Коэффициент гидравлического трения

Характеристика турбулентного режима течения, определение ее зависимости от числа Рейнольдса. Значения абсолютной и эквивалентной шероховатости труб из некоторых материалов. Режимы течения в гидравлически гладких трубах, описание специальной установки.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 18.05.2010
Размер файла 347,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

8

Определение коэффициента гидравлического трения

В уравнении Бернулли, записанном для двух сечений потока вязкой жидкости (обозначения общепринятые):

(1)

где представляет собой суммарную величину потерянного напора:

, (2)

где - потери напора по длине расчетного участка трубопровода, вызванные трением жидкости о стенки, называются путевыми потерями;

- потери напора на коротких участках трубопровода, обусловленные изменением формы или размеров (иногда и того и другого одновременно), называемые потерями в местных сопротивлениях, или местными потерями напора.

В данной работе рассматриваются путевые потери. Согласно уравнению неразрывности для потока вязкой несжимаемой жидкости (? = const):

(3)

При течении жидкости в горизонтально расположенном трубопроводе (z1=z2) постоянного сечения (S1=S2) скорость в начале и конце расчетного участка будет одинаковыми (V1=V2) и уравнение Бернулли примет вид:

(4)

Путевые потери определяются по формуле Дарси - Вейсбаха:

, (5)

где ? - безразмерный коэффициент гидравлического трения (коэффициент Дарси);

L - длина расчетного участка трубопровода;

d - диаметр трубопровода;

- средняя скорость потока.

Экспериментально установлено, что коэффициент гидравлического трения в общем случае зависит от режима течения, характеризуемого числом Рейнольдса (Re), и состояния внутренней поверхности трубопровода, характеризуемой относительной шероховатостью (?). Влияние этих факторов на величину ? при ламинарном и турбулентном режимах течения проявляется по-разному.

При ламинарном режиме, т.е. (? - кинематический коэффициент вязкости) состояние поверхности стенки не влияет на сопротивление движению жидкости и ? = f (Re). Значение коэффициента ? в этом случае определяется по теоретической формуле Пуазейля:

(6)

Подставляя это выражение в (5), получим формулу для определения путевых потерь при ламинарном течении в виде:

, (7)

где

Из (7) следует, что в ламинарном потоке потери напора по длине трубопровода (путевые потери) прямо пропорциональны средней скорости течения жидкости.

Турбулентный режим течения характеризуется интенсивным перемешиванием жидкости как в поперечном (по сечению потока), так и в продольном (по длине потока) направлениях. Однако в диапазоне чисел Рейнольдса непосредственно вблизи стенок трубопровода существует слой движущейся жидкости, течение в котором сохраняется ламинарным. Этот слой называется ламинарным подслоем или ламинарной пленкой. Толщина ламинарной пленки (?Л) зависит от режима течения ?Л = f (Re) и с увеличением числа Рейнольдса ?Л уменьшается.

Стенки любого тракта имеют естественную шероховатость поверхности, первоначально обусловленную материалом и технологией изготовления трубопровода и меняющуюся при его эксплуатации вследствие взаимодействия материала трубопровода с рабочей жидкостью. Средняя высота выступов шероховатости (?) называется абсолютной шероховатостью. В зависимости от соотношения между ?Л и ? (см. рис 1) трубы или стенки рассматривают как гидравлически гладкие или гидравлически шероховатые.

Рис. 1

Если ?Л > ?, ламинарный подслой как бы сглаживает шероховатость стенки: поток не получает дополнительной турбулизации от шероховатости, поскольку образующиеся на вершинах выступов шероховатости вихри подавляются ламинарной пленкой. Труба, в которой выступы шероховатости находятся в пределах толщины ламинарного подслоя, называется гидравлически гладкой.

Если ?Л < ?, выступы шероховатости, оказавшись в турбулентном ядре потока, вносят дополнительное возмущение в обтекающую их жидкость, что приводит к увеличению сопротивления и, следовательно, потерь напора. Такая труба является гидравлически шероховатой.

