Электроснабжение предприятия по производству деталей к автомобилям
Определение расчётных электрических нагрузок цехов. Расчёт электрического освещения завода. Технико-экономическое сравнение вариантов внешнего электроснабжения. Определение центра электрической нагрузки. Схема распределительной сети предприятия.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 05.04.2010 |
Размер файла | 2,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
"Электроснабжение предприятия по производству деталей к автомобилям "
Расчетно-пояснительная записка к дипломному проекту.
Содержание
- Введение
- 1. Определение расчетных электрических нагрузок предприятия
- 1.1 Общая характеристика предприятия и источников электрснабжения
- 1.2 Определение расчётных электрических нагрузок цехов
- 1.3 Расчёт электрического освещения завода
- 1.3.1 Выбор источником света
- 1.3.2 Выбор типа светильников
- 1.4 Определение расчётной и сменной нагрузки по цехам с учётом освещения и всего в целом
- 2. Технико-экономическое сравнение вариантов внешнего электроснабжения
- 2.1 Выбор напряжения системы внешнего электроснабжения
- 2.2 Выбор внешней схемы электроснабжения завода
- 2.3 Технико-экономический расчёт вариантов питающего напряжения
- 2.3.1 Выбор числа и мощности трансформаторов
- 2.3.2 Выбор сечения проводов ВЛЭП
- 2.3.3 Выбор выключателей
- 2.3.4 Выбор разъединителей
- 2.3.5 Технико-экономическое сравнение вариантов электроснабжения на напряжении 35 И 110 кВ
- 2.3.6. Анализ результатов и выбор решения
- 3. Определение центра электрической нагрузки
- 4. Выбор числа и мощности цеховых ТП
- 4.1 Распределение нагрузок по цеховых ТП
- 4.2 Расчёт распределения реактивной мощности по магистралям
- 4.3 Результаты выбора ку и мощности трансформаторов
- 4.4 Расчёт приведённых затрат по вариантам
- 5. Главная понизительная подстанция
- 5.1 Конструктивное исполнение ГПП
- 5.1.1 Распределительное устройство 110 Кв
- 5.1.2 Распределительное устройство 10 Кв
- 5.2 Расчёт токов короткого замыкания в сетях 110 И 10 кВ
- 5.3 Выбор аппаратов ГПП на напряжении 110 кВ
- 5.3.1 Выбор разъединителей
- 5.4 Выбор аппаратов ГПП на напряжение 10 кВ
- 5.4.1 Выбор выключателей
- 5.4.2 Контрольно-измерительные приборы на подстанции
- 5.4.3 Выбор трансформаторов тока
- 5.4.4 Выбор трансформатором напряжения
- 6. Схема распределительной сети предприятия
- 6.1 Характеристика цеха
- 6.2 Расчёт электрического освещения
- 6.2.1 Выбор типа и системы освещения
- 6.2.2 Выбор источниковсвета и светильнико
- 6.2.3 Расположение и установка светильников
- 6.2.4 Светотехнический расчёт
- 6.3 Расчёт нагрузки термическог цеха
- 6.4 Расчёт сети с напряжением U<1000В
- 6.4.1 Выбор схемы и её конструктивного исполнения
- 6.4.2 Расчёт электрических нагрузок
- 6.5 Выбор проводников и аппаратов защиты термическог цеха
- 6.5.1 Выбор аппарата а1, защищающего магистральный шинопровод ШМА1
- 6.5.2 Выбор аппарата а2, защищающего троллею с мостовым краном (54 на плане)
- 6.5.3 Расчёт защиты распределительных сетей на участке термической обработки
- 7. Грозозащита объектов
- 7.1 Принцип действия молниеотводов
- 7.2 Зоны защиты молникотводов
- 7.3 Заземление молниеотводов
- 7.4 Условия безопасного прохождения тока молнии по молниеотводу
- 7.5 Конструктивные исполнения молниеотводов
- 7.6 Расчёт молниезащиты гппп
- 8. Мероприятия по обеспечению требований безопасности и экологичности при электроснабжении промышленного предприятия
- 8.1 Условия производства работ
- 8.2 Классификация производственных помещений по условиям окружающей среды и степени опасности поражения электрическим током
- 8.3 Мероприятия по обеспечению безопасной работы с электрооборудованием. Классификация защиты от поражения электрическим током
- 8.4 Анализ опасности поражения в выбранной сети
- 8.5 Обеспечение пожарной безопасности электроустановок при эксплуатации. особенности тушения пожара в электроустановках
- 8.6 Молниезащита установок и сетей
- 8.7 Защита от воздействия поля промышленной частоты
- Заключение
- Список используемой литературы
Аннотация
В данном дипломном проекте рассматривается задача проектирования системы электроснабжения автомобильного завода. Завод является предприятием автомобилестроения.
