Разработка автоматизированной системы управления электроснабжением КС "Ухтинская"
Разработка автоматизированной системы управления электроснабжением и комплексного учета энергоресурсов. Анализ промышленных шин для систем автоматизации. Расчет экономического эффекта от внедрения автоматизированной системы управления электроснабжением.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 18.05.2010 |
Размер файла | 325,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Основной задачей экологических служб является контроль воздействия КС на окружающую среду. Этот контроль осуществляется с помощью химических и метрологических лабораторий и разного рода производственных служб. К воздействиям на окружающую природную среду при эксплуатации КС следует отнести:
§ выбросы вредных веществ в атмосферу;
§ сбросы загрязняющих веществ в водные объекты;
§ воздействие на почву.
С целью предотвращения загрязнения атмосферы и снижения выбросов природного газа:
§ производится профилактический осмотр и ремонты ГПА;
§ выполняется замена дефектных кранов КЦ;
§ производится ревизия запорной арматуры на продувочных емкостях от пылеуловителей;
§ осуществляется контроль за содержанием окиси углерода в выхлопных газах автомобилей с карбюраторными двигателями, контроль за дымностью дизельных двигателей;
§ производятся инструментальные замеры концентраций загрязняющих веществ в отходящих газах от ГПА и определение их объемов.
Основными загрязнителями природных вод на предприятиях газовой промышленности являются производственные, бытовые и атмосферные сточные воды. Сброс сточных вод регламентируется нормами и правилами РФ. Наиболее жестким требованиям должны соответствовать нормативы сброса сточных вод в поверхностные водоемы.
Сброс сточных (производственных и коммунальных) вод в поверхностные водоемы включает нормативно-чистые; нормативно-очищенные; загрязненные.
Нормативно-чистые воды - стоки, отведение которых без очистки в водные объекты не приводит к нарушению норм и качества вод в контролируемом створе или пункте водопользования.
Нормативно-очищенные воды - стоки, которые прошли очистку на соответствующих сооружениях и содержание загрязняющих веществ, в которых должно соответствовать утвержденному предельно допустимому сбросу (ПДС).
Загрязненные сточные воды - стоки, сброшенные в поверхностные водные объекты без очистки (или после недостаточной очистки) и содержащие загрязняющие вещества в количествах, превышающих ПДС. Сюда не включаются коллекторно-дренажные воды, отведенные с орошаемых земель после поливов.
Особенность предприятий газовой промышленности заключается в том, что количество сточных вод сравнительно невелико, а загрязненность их высокая. Очистка сточных вод осуществляется на очистных сооружениях (ОС).
На каждой компрессорной станции разрабатывается проект предельно допустимого сброса массы вещества (ПДВ).
ПДВ - максимально допустимая к отведению масса вещества с установленным режимом в данном пункте водного объекта (г/с, т/год). ПДВ устанавливается с учетом допустимых концентраций (ПДК) веществ в местах водопользования.
В соответствии с земельным кодексом для строительства промышленных предприятий предоставляются земли несельскохозяйственного назначения или не пригодные для сельского хозяйства, а также сельскохозяйственные угодья худшего качества.
Различные нагрузки на природу при сооружении и эксплуатации газовых объектов формируют изменения ландшафта. В связи с этим исключительно важное значение приобретают проблемы оптимизации строительства и эксплуатации объектов газовой промышленности, с точки зрения минимального воздействия их на природный ландшафт, почвенно-растительный покров, загрязнение территории и т.д.
Одним из основных направлений снижения влияния объектов газовой промышленности на окружающую среду является стремление уменьшить земельные отводы на постоянное и временное пользование. Это достигается применением кустового расположения скважин на промыслах, прокладкой систем многониточных газопроводов в едином технологическом коридоре, использованием технологий блочно-модульного строительства сооружений из готовых заводских элементов, вахтовой организацией строительства и эксплуатации; что позволяет резко сократить площади под промысловую инфраструктуру.
В соответствии с требованиями природоохранного законодательства все земли нарушенные в период строительства и эксплуатации КС подлежат восстановлению.
Газовая промышленность - одна из наиболее опасных отраслей по загрязнению окружающей среды. По глубине и тяжести воздействия на основные компоненты природы (воздух, почву, воду, растительный и животный мир и человека) она занимает третье место после металлургической и химической промышленности.
