульса. Если электрон с начальной скоростью, равной скорости импульса, поместить в ту область плазменной волны, где действующая на него со стороны электрического поля сила направлена по направлению его движения, то электрон, двигаясь вместе с волной, начнет ускоряться. Такой ускоритель получил название “ускоритель на кильватерной волне”. Для релятивистских частиц, скорость которых близка к скорости света, даже маленькое увеличение скорости отвечает большому возрастанию их энергии. В результате ускорения энергия электрона может значительно увеличиться.

Рис. 58 - Возмущение плотности электронов в кильватерной волне, возбуждаемой лазерным импульсом с длительностью 30 фс и мощностью ~30 ТВт в плазме с плотностью 2.2·1018 см-3. По вертикальной оси - радиальная координата, отсчитываемая от оси импульса. По горизонтальной оси - время после прохождения лазерного импульса через данную точку

Проведенные во Франции эксперименты показали, что описанный выше механизм ускорения электронов действительно реализуется. Но полученное увеличение энергии электронов оказалось незначительным из-за очень малой длины, на которой это ускорение возникало.

Сначала считалось, что для возбуждения кильватерных волн лучше всего подходят лазерные импульсы с длительностью, близкой к периоду плазменных колебаний, в то время как более длинные импульсы для этой цели не годятся. Но численные расчеты [7-9] и последующие эксперименты показали, что это не так. Лазерный импульс, длина которого значительно превосходит длину плазменной волны, а мощность превышает определенную величину, в процессе распространения в плазме изменяет свою форму (рис.5). Сначала возникает модуляция его амплитуды, а затем он разбивается на последовательность более коротких импульсов с периодом следования, равным плазменному периоду. Этот эффект получил название самомодуляции импульса. Между последовательностью коротких импульсов и плазменными колебаниями возникает резонанс. Каждый последующий короткий импульс увеличивает амплитуду той кильватерной волны, которую возбудил первый короткий импульс. В результате уже внутри лазерного импульса поле плазменной волны становится весьма большим и достигает 109 В/см. Часть электронов плазмы при этом захватывается в плазменную волну. Они начинают двигаться вместе с волной и ускоряются до энергии порядка 100 МэВ на длине в несколько миллиметров.

Рис. 59 - Развитие самомодуляции импульса и его разбиение на цепочку более коротких импульсов

На первоначальном импульсе с плавно изменяющейся в пространстве интенсивностью (левый рисунок) появляется сначала модуляция амплитуды (средний рисунок), а затем он разбивается на цепочку импульсов малой длины (правый рисунок), расстояние между которыми равно длине плазменной волны lp.

Эксперименты, проведенные во Франции, США, Японии, Англии, показали, что в режиме самомодуляции максимальная энергия ускоренных электронов достаточно высока, но энергетический спектр получается очень широким, что является недостатком с точки зрения возможных применений.

В 2004 г. почти одновременно три экспериментальные группы обнаружили новый режим ускорения электронов, при котором энергия доходила до 250 МэВ, а энергетический спектр был достаточно узким. В этом режиме интенсивность лазерного излучения превосходила 1019 Вт/см2, а длина импульса была близка к длине плазменной волны. Силы высокочастотного давления, действующие на электроны плазмы, были столь велики, что сразу позади импульса возникала почти сферическая область, в которой практически не было электронов. Эту область стали называть bubble (пузырь), а сам режим ускорения - bubble-режимом (рис.6). Из плазмы в эту область захватывалось некоторое количество электронов плазмы, которые и ускорялись.

В настоящее время накоплен уже значительный экспериментальный и теоретический материал, достаточный для проектирования и строительства лазерного ускорителя на энергию электронов более 1000 МэВ. Сейчас несколько таких проектов близки к реализации.

Рис. 60 - Распространение лазерного импульса в bubble-режиме. Сразу сзади за импульсом образуется область, в которой нет электронов (электронный пузырь). В нее захватывается из плазмы маленький электронный сгусток, который ускоряется

протон частица детектор ускорение

В 2000 г. при облучении тонких фольг высокоинтенсивными (более 1018 Вт/см2) лазерными импульсами были обнаружены протоны с энергией до 10 МэВ, вылетающие в основном из задней стенки фольги в направлении распространения импульса [10]. Этот результат вызвал большой интерес. Опыты были повторены во многих лабораториях. Максимальная измеренная энергия протонов в некоторых из них достигала 60 МэВ, а их число доходило до 1012 на один лазерный импульс.