При проектировании решаются задачи, которые заключаются в определении расчётных электрических нагрузок, в правильном выборе напряжения распределения по заводу, выборе числа и мощности трансформаторов, конструкции промышленных сетей. Для выбора элементов системы производится расчёт токов короткого замыкания, рассматриваются вопросы, касающиеся релейной защиты и автоматики трансформаторов ГПП, а также заземляющего устройства пункта приёма электроэнергии. В проекте использовалась рекомендуемая литература. Графическая часть представлена на 6 листах.
Введение
Темой данной работы является проектирование системы электроснабжения автомобильного завода.
Ускорение научно-технического процесса диктует необходимость совершенствования промышленной электроники, создание современных надёжных систем электроснабжения промышленных предприятий, освещения, автоматизированных систем управления электрооборудованием и технологическим процессом.
Поэтому при проектировании уделено большое внимание вопросам надёжности, обеспечение качества электроэнергии и электромагнитной совместимости, быстродействия и селективности релейной защиты и оперативной автоматики.
Основные задачи, решаемые при проектировании системы электроснабжения, заключаются в оптимизации параметров этих систем путём правильного выбора напряжений, определении электрических нагрузок, высоких требований к бесперебойности электроснабжения, рационального выбора числа и мощности трансформаторов, конструкций промышленных сетей, средств регулирования напряжения, средств симметрирования нагрузки, подавление высших гармонических составляющих в сетях путём правильного построения схемы электроснабжения, соответствующей оптимальному уровню надёжности.
Подробно рассмотрена методика проектирования системы электроснабжения цеха. Выбор основного электрооборудования и его защита производится на основе расчета токов короткого замыкания.
1. Определение расчетных электрических нагрузок предприятия
1.1 Общая характеристика предприятия и источников электрснабжения
Промышленное предприятие расположено в центральном районе России, где средняя температура окружающей среды зимних суток - 1С, а летних составляет + 18 С с относительной влажностью 90%.
Скоростной норматив ветра около 21 м/с с повторением один раз в 5 лет, что позволяет отнести его к первому району. По толщине стенок гололеда в 15 мм согласно ПУЭ местность относится к 4 району по гололеду.
Предприятие предназначено для выпуска дорожных машин и относится к промышленности России,
На данном промышленном предприятии имеются потребители электроэнергии 1, 2 и 3 категории надежности электроснабжения. Основные потребители 1 категории сосредоточены в гальваническом, штамповочном и термическом цехах, где перерыв в их электроснабжении может привести к порче дорогостоящего оборудования или к гибели обслуживающего персонал
К потребителям 2 категории относятся электроприемники, расположенные в механических, инструментальном и электромонтажном цехах, так как перерыв в электроснабжении может вызвать простой оборудования и значительный недоотпуск продукции.
К потребителям 3 категории относятся электроприемники, расположенные в административно-бытовых помещениях и в общественных местах. Питание завода можно осуществить от районной подстанции расположенной в 20-ти км от территории завода. На районной подстанции имеются РУ напряжением 110/35 кВ. Установленные мощности цехов приведены в таблице 1, а генеральный план предприятия на рисунке 1.1
Таблица 1. Установленные нагрузки цехов
№ |
Руст, кВт |
||
1 |
Проходная |
4,8 |
|
2 |
Заводоуправление |
25,3 |
|
3 |
Электромонтажный цех № 1 |
1160 |
|
4 |
Энергоцех |
430 |
|
5 |
Инструментальный |
2325 |
|
6 |
Штамповочный цех |
1760 |
|
7 |
Склад |
4,5 |
|
8 |
Склад |
4,5 |
|
9 |
Термический |
720 |
|
10 |
Механический цех №1 |
2110 |
|
11 |
Механический цех №2 |
1860 |
|
12 |
Электромонтажный цех №2 |
940 |
|
13 |
Гальванический |
830 |
|
14 |
Компрессорный |
1210 |
|
15 |
Гараж |
8,6 |
Рис 1.1. План расположения цехов предприятия
1.2 Определение расчётных электрических нагрузок цехов
Расчетная нагрузка цехов определяется методом коэффициента спроса, из выражений:
где - коэффициент спроса данной группы электроприемников, принимаемых по справочным материалам [1].
- соответствует характерному для данной группы электроприемников , определенному по справочным материалам [1].
Сменная нагрузка цехов определяется по методу коэффициента использования:
где - коэффициент использования данной характерной группы электроприемников, принимаемый по справочным материалам [1].
