Магнітне поле у вакуумі
Магнітне поле та індукція, закон Ампера. Закон Біо-Савара-Лапласа та його використання в найпростіших випадках. Магнітне поле прямолінійного провідника із струмом, кругового провідника із струмом, соленоїда. Магнітний момент контуру із струмом.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | украинский |
Дата добавления | 06.04.2009 |
Размер файла | 279,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
РЕФЕРАТ
на тему:”МАГНІТНЕ ПОЛЕ У ВАКУУМІ”
План
1. Магнітне поле. Магнітна індукція. Закон Ампера.
2. Закон Біо-Савара-Лапласа та його використання в найпростіших випадках:
а) Магнітне поле прямолінійного провідника із струмом;
б) Магнітне поле кругового провідника із струмом;
в) Магнітне поле соленоїда.
3. Магнітний момент контуру із струмом.
1. Магнітне поле. Магнітна індукція. Закон Ампера
Дослідним шляхом установлено, що подібно до електричних зарядів, навколо яких виникає електричне поле, в просторі навколо провідників із струмом або постійних магнітів виникає магнітне поле. Магнітне поле - це одна із форм існування матерії, завдяки якій здійснюється взаємодія струмів і постійних магнітів.
Встановлено також, що:
- магнітне поле діє лише на рухомі електричні заряди;
- рухомі електричні заряди створюють у просторі магнітне поле;
- магнітне поле не діє на статичні заряди.
Характер дії магнітного поля на струм залежить:
- від форми провідника, по якому тече струм;
- від розміщення провідника в просторі.
У якості пробного тіла для дослідження магнітного поля використовують замкнутий пробний контур з струмом, лінійні розміри якого досить малі. Магнітне поле такого пробного контуру не повинно створювати зовнішнього магнітного поля. При розміщенні такої рамки у досліджуване зовнішнє магнітне поле, із сторони останнього, на рамку діятиме обертальний момент сил М. Елементарна рамка із струмом займе певний напрям у просторі так, щоб магнітне поле рамки і досліджуваного магнітного поля збігалися (рис 11.1).
Рис11.1
Орієнтація контуру в просторі характеризується напрямком нормалі до контуру.
Додатний напрям нормалі визначається правилом правого гвинта. За позитивний напрям нормалі приймається напрям поступального руху правого гвинта, обертання якого збігаються з напрямком струму в пробній рамці.
За напрям магнітного поля у даній точці простору приймається напрям, вздовж якого направляється позитивно орієнтована нормаль до контуру.
Момент сил, який створюється зовнішнім магнітним полем у рамці із струмом, визначається векторним добутком вектора магнітного моменту рамки із струмом і магнітної індукції зовнішнього магнітного поля
, (11.1.1)
де - магнітний момент пробної рамки із струмом I і площею S; - вектор магнітної індукції - силова характеристика зовнішнього магнітного поля.
Скалярна величина вектора моменту сили визначається формулою
. (11.1.2)
Якщо в дану точку зовнішнього магнітного поля розміщувати елементарні рамки із різними магнітними моментами , то на них з сторони магнітного поля будуть діяти різні обертальні механічні моменти сил . Однак відношення для кожного випадку буде сталою величиною, яка є силовою характеристикою цього поля. Позначають цю величину буквою і називають індукцією магнітного поля.
. (11.1.3)
Індукція магнітного поля вимірюється у теслах (Тл), розмірність якого визначається з (11.1.3)
.
Подібно до електричного поля магнітне поле зображають з допомогою силових ліній магнітного поля, напрям яких у кожній точці поля збігається із напрямком вектора .
Лінії індукції магнітного поля завжди замкнуті й охоплюють провідники із струмом. Замкнутість силових ліній магнітного поля характеризує вихровий характер цього поля.
Природа магнітного поля зводиться або до руху електричних зарядів, або до змінного в часі електричного поля. Про це свідчать рівняння Максвела:
а) , (11.1.4)
де - циркуляція вектора електростатичного поля вздовж довільного замкнутого контуру; - потік змінного в часі вихрового магнітного поля крізь довільну замкнуту поверхню;
б) , (11.1.5)
де - струм провідності, який створюється в провіднику вільними електричними зарядами; - потік змінного в часі електричного поля, що інколи називають струмом зміщення. Струм зміщення не пов'язаний з рухом будь-яких електричних зарядів.
Рівняння Максвелла (11.1.4) і (11.1.5) характеризують взаємозв'язок електричних і магнітних явищ. З рівняння (11.1.4) чітко видно, що змінне в часі магнітне поле є причиною виникнення вихрового електричного поля. Останнє, створює електричний струм у замкнутому провіднику.
З рівняння (11.1.5) випливає, що причиною виникнення магнітного поля може бути або струм провідності, або змінне в часі електричне поле, яке не обов'язково призводить до руху зарядів у провіднику.
Оскільки будь-який струм є причиною виникнення магнітного поля, то це пояснює дослідний факт силової дії магнітного поля на провідник із струмом.