Как возникают протоны с такой высокой энергией? Анализ экспериментальных данных и численные расчеты показали, что под действием лазерного импульса в фольге возникают быстрые электроны, которые проходят фольгу насквозь и вылетают с ее противоположной стороны. Но далеко улететь они не могут. Их останавливает электрическое поле ионов, оставшихся в фольге. Вблизи задней поверхности мишени образуется отрицательно заряженный слой, состоящий из электронов. Электрическое поле, создаваемое этими электронами, направлено перпендикулярно к поверхности и достигает величины, достаточной для того, чтобы ионизовать атомы, находящиеся на поверхности. Затем, под действием этого же электрического поля, ионы начинает ускоряться. Возникает двойной слой, состоящий из разделенных в пространстве слоев электронов и ионов, который вылетает из мишени. В процессе ускорения энергия от электронов переходит к ионам. Наиболее эффективно ускоряются легкие ионы (протоны), образовавшиеся из атомов водорода, адсорбированного на поверхности фольги (рис. 61).

Рис. 61 - Ускорение ионов (протонов) при облучении коротким лазерным импульсом тонкой фольги. Лазерный импульс падает на левую границу фольги, быстрые электроны вылетают через правую границу фольги и ускоряют ионы своим электрическим полем

Такие источники энергичных ионов уже находят применение в протонной радиографии, когда изображение объекта получают, просвечивая его пучком протонов. Таким методом удается, в частности, определить структуру электрических полей внутри исследуемого объекта. Но наибольшие перспективы лазерные источники быстрых ионов имеют в медицине (онкология). Дело в том, что именно протоны целесообразнее использовать для воздействия на раковые опухали. В настоящее время источниками таких протонов служат различные вакуумные ускорители, весьма громоздкие и дорогие. Высказываются надежды, что лазерные источники окажутся более компактными и дешевыми.

2.8 Индукционные ускорители

К индукционным ускорителям принадлежат линейные индукционные ускорители.

Рис. 62 - Схема устройства линейного индукционного ускорителя: 1-сердечник индуктора; 2-возбуждающая обмотка; 3-фокусирующая катушка

В линейных индукционных ускорителях силовые линии электрического поля (с напряжённостью Е) направлены вдоль оси ускорителя. Электрическое поле индуцируется изменяющимся во времени магнитным потоком, проходящим через расположенные друг за другом кольцевые ферритовые индукторы 1 (рис. 3). Магнитный поток возбуждается в них короткими (десятки или сотни нс) импульсами тока, пропускаемыми через одновитковые обмотки 2, охватывающие индукторы. Фокусировка производится продольным магнитным полем, которое создаётся катушками 3, расположенными внутри индукторов. Линейные индукционные ускорители позволяют получать в импульсе рекордные (килоамперные) токи; наиболее мощный из работающих ускорителей- АТА (США) - ускоряет электроны до энергии 43 МэВ при токе 10 кА. Длительность токовых импульсов 50 нc.

2.9 Перспективы развития ускорителей

Среди проектов крупных ускорителей, которые находятся в стадии разработки, строительства или уже вступили в строй, можно перечислить следующие.

В России (г. Троицк, Моск. обл.) заканчивается сооружение "мезонной фабрики" на энергию 600 МэВ со ср. током 70 мкА. В 1993 она уже выдавала пучок с энергией 430 МэВ. Для производства изотопов используется пучок протонов с энергией 160 МэВ и со ср. током 100 мкА. В Протвино ведётся сооружение ускорительно-накопительного комплекса (УНК), рассчитанного на ускорение протонов до 3 ТэВ. УНК располагается в подземном туннеле с периметром 21 км. Ожидается интенсивность частиц в импульсе 5.1012.

В ФРГ (Гамбург) вступил в строй У. на встречных пучках (HERA), предназначенный для изучения взаимодействия протонов (820 ГэВ) с электронами и позитронами (30 ГэВ). Проектная светимость ~2.1031 см-2.с-1. Протонный синхротрон содержит сверхпроводящие магниты, а электронный - обычные (чтобы не увеличивать потери на син-хротронное излучение). В оснащении этого ускорителя и в работе на нём принимают участие 37 ин-тов из разных стран.

