Разработка автоматизированной системы управления электроснабжением КС "Ухтинская"

Разработка автоматизированной системы управления электроснабжением и комплексного учета энергоресурсов. Анализ промышленных шин для систем автоматизации. Расчет экономического эффекта от внедрения автоматизированной системы управления электроснабжением.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 18.05.2010
Размер файла 325,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Основной задачей экологических служб является контроль воздействия КС на окружающую среду. Этот контроль осуществляется с помощью химических и метрологических лабораторий и разного рода производственных служб. К воздействиям на окружающую природную среду при эксплуатации КС следует отнести:

§ выбросы вредных веществ в атмосферу;

§ сбросы загрязняющих веществ в водные объекты;

§ воздействие на почву.

С целью предотвращения загрязнения атмосферы и снижения выбросов природного газа:

§ производится профилактический осмотр и ремонты ГПА;

§ выполняется замена дефектных кранов КЦ;

§ производится ревизия запорной арматуры на продувочных емкостях от пылеуловителей;

§ осуществляется контроль за содержанием окиси углерода в выхлопных газах автомобилей с карбюраторными двигателями, контроль за дымностью дизельных двигателей;

§ производятся инструментальные замеры концентраций загрязняющих веществ в отходящих газах от ГПА и определение их объемов.

Основными загрязнителями природных вод на предприятиях газовой промышленности являются производственные, бытовые и атмосферные сточные воды. Сброс сточных вод регламентируется нормами и правилами РФ. Наиболее жестким требованиям должны соответствовать нормативы сброса сточных вод в поверхностные водоемы.

Сброс сточных (производственных и коммунальных) вод в поверхностные водоемы включает нормативно-чистые; нормативно-очищенные; загрязненные.

Нормативно-чистые воды - стоки, отведение которых без очистки в водные объекты не приводит к нарушению норм и качества вод в контролируемом створе или пункте водопользования.

Нормативно-очищенные воды - стоки, которые прошли очистку на соответствующих сооружениях и содержание загрязняющих веществ, в которых должно соответствовать утвержденному предельно допустимому сбросу (ПДС).

Загрязненные сточные воды - стоки, сброшенные в поверхностные водные объекты без очистки (или после недостаточной очистки) и содержащие загрязняющие вещества в количествах, превышающих ПДС. Сюда не включаются коллекторно-дренажные воды, отведенные с орошаемых земель после поливов.

Особенность предприятий газовой промышленности заключается в том, что количество сточных вод сравнительно невелико, а загрязненность их высокая. Очистка сточных вод осуществляется на очистных сооружениях (ОС).

На каждой компрессорной станции разрабатывается проект предельно допустимого сброса массы вещества (ПДВ).

ПДВ - максимально допустимая к отведению масса вещества с установленным режимом в данном пункте водного объекта (г/с, т/год). ПДВ устанавливается с учетом допустимых концентраций (ПДК) веществ в местах водопользования.

В соответствии с земельным кодексом для строительства промышленных предприятий предоставляются земли несельскохозяйственного назначения или не пригодные для сельского хозяйства, а также сельскохозяйственные угодья худшего качества.

Различные нагрузки на природу при сооружении и эксплуатации газовых объектов формируют изменения ландшафта. В связи с этим исключительно важное значение приобретают проблемы оптимизации строительства и эксплуатации объектов газовой промышленности, с точки зрения минимального воздействия их на природный ландшафт, почвенно-растительный покров, загрязнение территории и т.д.

Одним из основных направлений снижения влияния объектов газовой промышленности на окружающую среду является стремление уменьшить земельные отводы на постоянное и временное пользование. Это достигается применением кустового расположения скважин на промыслах, прокладкой систем многониточных газопроводов в едином технологическом коридоре, использованием технологий блочно-модульного строительства сооружений из готовых заводских элементов, вахтовой организацией строительства и эксплуатации; что позволяет резко сократить площади под промысловую инфраструктуру.

В соответствии с требованиями природоохранного законодательства все земли нарушенные в период строительства и эксплуатации КС подлежат восстановлению.

Газовая промышленность - одна из наиболее опасных отраслей по загрязнению окружающей среды. По глубине и тяжести воздействия на основные компоненты природы (воздух, почву, воду, растительный и животный мир и человека) она занимает третье место после металлургической и химической промышленности.

Первоочередной задачей в области охраны природы на предприятиях газовой промышленности является всемерное и последовательное снижение выбросов вредных веществ в окружающую среду доведение их до установленных норм.