Величину цієї сили знайшов Ампер, тому вона називається силою Ампера
, (11.1.6)
де - вектор елементу струму, що збігається з напрямком струму у провіднику; - індукція зовнішнього магнітного поля.
Рис.11.2
На рис.11.2 струм створюється позитивними зарядами, напрям руху яких збігається з напрямком струму.
Напрям сили Ампера визначається правилом лівої руки. Якщо силові лінії магнітного поля входять в долоню лівої руки, а чотири пальці направлені по напрямку струму у провіднику, то великий палець, відхилений на 900, покаже напрямок сили Ампера.
2. Закон Біо-Савара-Лапласа та його використання у найпростіших випадках
Ще на початку 19-го сторіччя французькі фізики Біо і Савар, обробляючи величезний експериментальний матеріал вивчення характеристик магнітного поля провідників зі струмом за участю математика Лапласа, одержали формулу, яка дістала назву у фізиці закону Біо-Савара-Лапласа.
У векторній формі цей закон має вигляд
, (11.2.1)
де ? - відносна магнітна проникність середовища, безрозмірна величина; ?о - магнітна постійна (); I - струм у провіднику; - елемент провідника; - відстань від елемента струму до точки, в якій знаходиться індукція магнітного поля (рис.11.3).
Рис.11.3
З видно, що вектор індукції магнітного поля є дотичною до силової лінії магнітного поля, яка охоплює провідник, і проходить через точку, в якій визначається індукція магнітного поля.
Напрям силової лінії визначається за допомогою правила правого гвинта, як це показано на рисунку.
Поряд із індукцією магнітного поля магнітне поле характеризується напруженістю . Ця величина не залежить від властивостей середовища і дорівнює
. (11.2.2)
Величина напруженості магнітного поля входить в одне із рівнянь Максвелла. Розмірність напруженості буде встановлена трохи пізніше.
Закон Біо - Савара - Лапласа для напруженості магнітного поля Н має вигляд
, (11.2.3)
або в скалярній формі
. (11.2.4)
Магнітному полю властивий принцип суперпозиції. Це означає, що поля від кількох джерел магнітного поля накладаються як вектори, тобто
. (11.2.5)
Знайдемо індукцію магнітного поля біля безмежного прямого провідника із струмом (рис.11.4).
Скористаємось законом Біо - Савара - Лапласа в скалярній формі
, (11.2.6)
де кут ? - це кут між напрямком елемента провідника із струмом і радіусом-вектором , як це показано на рис.11.4; - дотичний вектор до силової лінії, напрям якого збігаються з напрямком обертання правого гвинта.
Рис.11.4
З рисунка видно, що
dS=dlsin? і dS=rd?,
звідки
.
Радіус-вектор також можна виразити через ro і кут ?, тобто
.
З урахуванням цих зауважень закон Біо - Савара - Лапласа набуде вигляду
. (11.2.7)
Інтегруємо вираз (11.2.7) в межах зміни кута ? від ?1 до ?2, в результаті чого одержимо
. (11.2.8)
Якщо у виразі (11.2.8) ?1 прямує до 0, а ?2 прямує до ?, то одержимо безмежний прямий провідник із струмом.
У цьому випадку:
а) індукція магнітного поля буде дорівнювати
. (11.2.9)
б) напруженість магнітного поля буде дорівнювати
. (11.2.10)
З останньої формули легко встановити розмірність напруженості магнітного поля
.
Знайдемо магнітне поле на осі кругового витка із струмом (рис.11.5).
Рис.11.5
Елемент провідника із струмом dl, створює на осі x індукцію магнітного поля dB. Вектор є дотичним до силової лінії, зображеної на рисунку пунктирною лінією. Складова вектора індукції магнітного поля dBy буде скомпенсована аналогічним елементом з протилежної сторони. Результуючу індукцію магнітного поля від кругового витка із струмом слід шукати в напрямку осі x (принцип суперпозиції магнітних полів).
З рисунка видно, що
. (11.2.11)
Закон Біо - Савара - Лапласа запишеться
, (11.2.12)
тут враховано, що .
Підставимо вираз (11.2.12) у (11.2.11), одержимо
. (11.2.13)
Але врахувавши, що
; і ,
одержимо
. (11.2.14)
Інтегруємо цей вираз в межах довжини витка від 0 до 2рR, одержимо
.
Таким чином, магнітна індукція на осі кругового витка дорівнює визначається за допомогою формули
. (11.2.15)
Напруженість магнітного поля у цьому випадку буде дорівнювати
. (11.2.16)
Для індукції та напруженості магнітного поля у центрі колового витка зі струмом одержимо
, (11.2.17)
. (11.2.18)
Знайдемо індукцію і напруженість магнітного поля на осі довгого соленоїда з струмом (рис.11.6).