В зависимости от режима течения, одна и та же труба может быть как гидравлически гладкой, так и гидравлически шероховатой, поскольку с ростом числа Рейнольдса толщина ламинарного подслоя уменьшается, и, наоборот - с увеличением Re, ?Л возрастает.

Естественная шероховатость всегда неравномерна, так как выступы имеют различные формы, размеры и расположения. Поэтому вводится понятие эквивалентной (или равномерно-зернистой) абсолютной шероховатости ?Э. Эта искусственно создаваемая шероховатость, например, путем наклеивания на стенки трубы песчинок одного размера (одной фракции) и на одинаковых расстояниях друг от друга, обеспечивает создание сопротивления трубопровода, равного сопротивления при естественной шероховатости.

Значения абсолютной (?) и эквивалентной (?Э) шероховатости для труб из некоторых материалов приведены в таблице 1.

Таблица 1.

№ п/п

Материал и состояние труб

?,

мм

?Э,

мм

1

Трубы из стекла, латуни или медные, новые

0,0015…0,01

0,001…0,01

2

Трубы стальные, бесшовные (цельнопотянутые), новые, чистые

0,02…0,1

0,02…0,5

3

Трубы стальные, сварные, новые, чистые

0,03…0,12

0,03…0,1

4

Трубы стальные, бывшие в употреблении

0,2…1,2

0,2…1,25

5

Трубы чугунные, новые

0,25…1,0

0,2…0,5

6

Трубы чугунные, бывшие в употреблении

0,5…1,4

0,5…1,5

При определении ? учитывается не абсолютная шероховатость, а ее отношение к диаметру (или радиусу) трубы, т.е. относительная шероховатость:

;

Это обусловлено тем, что одна и та же абсолютная шероховатость оказывает большее влияние на сопротивление движению в трубопроводе меньшего диаметра.

Предложено большое количество эмпирических и полуэмпирических формул для определения коэффициента гидравлического трения ?, учитывающих особенности течения при турбулентном режиме. Эти особенности в конечном итоге сказываются на зависимости путевых потерь от средней скорости течения.

Так, для гидравлически гладких труб потери напора по длине пропорциональны средней скорости в степени 1,75. В переходной области от гидравлически гладких к шероховатым трубам () на величину ? оказывают влияние одновременно два фактора: число Рейнольдса и относительная шероховатость, т.е. в переходной области ? = f (Re, ?). В этой области, называемой зоной доквадратного сопротивления, потери напора по длине пропорциональны средней скорости в степени 1,74…2.

Для гидравлически шероховатых труб, когда ламинарная пленка практически полностью разрушается, коэффициент ? уже не зависит от Re, а определяется лишь относительной шероховатостью, т.е. ? = f (?). Эта область называется зоной квадратичного сопротивления, т. к. h 2, или автомодельной областью, так как независимость ? от Re означает, что потери напора по длине, определяемые по формуле (5) пропорциональны квадрату средней скорости. Начало этой области определяется условием .

Наиболее часто применяемые формулы для вычисления значения коэффициента ? приведены в таблице 2.

Определение ? по приведенным в таблице 2 и другим формулам облегчается использованием таблиц и номограмм, содержащихся в учебных и справочных пособиях.

При проведении данной работы рассматриваются режимы течения в гидравлически гладких трубах.

Таблица 2

Зона сопротивления, режим

Границы зоны

Расчетные формулы

Зависимость потерь напора от скорости

1. Ламинарный

;

ф. Пуазейля

h

2. Зона гладкостенного сопротивления

;

ф. Блазиуса

h 1,75

ф. Конакова

3. Зона доквадратичного сопротивления

ф. Кольбрука Уайта

h 1,75 2

ф. Альтшуля

4. Зона квадратичного сопротивления

ф. Прандтля-Никурадзе

h 2

ф. Шифринсона

Описание установки.

Принципиальная схема экспериментальной установки, используемой для определения коэффициента гидравлического трения ? приведена на рис. 2.