Суммарная расчетная нагрузка предприятия определяется с учетом коэффициента равномерности максимума:
где для данного типа предприятия. [1]. Результаты расчета сведены в таблицу 1.1
Таблица 1.1. Определение расчётных электрических нагрузок цехов
№ |
Наименование цеха |
|||||||||
14 |
Компрессорный |
1210 |
0,75 |
0,70 |
0,85/0,62 |
907,5 |
562,5 |
847 |
525 |
|
3 |
Эл. монтажный №1 |
1160 |
0,35 |
0,24 |
0,70/1,02 |
406 |
414,1 |
278,4 |
284 |
|
12 |
Эл. монтажный №2 |
940 |
0,35 |
0,24 |
0.70/1.02 |
329 |
335,6 |
225,6 |
230 |
|
4 |
Энергоцех |
430 |
0,75 |
0,70 |
0,80/0,75 |
322,5 |
241,9 |
301 |
226 |
|
13 |
Гальванический |
830 |
0,65 |
0,60 |
0,70/1,02 |
539,5 |
550,3 |
498 |
507 |
|
5 |
Инструментальный |
2325 |
0,16 |
0,12 |
0,5/1,73 |
372 |
643,6 |
279 |
483 |
|
6 |
Штамповочный |
1760 |
0,25 |
0,16 |
0,65/1,16 |
440 |
510,4 |
281,6 |
327 |
|
10 |
Механический № I |
2110 |
0,23 |
0,14 |
0.50/1,73 |
485,3 |
839,6 |
295,4 |
511 |
|
11 |
Механический №2 |
1860 |
0,23 |
0,14 |
0,50/1,73 |
427,8 |
740,09 |
260,4 |
450 |
|
9 |
Термический |
720 |
0,70 |
0,60 |
0,85/0,62 |
504 |
312,48 |
432 |
268 |
|
Всего |
1334 5 |
4733,6 |
5150,7 |
1.3 Расчёт электрического освещения завода
1.3.1 Выбор источником света
Для освещения производственных помещений принимаются лампы типа ДРЛ, обладающие высокой светоотдачей, большим сроком службы, прекритичностыо к условиям внешней среды. Главной причиной выбора этих ламп является высота цеха 8,5 м, а также нетребовательностью производства к цветопередаче.
Для освещения административно-бытовых помещений принимаются люминесцентные лампы, обладающие высокой светоотдачей и большим сроком службы.
1.3.2 Выбор типа светильников
Для ламп типа ДРЛ выбираются светильники РСПО5/ДОЗ (пылезащищенного исполнения).
Для административно-бытовых помещений выбираются светильники ЛПО-01 встроенные и потолочные, излучающие часть светового потока в верхнюю полусферу [2]. Данные светильники устанавливаются с лампами типа ДЛЦ. Светотехнические характеристики освещаемых помещений приведены в таблице 1.
Таблица 1.2. Значения коэффициентов отражения стен
Тип помещений |
|||||
Производственные цеха |
50 |
30 |
10 |
1,5 |
|
Административные здания |
70 |
50 |
10 |
1,5 |
Расчет осветительной нагрузки проводится упрощенным методом по таблицам удельной мощности для цехов [2. табл.5.40], для административно-бытовых помещений [2 табл.5.45.]. Результаты расчета сводятся в таблицы 1.3 и 1.4
Основные данные нагрузки административно-бытовых зданий
Таблица 1.3
№ |
Наименование помещений |
Н, м |
S, |
|||||||
1 |
Проходная |
2,5 |
900 |
100 |
6,10 |
6,10 |
1,5 |
6,10 |
4,8 |
|
2 |
Заводоуправление |
2,5 |
1450 |
300 |
5,7 |
17,1 |
1,5 |
17,1 |
25,3 |
|
Итого |
30,1 |
Таблица 1.4. Основные данные осветительной нагрузки цехов
№ |
Наименование цеха |
Н, м |
S, |
|||||||
3 |
Эл. монтажный№ 1 |
6,5 |
3125 |
300 |
5,8 |
17,4 |
1,5 |
17,4 |
54,38 |
|
4 |
Энергоцех |
8,5 |
1550 |
75 |
9,6 |
7,2 |
1,5 |
7,2 |
11,16 |
|
5 |
Инструментальный |
8,5 |
2900 |
300 |
6,7 |
20,1 |
1,5 |
20,1 |
58,29 |
|
6 |
Штамповочный |
8,5 |
2900 |
200 |
8,1 |
16,2 |
1,5 |
16,2 |
46,98 |
|
7,8 |
Склад |
8,5 |
2х250 |
75 |
6,7 |
5,0 |
1,5 |
5,0 |
2,5 |
|
9 |
Термический. |
8,5 |
1520 |
200 |
6,7 |
13,4 |
1,5 |
13,4 |
20,40 |
|
10 |
Механический № 1 |
8,5 |
3070 |
300 |
6,7 |
20,1 |
1,5 |
20,1 |
61,70 |
|
11 |
Механический№2 |
8,5 |
3070 |
300 |
6,7 |
20,1 |
1,5 |
20,1 |
61,70 |
|
12 |
Эл. монтажный№2 |
6,3 |
3125 |
300 |
5,8 |
17,4 |
1,5 |
17,4 |
54,401 |
|
13 |
Гальванический |
8,5 |
1000 |
200 |
8,1 |
16,2 |
1,5 |
16,2 |
16, 20 |
|
14 |
Компрессорный |
8,5 |
640 |
50 |
12,3 |
6,15 |
1,5 |
6,15 |
3,94 |
|
15 |
Гараж |
8,5 |
1190 |
75 |
6,7 |
5,0 |
1,5 |
5,0 |
5,95 |
|
Итого: |
397,6 |
Расчётная мощность осветительной нагрузки определяется по следующим формулам
Где - коэффициент, учитывающий потери в пускорегулирующей аппаратуре:
Для ДРЛ = 1,12, для ЛЛ =1,2.