Первоочередной задачей в области охраны природы на предприятиях газовой промышленности является всемерное и последовательное снижение выбросов вредных веществ в окружающую среду доведение их до установленных норм.
4.6 Расчет заземления ЦРП-10 кВ
В качестве основного мероприятия по электробезопасности эксплуатации электроустановок установленных в ЦРП согласно ПУЭ дипломным проектом предусмотрено заземление. Заземлением называют преднамеренное гальваническое соединение металлических частей электроустановки с заземляющим устройством. Заземляющее устройство - это совокупность заземлителя и заземляющих проводников.
ЦРП относится к сети с изолированной нейтралью выше 1 кВ, поэтому сопротивление заземляющего устройства в соответствии с [17] не должно превышать 10 Ом и рассчитывается по формуле
, |
(4.1) |
где - ток замыкания на землю, А.
.
Следовательно, сопротивление заземляющего устройства не должно превышать 10 Ом.
Для выполнения заземления вокруг здания ЦРП выполняется наружный контур размерами 27х17м, состоящий из стальной шины 18 мм, прокладываемой в траншее на глубине 0,5 м и вертикальных электродов 18 мм, забиваемых на глубину до 6 м.
Сопротивление искусственного заземлителя при отсутствии естественного заземлителя принимаем равным допустимому сопротивлению заземляющего устройства Ом.
Определим расчетные удельные сопротивления грунта для горизонтальных и вертикальных заземлителей
, , |
(4.1) |
где - удельное сопротивление грунта, ;
и - повышающие коэффициенты для вертикальных и горизонтальных электродов, для климатической зоны 3 по табл. 12.2 [15].
,
.
Сопротивление растеканию одного вертикального электрода стержневого типа определяем по формуле из табл. 12.3 [15]
, |
(4.2) |
где l - длинна вертикального электрода, м;
d - диаметр вертикального электрода, м;
t - глубина заложения вертикального электрода, м.
м.
.
Определяем примерное число вертикальных заземлителей при предварительно принятом по табл. 12.4 [15] коэффициенте использования (отношение расстояния между электродами к их длине равно 1, ориентировочное число вертикальных электродов в соответствии с планом объекта составляет 20)
. |
(4.3) |
.
Определим расчетное сопротивление растеканию горизонтальных электродов по формуле из табл. 12.3 [15]
. |
(4.4) |
.
Уточняем необходимое сопротивление вертикальных электродов
. |
(4.5) |
Ом.
Определяем число вертикальных электродов при коэффициенте использования по табл. 12.4 [15]
. |
(4.6) |
.
Принимаем к установке 21 вертикальных электрод, распложенных по контуру расположенного на расстоянии 1 м от фундамента здания ЦРП. Эскиз заземлителя представлен на рисунке 4.1.
Рисунок 4.1 - Эскиз заземлителя распределительной подстанции 10 кВ.
Заключение
На основании схем автоматизации электроснабжения КС-10 и КС «Ухтинская» была разработана общая схема автоматизации всего энергоснабжения двух КС. На выносном листе 1 показана структурная схема автоматизированной системы управления энергохозяйством, эта система объединила в себе отдельные локальные системы: АСУ-ЭС, САУ-В, САУ-Т, САУ-КОС. Объединение происходит на верхнем уровне, т.е. на уровне диспетчерских или рабочих станций (АРМ) каждой из подсистем. Делается это объединение для двух целей, первая - для согласования работы отдельных подсистем, быстрого и оперативного управления системой энергоснабжения, поддержание ее работоспособности и обеспечение непрерывного снабжения основного производства энергоресурсами. Вторая цель это использование АСУ-Э в качестве источника информации для более глобальной системы, так называемой ИУС-Э (информационно-управляющей системы энергообеспечения). ИУС-Э занимается контролем и анализом в целом всей системы энергоснабжения, решает задачи организации и планирования. Система ИУС-Э функционально распределена по уровням отраслевой системы диспетчерского управления. На уровне предприятия «Севергазпром» функции ИУС-Э следующие: планирование потребности предприятия в энергоресурсах и анализ их потребления; планирование и контроль капитального строительства, модернизации, реконструкции, капремонта энергетического оборудования; контроль за устранением аварий; формирование баз данных; информационное обеспечение производства.