Экспериментальный участок трубопровода круглого сечения длиной L подсоединен к напорному баку 5, в который из водовода через вентиль 1 и успокоительную сетку 3 непрерывно подается вода. Излишки воды из бака сливаются через переливную трубу 4. Поэтому в баке может поддерживаться постоянный уровень. Расход воды через экспериментальный участок регулируется вентилем 7 (вентиль на входе в экспериментальный участок полностью открыт во время всего эксперимента). После прохождения экспериментального участка вода сливается в мерный бак 8, на входе из которого имеется кран 9. Для измерения температуры воды установлен термометр 2. Установка снабжена пьезометрическим щитом 6, на котором установлены пьезометры для измерения потерь по длине.

Рис. 4

Литература

1. Башта Т.М. и др. Гидравлика, гидромашины и гидроприводы. - М.: Машиностроение, 1984, 424 с.

2. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. - М.: Машиностроение, 1975. - 559 с.

3. Установка для изучения потерь напора при турбулентном установившемся движении (тип ГВ5). - Одесоргнаучкомплектснаб. - 39 с.


Подобные документы

  • Демонстрация режимов течения жидкости и экспериментальное определение критических чисел Рейнольдса для труб круглого сечения. Структура и основные элементы установки Рейнольдса, ее функциональные особенности и назначение, определение параметров.

    лабораторная работа [29,2 K], добавлен 19.05.2011

  • Максимальный расход через гидравлическую трассу. Значения кинематической вязкости, эквивалентной шероховатости и площади проходного сечения труб. Предварительная оценка режима движения жидкости на входном участке трубопровода. Расчет коэффициентов трения.

    курсовая работа [261,3 K], добавлен 26.08.2012

  • Характеристика приближенных методов определения коэффициента трения скольжения, особенности его расчета для различных материалов. Значение и расчет силы трения по закону Кулона. Устройство и принцип действия установки для определения коэффициента трения.

    лабораторная работа [18,0 K], добавлен 12.01.2010

  • Гидродинамическая и тепловая стабилизация потока жидкости в трубе. Уравнение подобия для конвективной теплоотдачи. Теплоотдача к жидкости в кольцевом канале. Критические значения чисел Рейнольдса для изогнутых труб. Поправка на шероховатость трубы.

    презентация [162,4 K], добавлен 18.10.2013

  • Ламинарный и турбулентный режимы движения жидкости. Локальный критерий Нуссельта. Влияние физических свойств жидкости на теплоотдачу. Плотности потоков теплоты и импульса при турбулентном режиме течения вдоль плоской стенки. Конвективный теплообмен шара.

    лекция [3,1 M], добавлен 15.03.2014

  • Определение числовых значений объёмного, массового и весового расхода воды, специфических характеристик режима движения, числа Рейнольдса водного потока, особенности вычисления величины гидравлического радиуса трубопровода в условиях подачи воды.

    задача [25,1 K], добавлен 03.06.2010

  • Сущность осредненного и пульсационного движения. Расчет сопротивления при турбулентном течении жидкости по каналам. Изучение понятия относительной и эквивалентной абсолютной шероховатости поверхности. Определение потери энергии в местных сопротивлениях.

    презентация [121,2 K], добавлен 14.10.2013

  • Трение как процесс взаимодействия твердых тел при относительном движении либо при движении твердого тела в газообразной или жидкой среде. Виды трения, расчет трения покоя, скольжения и качения. Расчет коэффициентов трения для различных пар поверхностей.

    практическая работа [92,5 K], добавлен 10.05.2010

  • Особенности причин появления и расчет на трех участках по длине трубы коэффициента гидравлического трения, потерь давления, потерь напора на трение, местных потерь напора при описании прохождения воды в трубопроводе при условиях турбулентного движения.

    задача [250,4 K], добавлен 03.06.2010

  • Создание модели движения жидкости по сложному трубопроводу с параллельным соединением труб и элементов. Уравнения механики жидкости и газа для подсчета потерь на трение. Определение числа Рейнольдса. Система уравнений Бернулли в дифференциальной форме.

    контрольная работа [383,5 K], добавлен 28.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.