- коэффициент спроса: для производственных зданий, состоящих из отдельных помещений, =0,8; для административных зданий и предприятий общественного питания, =0,9;
- соответствует коэффициенту мощности: для ламп ДРЛ =0,57, для ЛЛ
=0,95
Расчётная осветительная нагрузка по лампам ДРЛ:
Расчётная осветительная нагрузка по люминесцентным лампам:
1.4 Определение расчётной и сменной нагрузки по цехам с учётом освещения и всего в целом
Расчетные, сменные нагрузки по цехам и ГПП приведены в таблицах 1.5, 1.6 и 1.7
Таблица 1.5. Расчётные нагрузки по цехам с учётом освещения
№ |
Наименование помещения |
|||||||
1 |
Проходная |
- |
- |
4,8 |
1,96 |
4,8 |
1,96 |
|
2 |
Заводоуправление |
- |
- |
25,3 |
8,84 |
25,3 |
8,84 |
|
3 |
Эл. монтажный№ 1 |
406 |
414,1 |
48,72 |
70,16 |
454,7 |
484,26 |
|
4 |
Энергоцех |
322,5 |
241,9 |
9,99 |
14,4 |
332,5 |
258,3 |
|
5 |
Инструментальный |
372 |
643,6 |
52,23 |
75,2 |
424,3 |
695,8 |
|
6 |
Штамповочный. |
440 |
510,4 |
42,10 |
60,62 |
482,1 |
571,02 |
|
7,8 |
Склад |
- |
- |
2,24 |
3,23 |
2,24 |
3,23 |
|
9 |
Термический. |
504 |
312,48 |
18,28 |
26,3 |
522,28 |
338,7 |
|
10 |
Механический№ 1 |
485,3 |
839,6 |
55,3 |
79,6 |
483,1 |
919,2 |
|
11 |
Механический№2 |
427,8 |
740,09 |
55,3 |
79,6 |
483,1 |
819,7 |
|
12 |
Эл. монтзжный№2 |
329 |
335,6 |
48,7 |
70,2 |
377,7 |
405,8 |
|
13 |
Гальванический |
539,5 |
550,3 |
14,5 |
20,9 |
554 |
571,2 |
|
14 |
Компрессорный |
907,5 |
562,5 |
3,53 |
5,08 |
911,03 |
567,6 |
|
15 |
Гараж |
- |
- |
5,3 |
7,70 |
5,3 |
7,70 |
Таблица 1.6. Сменные нагрузки по цехам с учётом освещения
№ |
Наименование помещения |
|||||||
1 |
Проходная |
- |
- |
4,8 |
1,96 |
4,8 |
1,96 |
|
2 |
Заводоуправление |
- |
- |
25,3 |
8,84 |
25,3 |
8,84 |
|
3 |
Эл. монтажный № 1 |
278,4 |
284 |
48,72 |
70,16 |
327,1 |
354,2 |
|
4 |
Энергоцех |
301 |
226 |
9,99 |
14,4 |
310,9 |
240,4 |
|
5 |
Инструментальный |
279 |
483 |
52,23 |
75,2 |
331,2 |
558,2 |
|
6 |
Штамповочный. |
281,6 |
327 |
42,10 |
60,62 |
323,7 |
387,6 |
|
7,8 |
Склад |
- |
- |
2,24 |
3,23 |
2,24 |
3,23 |
|
9 |
Термический. |
432 |
268 |
18,28 |
26,3 |
450,3 |
294,3 |
|
10 |
Механический № 1 |
295,4 |
511 |
55,3 |
79,6 |
350,7 |
590,6 |
|
11 |
Механический№2 |
260,4 |
450 |
55,3 |
79,6 |
315,7 |
529,6 |
|
12 |
Эл. монтзжный№2 |
225,6 |
230 |
48,7 |
70,2 |
274,3 |
300,2 |
|
13 |
Гальванический |
498 |
507 |
14,5 |
20,9 |
512,5 |
527,9 |
|
14 |
Компрессорный |
847 |
525 |
3,53 |
5,08 |
850,5 |
530,08 |
|
15 |
Гараж |
- |
- |
5,3 |
7,70 |
5,3 |
7,70 |
Расчётная нагрузка ГПП от которой будет питаться завод, складывается из расчётной нагрузки цехов, расчётной нагрузки освещения, транзитной присоединённой мощности.