Объединение двух отдельных автоматизированных систем для КС-10 и КС «Ухтинская» и их составных частей, осуществляется по верхнему уровню через локальные сети диспетчерских. В дипломном проекте верхний уровень АСУ-Э организован на основе сети Ethernet, это связано с тем, что данный стандарт получил широкое применение в построении сетей используемых для разных целей. Главная причина использования Ethernet заключается в том, что это стандарт несложный в эксплуатации, с относительно недорогими компонентами. Так как Ethernet сейчас самая популярная и широко используемая сетевая технология, то, как внедрять и применять ее, знают очень многие.
Для выполнения поставленных задач АСУ-Э необходимо двенадцать автоматизированных рабочих мест, семь базовых систем. Соединение компьютеров АРМов и базовых систем осуществляется по топологии звезда. Для связи между диспетчерскими используется сетевой мост RAD Tiny Bridge, в котором в качестве линии связи используется оптоволоконный кабель.
Предусмотрена интеграция АСУ-Э с АСУ-ТП через шлюзовой компьютер, установленный в диспетчерской N1 АСУ-Э. Интеграция с ИУС-Э осуществляется по телефонной связи через модем установленного на АРМе главного оператора.
В дипломном проекте была разработана система АСУ-ЭС для КС-10 удовлетворяющая требованиям, предъявляемым к системам такого рода, а именно требование быстродействия, помехозащищенности и масштабируемости.
Быстродействие системы обеспечивается благодаря применению интеллектуальных устройств, таких как контроллеров RTU-211 и цифровых блоков защит Sepam 2000, они имеют высокую скорость сбора и обработки информации (скорость опроса дискретных сигналов 1 мс, аналоговой, для реле Sepam 2000 - 1,67 мс, для RTU-211 - 0,3 мc). Причем благодаря установке блоков сбора данных непосредственно в самом объекте (ЦРП, КТП) нет необходимости передавать по каналу связи между нижним и верхним уровнем всю информацию, а передавать лишь изменения измеряемых параметров. Для обеспечения быстродействия скорость передачи данных выбирается 9600 бит/с. Объем автоматизации электроснабжения КС-10 следующий: 1007 - дискретных сигналов, 530 - аналоговых, но в основном именно от скорости передачи информации зависит загрузка системы, а не от числа точек учета (объема контролируемых параметров). Причем основной объем передаваемых данных это оцифрованные аналоговые сигналы измеряемых токов, напряжений, мощности и т.д. Поэтому загрузка системы будет зависеть от настройки зоны нечувствительности измеряемых параметров.
Связь нижнего уровня АСУ с базовым компьютером осуществляется по оптическим каналам связи, которые позволяют устранить влияние электромагнитных полей на входы устройств нижнего и верхнего уровней.
Для технического учета электрической энергии используются вычисляемые значения активной и реактивной мощности на каждой отходящей линии ЦРП-10 кВ в реле Sepam 2000.
В связи с тем, что для надежности системы электроснабжения планируется строительство ЦРП-10 кВ, на площадке КС-10 изменяется схема электроснабжения. Все КТП-10/0,4 кВ расположенные на промпощадке будут запитываться от ЦРП-10 кВ. ЦРП будет получать питание от двух вводов главной понизительной подстанции 110/35/10 кВ от ЗРУ-10 кВ. Поэтому для коммерческого учета электроэнергии достаточно установить в ЗРУ-10 кВ ГПП два счетчика на отходящих ячейках в ЦРП.
Эффект от внедрения АСУ-ЭС на КС-10 достигается за счет предотвращения ущерба от перерывов электроснабжения при авариях, так как благодаря применению средств автоматизации уменьшается время на отыскание причин аварий и времени на их ликвидацию. Рассчитанный эффект составляет 1,47 милл. руб. в год. Кроме этого применение автоматизации электроснабжения дает ряд других неявных эффектов. Благодаря автоматическому техническому учету, появляется возможность рационального использования электрической энергии, а также выявление «невидимых» потерь и непроизводственных расходов. Диспетчеризация управления энергообъектами с помощью АСУ электроснабжения дает экономию потребляемой электроэнергии за счет автоматического контроля и правильного планирования максимума нагрузки. Автоматическое диагностирование режимов работы оборудования, отслеживание выработки ресурса и соответственно своевременность ремонтных работ, ведет к увеличению срока службы оборудования, снижению аварийности и затрат на ремонтные работы. Снижение потерь от повреждения оборудования за счет предупреждения аварийных ситуаций.