В Германии разрабатывается также проект линейного коллайдера DESY с энергией частиц 250x250 ГэВ (1-й вариант) или 500 х 500 ГэВ (2-й вариант). В ЦЕРНе (Швей-цария) в тоннеле кольцевого электронно-позитронного У. (LEP) начинается сооружение коллайдера для тяжёлых частиц LHC (Large Hadron Collider). На нём можно будет изучать столкновения протонов (2x7 ТэВ), протонов и электронов, протонов и ионов (вкл. свинец, 1148 ТэВ).

Ускорение тяжёлых ионов может производиться на нук-лотроне (Дубна, Россия). Начиная с 1977 на протонном синхротроне в Дубне ускорялись различные ионы вплоть до углерода (4,2 ГэВ/нуклон, а с 1992-до 6 ГэВ/нуклон).

На У. "Сатурн" в Сакле (Франция) ускоряются ионы вплоть до аргона (до 1,15 ГэВ/нуклон). Ускоритель SPS (ЦЕРН) позволяет ускорять ионы кислорода и серы до 200 ГэВ/нуклон.

В США разработан проект наиболее крупного сверхпроводящего суперколлайдера (SSC) на энергию 2 х 20 ТэВ. Сооружение этого ускорителя отложено.

В Международном комитете по ускорителям рассматриваются ещё более крупные проекты, осуществление которых потребует совместных усилий развитых государств. Конкретный проект такого ускорителя ещё не определён. Все осуществляемые и разрабатываемые проекты основаны на известных, хорошо зарекомендовавших себя принципах. Новые методы ускорения, о которых говорилось выше, могут в случае успеха полностью изменить эти планы.

2.10 Применение ускорителей

Кроме научного ускорения имеют и практическое применение. Так, линейные ускорители используются для создания нейтронных генераторов для радиационного испытания материалов, активно обсуждаются электроядерные методы наработки ядерного горючего и ускорения тяжёлых малозарядных ионов для управляемого инерционного термоядерного синтеза. В Лома-Линде (США) заканчивается сооружение специализированного комплекса с протонным синхротроном для лучевой терапии. Аналогичный проект рассматривается в России.

Заключение

Современный ускоритель -- это своего рода фабрика для производства новых частиц и для получения, по существу, новых видов материи, без изучения которых, как выяснилось, нельзя понять и строение «обычных» частиц, таких, как нейтрон и протон. Именно после сооружения и запуска мощных ускорителей и детекторов были открыты многие десятки элементарных частиц, изучены сотни различных реакций, связанных с тремя возможными типами взаимодействия: сильным, электромагнитным и слабым.

Пожалуй, один из самых важных и поразительных выводов, к которому в последние годы привели исследования в области физики высоких энергий, заключается в том, что нуклоны и многие другие элементарные частицы, по сути дела, нельзя считать элементарными, они представляют собой сложные составные объекты. И одна из основных задач, которую сегодня стремится решить физика высоких энергий, состоит в том, чтобы выяснить свойства этих «более элементарных» объектов, из которых, в частности, состоят нуклоны, выяснить число этих объектов и законы их взаимодействия.

Другая важнейшая задача состоит в том, чтобы установить возможную взаимосвязь между различными типами взаимодействия элементарных частиц. Как известно, электрические и магнитные силы представляют собой различные проявления единого электромагнитного поля. Открытие взаимосвязи электричества и магнетизма привело к существенному прогрессу в понимании многих явлений физики и дало огромный толчок развитию техники. Достаточно вспомнить электрогенераторы, электродвигатели, радиосвязь и многие другие блага, полученные человеком благодаря тому, что удалось понять взаимосвязь электричества и магнетизма. Существующие к настоящему времени экспериментальные данные свидетельствуют в пользу того, что три типа взаимодействий элементарных частиц -- сильные, электромагнитные и слабые -- это различные проявления некоторого универсального взаимодействия. Если существование такого универсального взаимодействия подтвердится -- это будет величайшим прогрессом в человеческих знаниях и в принципе может дать способ управлять одними силами с помощью других.

Выяснение строения элементарных частиц и свойств их взаимодействия, несомненно, будет иметь для человечества столь же большое научное и практическое значение, как познание атома и атомного ядра.

Дальнейший прогресс в этой области, исключительно важной для всей науки, в решающей степени зависит от того, насколько совершенную технику получат экспериментаторы. И прежде всего от того, насколько мощные ускорители и детекторы окажутся в их распоряжении, насколько удастся поднять энергию ускоряемых частиц.

Литература

1. Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин. "Частицы и ядра. Эксперимент", М.: Издательство МГУ, 2005.