Таблица 1.7. Расчётная нагрузка предприятия и ГПП
Вид нагрузки |
||||
Технологическая |
4733,6 |
5150,7 |
6645,7 |
|
Осветительная |
388,8 |
559,9 |
647,5 |
|
Предприятия |
5122,4 |
5710,6 |
7287,8 |
|
Транзитная |
8000 |
7054 |
10665,86 |
|
ГПП |
13122,4 |
12764 |
17390 |
2. Технико-экономическое сравнение вариантов внешнего электроснабжения
2.1 Выбор напряжения системы внешнего электроснабжения
Для получения наиболее экономичного варианта электроснабжения предприятия в целом, напряжение каждого звена системы электроснабжения предприятия должно выбираться с учётом напряжения смежных звеньев. Выбор напряжений основывается на сравнении технико-экономических показаний различных вариантов.
В данном случае имеется возможность получать питание от подстанции с напряжением 110/35 кВ, находящейся на расстоянии 20 км от завода.
Для приближенного определения рационального напряжения системы электроснабжения промышленных предприятий предварительно определяется два варианта 35 кВ и 110 кВ, которые необходимо сравнить, проведя технико-экономический расчет.
2.2 Выбор внешней схемы электроснабжения завода
На данном промышленном предприятии преобладают потребители 1 и 2 категории, поэтому для осуществления надёжности электроснабжения завода, питание обеспечивается по 2-х цепной воздушной линии электропередач. Для преобразования и распределения электрической энергии на заводе устанавливается главная понизительная подстанция (ГПП). Распределительное устройство высшего напряжения ГПП представлено на рис.2.1
Рис.2.1 Схема РУ ВН ГПП
Данная схема применяется на напряжения 35-220 кВ для ответвительных и тупиковых подстанций.
2.3 Технико-экономический расчёт вариантов питающего напряжения
После определения электрической нагрузки и установления категории надёжности потребителя, намечаем возможные варианты электроснабжения кабельными или воздушными линиями различных напряжений. На оценку экономичности варианта не влияет, в каком эквиваленте будет производиться расчет. Для простоты использования справочной литературы технико-экономический расчет сравнения двух вариантов будет производиться по справочным данным 1989г.
2.3.1 Выбор числа и мощности трансформаторов
По условию надёжности электроснабжения потребителей первой и второй категории принимается два трансформатора. В целях уменьшения установленной мощности, используется перегрузочная способность трансформаторов. Допустимая перегрузка трансформатора в послеаварийном режиме до 40% в течении не более 6 часов в продолжении 5 суток
Расчетная мощность определяется по следующей формуле:
Выбор трансформатора и его мощности приведён в таблице 2.1
Таблица 2.1. Выбор мощности трансформаторов
Тип трансформаторов |
|||||
35 |
17390 |
12421 |
16000 |
ТДСН-16000/35 |
|
110 |
17390 |
12421 |
16000 |
ТДСН-16000/110 |
2.3.2 Выбор сечения проводов ВЛЭП
Питание предприятия обеспечивается посредством линии электропередач. Выбор сечения линий электропередач осуществляется по экономической плотности тока.
где Jэк - нормированное значение экономической плотности тока, А/мм определяется в зависимости от числа часов использования максимума нагрузки в год. Число часов использования максимума нагрузки в год принимается, при 2-х сменном режиме работы, Тм< 5000ч., тогда
Jэк=1,1 А/мм, Далее, для сталеалюминевых проводов, минимальным сечением по прочности является , а по условиям возможного коропирования при напряжении 110 кВ минимальным сечением является
Выбор сечений и технические характеристики проводов сведены в таблицы 2.2 и 2.3
Таблица 2.2. Выбор сечений проводов
35 |
143,42 |
71,71 |
65,1 |
- |
70 |
70/265 |
|
110 |
45,6 |
22,8 |
26,2 |
70 |
70 |
70/265 |
Таблица 2.3.Технические характеристики проводов типа АС
Стоимость с учётом ж/б опор, тыс. р. /км |
||||||
35 |
70/265 |
125 |
265 |
0,42/0,44 |
10,7 |
|
110 |
70/265 |
125 |
265 |
0,42/0,44 |
13,5 |
2.3.3 Выбор выключателей
Для установки на ГПП применяются маломасляные выключатели. Предварительно, для технико-экономического сравнения, выключатели выбираются по следующим условиям: по напряжению установки: Uном>Uуст по длительному току: Iном>Iнорм; Iном>Iмах.