Библиографический список
1. Основные положения по автоматизации объектов энергообеспечения ОАО «Газпром» - М.: Газавтоматика, 2001. - 77 с.
2. Автоматизация компрессорных станций магистральных газороводов. - Киев: Техника, 1990. - 128 с.
3. Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов. - М.: Энергия, 1974. - 689 с.
4. Берман Р. Я. Автоматизация систем управления магистральными газопроводами. - Л.: Недра, 1978. - 159 с.
5. Камнев В. Н. Чтение схем и чертежей электроустановок. - М.: Высш. шк., 1986. - 144 с.
6. Усатенко С.Т., Каченюк Т.К., Терехова М.В. Выполнение электрических схем по ЕСКД. Справочник. - М.: Издательство стандартов, 1989. - 325 с.
7. Федоров А.А., Старкова Л.Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий. Учебное пособие для вузов. - М.: Энергоатомиздат, 1987. - 368 с.
8. Справочник по проектированию электрических сетей и электрооборудования / Под ред. Барыбина Ю.Г. и др. - М.: Энергоатомиздат, 1991. - 464 с.
9. Ристхейн Э.М. Электроснабжение промышленных установок. Учебник для вузов. - М.: Энергоатомиздат, 1991. - 424 с.
10. Строительные нормы и правила РФ ФЕРм 81-03-11-2003. Сборник N 11 "Приборы, средства автоматизации и вычислительной техники".
11. Ценник на пусконаладочные работы № 2 Автоматизированные системы управления 1984-01-01.
12. Шабад М.А. Автоматизация распределительных электрических сетей с цифровыми реле. - М.: НТФ Энергопрогресс, 2000. - 58 с.
13. Меньшов Б.Г., Беляев А.В., Ящерицын В.Н. Электроснабжение газотурбинных компрессорных станций магистральных газопроводов. - М.: Недра, 1985. - 163 с.
14. Автоматизация диспетчерского управления в электроэнергетике/ Под общей ред. Ю.Н. Руденко и В.А Семенова. - М.: Издательство МЭИ, 2000. - 648 с.
15. Федеральный закон от 17.07.1999 № 181-ФЗ «Об основах охраны труда в Российской Федерации».
16. Федоров А. А., Каменева В. В. Основы электроснабжения промышленных предприятий: Учебник для вузов. - 4-е изд., перераб. и доп. - М.: Энергоатомиздат, 1984. - 472 с.
17. Правила устройства электроустановок (ПУЭ). Издание седьмое. Утв. приказом Минэнерго России от 08.07.2002 № 204. - Вестник Госэнергонадзора, № 3, 2002.
Приложение
Характеристики электронных плат контроллера RTU-211
1. Плата центрального процессора 23CP61
Микроконтроллер и память (Процессор шины)
Микроконтроллер с 8 кб внутренней памяти
для хранения программ: 87C32
Тактовая частота: 11.0592МГц
Размер ОЗУ (внутреннего): 256 байт
Микропроцессор и память (центральный процессор)
Микропроцессор:80С186
Тактовая частота:8.0 МГц
Размер ОЗУ: 256 кбайт
Размер флэш-памяти:512 кбайт
Последовательные интерфейсы
Количество последовательных интерфейсов: |
4 |
|
Уровни интерфейса для всех последовательных каналов: |
RS485 |
|
Скорость передачи для порта NFK, CPA: |
50-19200 бод |
|
Скорость передачи для порта MMI: |
9600 бод (строго) |
|
Скорость передачи для порта PRN: |
50-9600 бод |
|
Формат данных при передаче по последовательным: каналам (NFK,MMI,CPA) |
8 бит, проверка на четность,1 стоп-бит |
2. Плата цифрового ввода 23BI60R5
Количество каналов:16
Тип входов напряжения: Активные сигналы
Соединительных зажимов на канал:2
Развязка каналов через оптрон: Да
Диапазоны сигналов: 110 -230 В постоянного тока
Максимально допустимое входное перенапряжение: МЭК 870-3 Класс 3 (от номинального диапазона)+200 % (1 секунда)+125 % (1 минута)
Входные токи для обоих диапазонов: МЭК 870-3 Класс 1 (номинальное значение) 3-5 мА
3. Промежуточная релейная плата 23RL60
Количество выходных командных реле: 8
Поперечное сечение соединительных зажимов: 2.5 мм2
Индикаторные светодиоды на каждый выход: Да
Развязка между выходными реле: Да
Развязка между выходными реле и электроникой: Да
Время срабатывания командных реле (максимум): 10 мс