4.6 Расчет заземления ЦРП-10 кВ

В качестве основного мероприятия по электробезопасности эксплуатации электроустановок установленных в ЦРП согласно ПУЭ дипломным проектом предусмотрено заземление. Заземлением называют преднамеренное гальваническое соединение металлических частей электроустановки с заземляющим устройством. Заземляющее устройство - это совокупность заземлителя и заземляющих проводников.

ЦРП относится к сети с изолированной нейтралью выше 1 кВ, поэтому сопротивление заземляющего устройства в соответствии с [17] не должно превышать 10 Ом и рассчитывается по формуле

,

(4.1)

где - ток замыкания на землю, А.

.

Следовательно, сопротивление заземляющего устройства не должно превышать 10 Ом.

Для выполнения заземления вокруг здания ЦРП выполняется наружный контур размерами 27х17м, состоящий из стальной шины 18 мм, прокладываемой в траншее на глубине 0,5 м и вертикальных электродов 18 мм, забиваемых на глубину до 6 м.

Сопротивление искусственного заземлителя при отсутствии естественного заземлителя принимаем равным допустимому сопротивлению заземляющего устройства Ом.

Определим расчетные удельные сопротивления грунта для горизонтальных и вертикальных заземлителей

,

,

(4.1)

где - удельное сопротивление грунта, ;

и - повышающие коэффициенты для вертикальных и горизонтальных электродов, для климатической зоны 3 по табл. 12.2 [15].

,

.

Сопротивление растеканию одного вертикального электрода стержневого типа определяем по формуле из табл. 12.3 [15]

,

(4.2)

где l - длинна вертикального электрода, м;

d - диаметр вертикального электрода, м;

t - глубина заложения вертикального электрода, м.

м.

.

Определяем примерное число вертикальных заземлителей при предварительно принятом по табл. 12.4 [15] коэффициенте использования (отношение расстояния между электродами к их длине равно 1, ориентировочное число вертикальных электродов в соответствии с планом объекта составляет 20)

.

(4.3)

.

Определим расчетное сопротивление растеканию горизонтальных электродов по формуле из табл. 12.3 [15]

.

(4.4)

.

Уточняем необходимое сопротивление вертикальных электродов

.

(4.5)

Ом.

Определяем число вертикальных электродов при коэффициенте использования по табл. 12.4 [15]

.

(4.6)

.

Принимаем к установке 21 вертикальных электрод, распложенных по контуру расположенного на расстоянии 1 м от фундамента здания ЦРП. Эскиз заземлителя представлен на рисунке 4.1.

Рисунок 4.1 - Эскиз заземлителя распределительной подстанции 10 кВ.

Заключение

На основании схем автоматизации электроснабжения КС-10 и КС «Ухтинская» была разработана общая схема автоматизации всего энергоснабжения двух КС. На выносном листе 1 показана структурная схема автоматизированной системы управления энергохозяйством, эта система объединила в себе отдельные локальные системы: АСУ-ЭС, САУ-В, САУ-Т, САУ-КОС. Объединение происходит на верхнем уровне, т.е. на уровне диспетчерских или рабочих станций (АРМ) каждой из подсистем. Делается это объединение для двух целей, первая - для согласования работы отдельных подсистем, быстрого и оперативного управления системой энергоснабжения, поддержание ее работоспособности и обеспечение непрерывного снабжения основного производства энергоресурсами. Вторая цель это использование АСУ-Э в качестве источника информации для более глобальной системы, так называемой ИУС-Э (информационно-управляющей системы энергообеспечения). ИУС-Э занимается контролем и анализом в целом всей системы энергоснабжения, решает задачи организации и планирования. Система ИУС-Э функционально распределена по уровням отраслевой системы диспетчерского управления. На уровне предприятия «Севергазпром» функции ИУС-Э следующие: планирование потребности предприятия в энергоресурсах и анализ их потребления; планирование и контроль капитального строительства, модернизации, реконструкции, капремонта энергетического оборудования; контроль за устранением аварий; формирование баз данных; информационное обеспечение производства.

Объединение двух отдельных автоматизированных систем для КС-10 и КС «Ухтинская» и их составных частей, осуществляется по верхнему уровню через локальные сети диспетчерских. В дипломном проекте верхний уровень АСУ-Э организован на основе сети Ethernet, это связано с тем, что данный стандарт получил широкое применение в построении сетей используемых для разных целей. Главная причина использования Ethernet заключается в том, что это стандарт несложный в эксплуатации, с относительно недорогими компонентами. Так как Ethernet сейчас самая популярная и широко используемая сетевая технология, то, как внедрять и применять ее, знают очень многие.