Выбор выключателей и разъединителей приведен в таблицах 2.4 и 2.5
Таблица 2.4. Выбор выключателя
Расчётные значения |
Характеристики выключателя ВМУЭ-35Б-25/1250 |
|||||||
Цена тыс. р. |
||||||||
35 |
200,8 |
281,2 |
35 |
1250 |
25 |
64 |
3,170 |
|
Расчётные значения |
Характеристики выключателя ВМТ-110Б-20/1000 |
|||||||
Цена тыс. р |
||||||||
110 |
63,9 |
89,46 |
110 |
1000 |
20 |
52 |
9,0 |
2.3.4 Выбор разъединителей
Для установки на ГПП принимаются разъединители серии РДНЗ. Предварительно для технико-экономического сравнения, разъединители принимаются по напряжению установки и по максимальному току
Таблица 2.5. Выбор разъединителей
Расчётные значения |
Характеристики РДНЗ - 35-1000 |
||||
Цена тыс. р. |
|||||
35 |
281,2 |
35 |
1000 |
0,125 |
|
Расчётные значения |
Характеристики РДНЗ - 110-1000 |
||||
Цена тыс. р. |
|||||
110 |
89,46 |
110 |
1000 |
0, 200 |
2.3.5 Технико-экономическое сравнение вариантов электроснабжения на напряжении 35 И 110 кВ
Расчет на напряжение 35 кВ. Определяется значение полных приведенных затрат, которое является показаниями экономичности варианта:
где Ен - нормативный коэффициент отчислений, Ен=0,12; К - капитальные затраты на сооружение системы электроснабжения; С - годовые эксплуатационные расходы. Капитальные затраты складываются и из следующих составляющих:
где Кл - капитальные затраты на сооружение воздушных линий.
Кло - стоимость сооружения 1 км линий, L - длина линии. Коб - капитальные затраты на установку оборудования трансформаторы, выключатели, разъединители):
Годовые эксплуатационные расходы определяются:
где - стоимость годовых амортизационных отчислений
где Ка - коэффициент амортизационных отчислений. Амортизационные отчисления на линии Кал=2,8%, амортизационные отчисления на подстанцию Кап=6,3%, - стоимость потерь электрической энергии:
где - стоимость электроэнергии
- число часов работы предприятия в год Тм =4100 ч.
- потери электроэнергии, где -потери мощности в линиях. Для двухцепной линии потери составляют:
где - удельные потери мощности на 1 цепь
- коэффициент загрузки,
- потери мощности в трансформаторе
Реактивные потери холостого хода:
Реактивные потери короткого замыкания:
Приведённые потери короткого замыкания активной мощности
где - коэффициент потерь, называемый экономическим эквивалентом реактивной мощности.
Приведённые потери активной мощности при холостом ходе:
Полные потери в трансформаторах:
где - коэффициент загрузки трансформатора
Суммарные потери мощности:
Стоимость потерь:
Суммарные годовые эксплуатационные доходы:
Суммарные затраты:
Потери электроэнергии:
2.3.6. Анализ результатов и выбор решения
Технико-экономический расчет позволяет сделать вывод о наиболее рациональном напряжении питания.
Таблица 2.7. Результаты технико-экономического расчёта
35 |
319,9 |
32,188 |
70,576 |
244 |
1,4 |
|
110 |
385,2 |
22,377 |
68,601 |
944,6 |
1,0 |
По данным таблицы 2.7 делается вывод о рациональности напряжения 110 кВ.
3. Определение центра электрической нагрузки
Размещение ГПП следует произвести в центре электрических нагрузок, который определяется, как центр тяжести однородной плоской фигуры. Расположение цехов на плане предприятия и система координат представлены на рис 3.1
Таблица 3.1. Мощности и координаты цехов предприятия
№ |
Наименование помещения |
X, м |
Y, м |
||
1 |
Проходная |
4,8 |
260 |
400 |
|
2 |
Заводоуправление |
25,3 |
375 |
380 |
|
3 |
Эл. монтажный № 1 |
664,3 |
175 |
325 |
|
4 |
Энергоцех |
413,1 |
100 |
275 |
|
5 |
Инструментальный |
814,9 |
375 |
325 |
|
5 |
Штамповочный. |
747,3 |
525 |
300 |
|
7,8 |
Склад |
2,24 |
250/350 |
200 |
|
9 |
Термический. |
622,4 |
450 |
130 |
|
10 |
Механический № 1 |
1038,4 |
150 |
130 |
|
11 |
Механический №2 |
951,5 |
250 |
80 |
|
12 |
Эл. монтажный №2 |
554,37 |
450 |
75 |
|
13 |
Гальванический |
795,7 |
325 |
125 |
|
14 |
Компрессорный |
1073,4 |
475 |
275 |
|
15 |
Гараж |
9,34 |
150 |
225 |
Выбрав произвольную систему координат, центр электрических нагрузок определяется по формулам:
Рис.3.1 Определение центра электрических нагрузок
Так как в полученном центре (рис.3.1) размещения ГПП возможно, то подстанция устанавливается в точке, со смешением вдоль оси X в направлении источника питания.