Время отпускания командных реле (максимум): 5 мс
Максимальная нагрузка на контакты 220 В пост. тока: 1 А
4. Трехфазный преобразователь измерений переменного тока 23DP61R1
Точность преобразователя
Значения запоминающего устройства: 1.0 % полного масштаба
Активная, реактивная и полная мощность, коэффициент мощности: 2.0 % полного масштаба
Частота: 0.5 %
Счетчики энергии: 2.0 %
Диапазоны измерений преобразователя
Напряжение трех фаз, версия R0001:3 x 230 В (50 Гц)
Напряжение нулевой последовательности:0 - 230 В (50 Гц)
Ток трех фаз:3 x 5 A
Ток нулевой последовательности:1 x 5 A
Обновление измеряемых параметров
Напряжение, ток, мощность, реактивная мощность и частота вычисляется при 50/60 Гц и обновляются каждые 2 секунды.
Подобные документы
Применение автоматизированных систем управления. Технический, экономический, экологический и социальные эффекты внедрения автоматизированной системы управления технологическими процессами. Дистанционное управление, сигнализация и оперативная связь.
курсовая работа [479,2 K], добавлен 11.04.2012Проблема комплексной автоматизации. Структуры автоматизированной системы управления ТЭС. Анализ и выбор современных средств управления и обработки информации. Разработка функциональной схемы системы управления за параметрами. Управления расходом воды.
курсовая работа [424,9 K], добавлен 27.06.2013Характеристика системы электроснабжения промышленного предприятия. Проектирование и расчет автоматизированной системы контроля и учета энергоносителей. Анализ технических параметров и выбор электрических счетчиков, микроконтроллеров, трансформаторов тока.
контрольная работа [858,7 K], добавлен 29.01.2014Анализ производственно-хозяйственной деятельности объекта и существующей схемы электроснабжения. Структура и элементы системы управления освещением. Энергоэффективность и экономичность осветительных приборов. Сервер сбора и обработки энергоинформации.
дипломная работа [3,2 M], добавлен 17.06.2017Способы и устройства электронагрева нефтескважин с целью их очистки от парафина. Принцип действия и основные функциональные узлы установки управления электроснабжением нефтегазодобывающих комплексов: функциональная схема, элементы и их взаимосвязь.
курсовая работа [2,1 M], добавлен 05.04.2013Техническая характеристика котлоагрегата ТП-38. Синтез системы управления. Разработка функциональной схемы автоматизации. Производстенная безопасность объекта. Расчет экономической эффективности модернизации системы управления котлоагрегатом ТП-38.
дипломная работа [2,6 M], добавлен 30.09.2012Обзор этапов комплексного обследования трансформаторов. Автоматизация контроля состояния трёхфазного трансформатора для повышения эффективности его эксплуатации. Структура аппаратного обеспечения. Организация автоматизированного рабочего места оператора.
контрольная работа [2,1 M], добавлен 07.01.2015Теплоэнергетическое оборудование, установленное в котлотурбинном цехе. Описание работы автоматизированной системы контроля и управления горелками котла НЗЛ-60. Системы мазутного хозяйства. Состав оборудования турбоагрегатов. Типы дренажных насосов.
курсовая работа [251,8 K], добавлен 11.09.2012Анализ систем автоматизации. Разработка информационно-управляющей системы котлотурбинного цеха котельной. Параметрический синтез системы автоматического регулирования. Расчет затрат на внедрение оборудования. Выбор настроек для регулятора питания.
дипломная работа [2,0 M], добавлен 03.12.2012Разработка функциональной и принципиальной схем системы управления электропривода. Выбор типа управляющего устройства, источников питания, силовых ключей, коммутационной аппаратуры, элементов управления. Разработка программы управляющего устройства.
курсовая работа [498,3 K], добавлен 12.03.2013