2. Горбунов Л.М. Ускорители XXI века? // Природа. 1988. №5. С.15-23.

3. Mourou G., Tajima T., Bulanov S.V. // Review of Modern Physics. 2006. V.78. P.309-371.

4. Ананьев Л. М., Воробьёв А. А., Горбунов В. И. Индукционный ускоритель электронов -- бетатрон. Госатомиздат, 1961.

5. Коломенский Д. Д., Лебедев А. Н. Теория циклических ускорителей. М.: Физматгиз, 1962.

6. Вальднер О. А., Власов А. Д., Шальнов А. В., Линейные ускорители, М., 1969.

7. Брук Г., Циклические ускорители заряженных частиц, пер. с франц., М., 1970.

8. Комар Е. Г., Основы ускорительной техники, М., 1975;

9. Линейные ускорители ионов, под ред. Б. П. Мурина, т. 1-2, М., 1978;

10. Бахрушин Ю. П., Анацкий А. И., Линейные индукционные ускорители, М., 1978.

11. Лебедев А. Н., Шальнов А. В., Основы физики и техники ускорителей, т. 3, М., 1981.

12. Москалев В. А., Бетатроны, М., 1981; Капчинский И. М., Теория линейных резонансных ускорителей, М., 1982. Л. Л. Гольдин.

Размещено на Allbest.ru


Подобные документы

  • Понятие и принцип работы ускорителей, их внутреннее устройство и основные элементы. Ускорение пучков частиц с высокой энергией в электрическом поле как способ их получения. Типы ускорителей и их функциональные особенности. Генератор Ван де Граафа.

    контрольная работа [276,8 K], добавлен 18.09.2015

  • Ускорители заряженных частиц как устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц. Общая характеристика высоковольтного генератора Ван-де-Граафа, знакомство с функциями.

    презентация [4,2 M], добавлен 14.03.2016

  • Ускорители заряженных частиц — устройства для получения заряженных частиц больших энергий, один из основных инструментов современной физики. Проектирование и испытание предшественников адронного коллайдера, поиск возможности увеличения мощности систем.

    реферат [685,8 K], добавлен 01.12.2010

  • Свойства всех элементарных частиц. Связь протонов и нейтронов в атомных ядрах. Классификация элементарных частиц. Величина разности масс нейтрона и протона. Гравитационные взаимодействия нейтронов. Экспериментальное значение времени жизни мюона.

    реферат [24,3 K], добавлен 20.12.2011

  • Один из важнейших приборов для автоматического счёта элементарных частиц - счётчик Гейгера, основанный на принципе ударной ионизации. Конденсация перенасыщенного пара с образованием капелек воды в камере Вильсона. Метод толстослойных фотоэмульсий.

    доклад [697,7 K], добавлен 28.05.2009

  • Динамика частиц, захваченных геомагнитным полем, ее роль в механизме динамики космического изучения в околоземном пространстве. Геометрия радиационных поясов Земли. Ускорение частиц космического излучения. Происхождение галактических космических лучей.

    дипломная работа [1,2 M], добавлен 24.06.2015

  • Фундаментальные физические взаимодействия. Гравитация. Электромагнетизм. Слабое взаимодействие. Проблема единства физики. Классификация элементарных частиц. Характеристики субатомных частиц. Лептоны. Адроны. Частицы - переносчики взаимодействий.

    дипломная работа [29,1 K], добавлен 05.02.2003

  • Взаимодействие заряженных частиц и со средой. Детектирование. Определение граничной энергии бета-спектра методом поглощения. Взаимодействие заряженных частиц со средой. Пробег заряженных частиц в веществе. Ядерное взаимодействие. Тормозное излучение.

    курсовая работа [1,1 M], добавлен 06.02.2008

  • Методы наблюдения и регистрации элементарных частиц; газоразрядный счетчик Гейгера и камера Вильсона. Открытие радиоактивности; исследование альфа-, бета- и гамма-излучения. Рассмотрение биологического действия радиоактивных излучений на живые организмы.

    презентация [2,2 M], добавлен 03.05.2014

  • Создание большого адронного коллайдера, ускорителя заряженных частиц на встречных пучках. Предназначение его для разгона протонов и ионов, изучение продуктов их соударений. Изучение космических лучей, моделируемых с помощью несталкивающихся частиц.

    презентация [1,1 M], добавлен 16.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.