4. Выбор числа и мощности цеховых ТП
Выбор числа и мощности цеховых трансформаторных подстанций, также как число трансформаторов на каждой из них, должен производиться в зависимости от величин сменных нагрузок, близости или удалённости цехов друг от друга, необходимой надёжности питания потребителей, перспективы развития производства, удельной плотности нагрузки и загрузки трансформаторов в рабочем режиме, а также производственными, архитектурно-строительными и эксплуатационными требованиями. Должны учитываться конструкция производственных помещений и условия окружающей среды.
Однотрансформаторные цеховые подстанции, как правило, применяются при нагрузках, допускающих перегрев питания на время доставки складского резерва, или возможности резервирования питания потребителей по сети вторичного напряжения. Двухтрансформаторные цеховые подстанции применяются при преобладании потребителей 1 и 2 категории, а также при неравномерном суточном или годовом графике нагрузок.
Мощность трансформаторов 2-х трансформаторной подстанции выбирается так, чтобы в аварийном режиме, при отключении одного из них, другой мог бы нести всю нагрузку с перегрузкой не более 30%.
Мощность трансформатора однотрансформаторной подстанции выбирается такой, чтобы она полностью обеспечивала электроэнергией всех потребителей запитанных от неё. При выборе мощности трансформаторов учитывается, что максимальная мощность трансформаторов, установленных на цеховых ТП, не должна превышать 1600-2500 кВА [4] тех случаях, когда мощность, потребляемая цехом велика, то необходимо устанавливать несколько ТП на цех.
При выборе цеховых трансформаторов следует стремиться к меньшей номенклатуре трансформаторов по мощности предприятия в целом.
При плотности нагрузки целесообразно принять КТП с трансформаторами мощностью 1000 кВА: при 0,2-0,3 - 1600, более 0,3 приходится рассматривать установку трансформаторов мощностью 250-400 или 630 кВА.
Для трансформаторов цеховых ТП следует принимать следующие коэффициенты загрузки:
для цехов с преобладающей группой электроприемников первой категории при 2-х трансформаторной КТП: 0,65 - 0,75,для цехов с электроприёмниками преимущественно второй категории, где необходимо предусматривать однотрансформаторные КТП.0,9-0,95, для цехов с преобладанием электроприёмников третьей категории: 0,95 - 1,0 [4].
4.1 Распределение нагрузок по цеховых ТП
Для начального определения мощности трансформаторов КТП, рассчитывается удельная плотность нагрузки
где - суммарная расчётная нагрузка цехов присоединённых к одной КТП, F - площадь этих цехов
Таблица 4.1. Распределение нагрузок по ЦТП
№ ТП |
№ ЦЕХА |
|||||||||
ТП1 |
3,4,15 |
868,49 |
817,5 |
1192,7 |
704,79 |
656,86 |
963,43 |
5865 |
0,16 |
|
ТП2 |
5,14,1,2 |
1431,4 |
1332,1 |
1955,4 |
1274,4 |
1132,78 |
1705,11 |
5890 |
0,29 |
|
ТП3 |
6,7,8,9 |
1056,86 |
951,18 |
1421,8 |
817,56 |
715,36 |
1086,34 |
4920 |
0, 20 |
|
ТП4 |
10 |
601,6 |
1024,6 |
1188,1 |
387,8 |
655,1 |
761,2 |
3070 |
0,25 |
|
ТП5 |
11 |
517,6 |
879,4 |
1020,4 |
336,7 |
566,4 |
658,9 |
3070 |
0,22 |
|
ТП6 |
12,13 |
909,2 |
954,1 |
1317,9 |
765,2 |
807,2 |
1112,2 |
4125 |
0,27 |
Далее приводится оптимизация выбора мощности трансформаторов ТП в зависимости о их числа, категории надёжности электроснабжения потребителей и коэффициента загрузки трансформатора потребителей и коэффициента загрузки трансформатора.
Составляются варианты с различной мощностью трансформаторов и оптимальным размещением компенсирующих устройств. По категории надёжности ЭП для всех потребителей можно принять однотрансформаторные ТП за исключением ТПЗ и ТП6.
Выберем мощности трансформаторов:
где n - количество трансформаторов в ТП.