Для выполнения поставленных задач АСУ-Э необходимо двенадцать автоматизированных рабочих мест, семь базовых систем. Соединение компьютеров АРМов и базовых систем осуществляется по топологии звезда. Для связи между диспетчерскими используется сетевой мост RAD Tiny Bridge, в котором в качестве линии связи используется оптоволоконный кабель.

Предусмотрена интеграция АСУ-Э с АСУ-ТП через шлюзовой компьютер, установленный в диспетчерской N1 АСУ-Э. Интеграция с ИУС-Э осуществляется по телефонной связи через модем установленного на АРМе главного оператора.

В дипломном проекте была разработана система АСУ-ЭС для КС-10 удовлетворяющая требованиям, предъявляемым к системам такого рода, а именно требование быстродействия, помехозащищенности и масштабируемости.

Быстродействие системы обеспечивается благодаря применению интеллектуальных устройств, таких как контроллеров RTU-211 и цифровых блоков защит Sepam 2000, они имеют высокую скорость сбора и обработки информации (скорость опроса дискретных сигналов 1 мс, аналоговой, для реле Sepam 2000 - 1,67 мс, для RTU-211 - 0,3 мc). Причем благодаря установке блоков сбора данных непосредственно в самом объекте (ЦРП, КТП) нет необходимости передавать по каналу связи между нижним и верхним уровнем всю информацию, а передавать лишь изменения измеряемых параметров. Для обеспечения быстродействия скорость передачи данных выбирается 9600 бит/с. Объем автоматизации электроснабжения КС-10 следующий: 1007 - дискретных сигналов, 530 - аналоговых, но в основном именно от скорости передачи информации зависит загрузка системы, а не от числа точек учета (объема контролируемых параметров). Причем основной объем передаваемых данных это оцифрованные аналоговые сигналы измеряемых токов, напряжений, мощности и т.д. Поэтому загрузка системы будет зависеть от настройки зоны нечувствительности измеряемых параметров.

Связь нижнего уровня АСУ с базовым компьютером осуществляется по оптическим каналам связи, которые позволяют устранить влияние электромагнитных полей на входы устройств нижнего и верхнего уровней.

Для технического учета электрической энергии используются вычисляемые значения активной и реактивной мощности на каждой отходящей линии ЦРП-10 кВ в реле Sepam 2000.

В связи с тем, что для надежности системы электроснабжения планируется строительство ЦРП-10 кВ, на площадке КС-10 изменяется схема электроснабжения. Все КТП-10/0,4 кВ расположенные на промпощадке будут запитываться от ЦРП-10 кВ. ЦРП будет получать питание от двух вводов главной понизительной подстанции 110/35/10 кВ от ЗРУ-10 кВ. Поэтому для коммерческого учета электроэнергии достаточно установить в ЗРУ-10 кВ ГПП два счетчика на отходящих ячейках в ЦРП.

Эффект от внедрения АСУ-ЭС на КС-10 достигается за счет предотвращения ущерба от перерывов электроснабжения при авариях, так как благодаря применению средств автоматизации уменьшается время на отыскание причин аварий и времени на их ликвидацию. Рассчитанный эффект составляет 1,47 милл. руб. в год. Кроме этого применение автоматизации электроснабжения дает ряд других неявных эффектов. Благодаря автоматическому техническому учету, появляется возможность рационального использования электрической энергии, а также выявление «невидимых» потерь и непроизводственных расходов. Диспетчеризация управления энергообъектами с помощью АСУ электроснабжения дает экономию потребляемой электроэнергии за счет автоматического контроля и правильного планирования максимума нагрузки. Автоматическое диагностирование режимов работы оборудования, отслеживание выработки ресурса и соответственно своевременность ремонтных работ, ведет к увеличению срока службы оборудования, снижению аварийности и затрат на ремонтные работы. Снижение потерь от повреждения оборудования за счет предупреждения аварийных ситуаций.

Библиографический список

1. Основные положения по автоматизации объектов энергообеспечения ОАО «Газпром» - М.: Газавтоматика, 2001. - 77 с.

2. Автоматизация компрессорных станций магистральных газороводов. - Киев: Техника, 1990. - 128 с.

3. Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов. - М.: Энергия, 1974. - 689 с.

4. Берман Р. Я. Автоматизация систем управления магистральными газопроводами. - Л.: Недра, 1978. - 159 с.

5. Камнев В. Н. Чтение схем и чертежей электроустановок. - М.: Высш. шк., 1986. - 144 с.

6. Усатенко С.Т., Каченюк Т.К., Терехова М.В. Выполнение электрических схем по ЕСКД. Справочник. - М.: Издательство стандартов, 1989. - 325 с.