Рис.11.6
Виділений елемент соленоїда шириною dx, в якому dN витків, що щільно прилягають один до одного, можна розглянути як круговий виток, індукція якого розраховується за формулою (11.2.15)
, (11.2.19)
Кількість витків у виділеному елементі соленоїда дорівнює
dN = ndx,
де n - число витків на одиницю довжини соленоїда.
З урахуванням цих позначень одержуємо
. (11.2.20)
Виконаємо заміну змінних у співвідношенні (11.2.20), тобто
, і .
З урахуванням цих позначень одержимо, що
.
Інтегруємо цей вираз у межах зміни кута від ?1 до ?2. Після інтегрування одержимо
. (11.2.21)
Якщо ?1?0, а ?2??, одержимо соленоїд безмежної довжини. У цьому випадку:
а) індукція магнітного поля на осі довгого соленоїда
. (11.2.22)
б) напруженість магнітного поля на осі довгого соленоїда
. (11.2.23)
3. Магнітний момент контуру із струмом
Для плоского контуру із струмом I магнітний момент визначається співвідношенням:
, (11.3.1)
де I - струм у контурі; S - площа контуру; - нормаль до площини контуру, яка збігається з поступальним рухом правого гвинта, якщо його обертати за напрямком струму у витку.
Рис.11.7
Якщо контур із струмом розмістити у зовнішнє магнітне поле, то результуюча сила Ампера, яка діє зі сторони зовнішнього магнітного поля на контур з струмом, буде дорівнювати нулю, тобто
.
У випадку неоднорідного магнітного поля результуючий вектор сили Ампера не буде дорівнювати нулю.
Відповідні розрахунки показують, що в цьому випадку
(11.3.2)
де - похідна вектора в напрямку нормалі або градієнт вектора в напрямку нормалі до контуру; - магнітний момент контуру.
Подобные документы
Характеристика обертального моменту, діючого на контур із струмом в магнітному полі. Принцип суперпозиції магнітних полів. Закон Біо-Савара-Лапласа і закон повного струму та їх використання в розрахунку магнітних полів. Вихровий характер магнітного поля.
лекция [1,7 M], добавлен 24.01.2010Закон повного струму. Рівняння Максвелла для циркуляції вектора напруженості магнітного поля. Використання закону для розрахунку магнітного поля. Магнітний потік та теорема Гаусса. Робота переміщення провідника із струмом і контуру у магнітному полі.
учебное пособие [204,9 K], добавлен 06.04.2009Історія магнітного поля Землі, його формування та особливості структури. Гіпотеза походження та роль даного поля, існуючі гіпотези та їх наукове обґрунтування. Його характеристики: полюси, меридіан, збурення. Особливості змін магнітного поля, індукція.
курсовая работа [257,4 K], добавлен 11.04.2016Явище і закон електромагнетизму. Напруженість магнітного поля - відношення магнітної індукції до проникності середовища. Магнітне коло та його конструктивна схема. Закон повного струму. Крива намагнічування, петля гістерезису. Розрахунок електромагнітів.
лекция [32,1 K], добавлен 25.02.2011Содержание закона Ампера. Напряженность магнитного поля, её направление. Закон Био-Савара-Лапласа, сущность принципа суперпозиции. Циркуляция вектора магнитного напряжения. Закон полного тока (дифференциальная форма). Поток вектора магнитной индукции.
лекция [489,1 K], добавлен 13.08.2013Отличие постоянных магнитов от электрических диполей. Открытие Эрстеда. Правило буравчика. Закон Био-Савара-Лапласа. Магнитное поле движущегося заряда, прямого и кругового токов. Теорема Гаусса для вектора магнитной индукции. Уравнения магнитостатики.
презентация [4,2 M], добавлен 07.03.2016Механізм намагнічування, намагнічуваність речовини. Магнітна сприйнятливість і проникність. Циркуляція намагнічування, вектор напруженості магнітного поля. Феромагнетики, їх основні властивості. Орбітальний рух електрона в атомі. Вихрове електричне поле.
реферат [328,2 K], добавлен 06.04.2009Обертання атомних електронів навколо ядра, що створює власне магнітне поле. Поняття магнітного моменту атома. Діамагнітні властивості речовини. Величини магнітних моментів атомів парамагнетиків. Квантово-механічна природа магнітоупорядкованих станів.
курсовая работа [79,6 K], добавлен 03.05.2011Действие силового поля в пространстве, окружающем токи и постоянные магниты. Основные характеристики магнитного поля. Гипотеза Ампера, закон Био-Савара-Лапласа. Магнитный момент рамки с током. Явление электромагнитной индукции; гистерезис, самоиндукция.
презентация [3,5 M], добавлен 28.07.2015Сутність і основні характерні властивості магнітного поля рухомого заряду. Тлумачення та дія сили Лоуренца в магнітному полі, характер руху заряджених частинок. Сутність і умови появи ефекту Холла. Явище електромагнітної індукції та його характеристики.
реферат [253,1 K], добавлен 06.04.2009