7. Федоров А.А., Старкова Л.Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий. Учебное пособие для вузов. - М.: Энергоатомиздат, 1987. - 368 с.

8. Справочник по проектированию электрических сетей и электрооборудования / Под ред. Барыбина Ю.Г. и др. - М.: Энергоатомиздат, 1991. - 464 с.

9. Ристхейн Э.М. Электроснабжение промышленных установок. Учебник для вузов. - М.: Энергоатомиздат, 1991. - 424 с.

10. Строительные нормы и правила РФ ФЕРм 81-03-11-2003. Сборник N 11 "Приборы, средства автоматизации и вычислительной техники".

11. Ценник на пусконаладочные работы № 2 Автоматизированные системы управления 1984-01-01.

12. Шабад М.А. Автоматизация распределительных электрических сетей с цифровыми реле. - М.: НТФ Энергопрогресс, 2000. - 58 с.

13. Меньшов Б.Г., Беляев А.В., Ящерицын В.Н. Электроснабжение газотурбинных компрессорных станций магистральных газопроводов. - М.: Недра, 1985. - 163 с.

14. Автоматизация диспетчерского управления в электроэнергетике/ Под общей ред. Ю.Н. Руденко и В.А Семенова. - М.: Издательство МЭИ, 2000. - 648 с.

15. Федеральный закон от 17.07.1999 № 181-ФЗ «Об основах охраны труда в Российской Федерации».

16. Федоров А. А., Каменева В. В. Основы электроснабжения промышленных предприятий: Учебник для вузов. - 4-е изд., перераб. и доп. - М.: Энергоатомиздат, 1984. - 472 с.

17. Правила устройства электроустановок (ПУЭ). Издание седьмое. Утв. приказом Минэнерго России от 08.07.2002 № 204. - Вестник Госэнергонадзора, № 3, 2002.

Приложение

Характеристики электронных плат контроллера RTU-211

1. Плата центрального процессора 23CP61

Микроконтроллер и память (Процессор шины)

Микроконтроллер с 8 кб внутренней памяти

для хранения программ: 87C32

Тактовая частота: 11.0592МГц

Размер ОЗУ (внутреннего): 256 байт

Микропроцессор и память (центральный процессор)

Микропроцессор:80С186

Тактовая частота:8.0 МГц

Размер ОЗУ: 256 кбайт

Размер флэш-памяти:512 кбайт

Последовательные интерфейсы

Количество последовательных интерфейсов:

4

Уровни интерфейса для всех последовательных каналов:

RS485

Скорость передачи для порта NFK, CPA:

50-19200 бод

Скорость передачи для порта MMI:

9600 бод (строго)

Скорость передачи для порта PRN:

50-9600 бод

Формат данных при передаче по последовательным: каналам (NFK,MMI,CPA)

8 бит, проверка на четность,1 стоп-бит

2. Плата цифрового ввода 23BI60R5

Количество каналов:16

Тип входов напряжения: Активные сигналы

Соединительных зажимов на канал:2

Развязка каналов через оптрон: Да

Диапазоны сигналов: 110 -230 В постоянного тока

Максимально допустимое входное перенапряжение: МЭК 870-3 Класс 3 (от номинального диапазона)+200 % (1 секунда)+125 % (1 минута)

Входные токи для обоих диапазонов: МЭК 870-3 Класс 1 (номинальное значение) 3-5 мА

3. Промежуточная релейная плата 23RL60

Количество выходных командных реле: 8

Поперечное сечение соединительных зажимов: 2.5 мм2

Индикаторные светодиоды на каждый выход: Да

Развязка между выходными реле: Да

Развязка между выходными реле и электроникой: Да

Время срабатывания командных реле (максимум): 10 мс

Время отпускания командных реле (максимум): 5 мс

Максимальная нагрузка на контакты 220 В пост. тока: 1 А

4. Трехфазный преобразователь измерений переменного тока 23DP61R1

Точность преобразователя

Значения запоминающего устройства: 1.0 % полного масштаба

Активная, реактивная и полная мощность, коэффициент мощности: 2.0 % полного масштаба

Частота: 0.5 %

Счетчики энергии: 2.0 %

Диапазоны измерений преобразователя

Напряжение трех фаз, версия R0001:3 x 230 В (50 Гц)

Напряжение нулевой последовательности:0 - 230 В (50 Гц)

Ток трех фаз:3 x 5 A

Ток нулевой последовательности:1 x 5 A

Обновление измеряемых параметров

Напряжение, ток, мощность, реактивная мощность и частота вычисляется при 50/60 Гц и обновляются каждые 2 секунды.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.