Таблица 4.2. Выбор максимальной мощности трансформаторов
№ ТП |
||||||||
ТП1 |
963,43 |
630-1000 |
959 |
1000 |
0,9-0,95 |
0,92-0,97 |
1 |
|
ТП2 |
1705,11 |
1000-1600 |
1169 |
1600 |
0,9-0,95 |
1,13-1, 19 |
1 |
|
ТП3 |
1086,34 |
6304000 |
917,7 |
1000 |
0,65-0,75 |
1,32-1,59 |
2 |
|
ТП4 |
761,2 |
630-1000 |
1113,4 |
1000 |
0,9-0,95 |
0,92-1,26 |
1 |
|
ТП5 |
658,9 |
630-1000 |
1066 |
630 |
0,9-0,95 |
0,89-1,101 |
1 |
|
ТП6 |
1112,2 |
1000-1600 |
1156,3 |
1000 |
0,65-0,75 |
1,65-1,89 |
2 |
Для каждого предприятия, энергосистема устанавливает величину реактивной мощности, которую она передаёт по своим сетям этому заводу в часы максимума нагрузки энергосистемы Qэ, недостающая мощность должна быть скомпенсирована на месте.
Определяется реактивная мощность, соответствующая нормированному коэффициенту мощности.
Для питания цеховых ТП в системе внутризаводского электроснабжения применяется напряжение 10 кВ. Питание производится кабелями,
проложенными в траншеях. Принимаются кабели типа ААШв с бумажной изоляцией, алюминиевой оболочкой и жилами, и шланговым ПХВ покровом. Для данного типа прокладки кабеля:
расчетная температура окружающей среды +15°С
нормированная температура жилы проводника +60 С.
Условия выбора кабеля. В качестве примера, приводится выбор сечения кабеля питающего ТП2 и ТП1.
1. По условию нагрева длительно допустимым током:
К2 - поправочный коэффициент на температуру окружающей среды (К2=1) [13. табл.7.32]
К1 - поправочный коэффициент на число работающих кабелей, уложенных в одной траншее (К1-1, т.к кабель один), тогда
По условию, что Iдоп>Iрn принимается сечение кабеля F=70 с Iдоп=165А
2. По экономической плотности тока:
Число часов использования максимума нагрузки:
Для данного значения Тм = 3563,4 ч. Jэ = 154 [13. табл.7.27]
Fэк=Iр/ Jэк=150/1,4= 107
Принимаем стандартное ближайшее сечение F=120 с Iдоп=240 А.
3. По термической стойкости к токам КЗ сечение определяется по формуле
где С - температурный коэффициент, , А - ток короткого на шинах 10кВ ГПП, С = 98 для кабелей с алюминиевыми жилами и бумажной изоляцией.
Меньшее стандартное ближайшее сечение 50 с Iдоп = 180 А.
4. По перегрузочной способности: Iдл. доп > Iрмах, где Кпер - коэффициент допустимой перегрузки по отношению к номинальной, определяется по Iнорм/Iдоп 150/240, Кпер=1,25 в течении 6 часов [7. табл.13.1]
Кп=1 - так как проложен один кабель. Iдл. доп=.300 А > 195 А
Окончательно выбирается кабель ААШв F = 120 с Iдоп=240А. Расчет остальных кабелей аналогичен и сводится в таблицу 4.3
Таблица 4.3. Выбор кабелей питающих ТП
№ ТП |
Число кабелей |
Марка кабеля |
||||
ТП2 |
150 |
195 |
1 |
ААШв (3x120) |
240 |
|
ТТЛ |
58 |
75,4 |
1 |
ААШв (3x95) |
205 |
|
ТП3.1 |
60,7 |
121,5 |
1 |
ААШв (3x95) |
205 |
|
ТП3.2 |
60,7 |
121,5 |
1 |
ААШв (3x95) |
205 |
|
ТП5 |
94 |
122,3 |
1 |
ААШв (3x95) |
205 |
|
ТП4 |
57,7 |
75,1 |
1 |
ААШв (3x70) |
165 |
|
ТП6.1 |
60,7 |
121,5 |
1 |
ААШв (3x95) |
205 |
|
ТП6.2 |
60,7 |
121,5 |
1 |
ААШв (3x95) |
205 |
Сопротивление участков сети выполненных кабелями определяем по следующей формуле:
,
где - удельное сопротивление кабельной линии, Ом/км [4 табл.2.7]
Таблица 4.4. Сопротивление участков сети
Участок сети |
Марка кабеля |
шт. |
||||
ТП1 |
0,155 |
0,326 |
0,05 |
ААШв (3x95) |
1 |
|
ТП2 |
0, 200 |
0,258 |
0,052 |
ААШв (3x95) |
1 |
|
ТП3 |
0,025 |
0,258 |
0,006 |
ААШв (3x95) |
2 |
|
ТП4 |
0,400 |
0,443 |
0,177 |
ААШв (3x70) |
1 |
|
ТП5 |
0,275 |
0,258 |
0,071 |
ААШв (3x95) |
1 |
|
ТП6 |
0,125 |
0,258 |
0,032 |
ААШв (3x95) |
2 |
4.2 Расчёт распределения реактивной мощности по магистралям
Сопротивление трансформаторов, приведённое к 10 кВ определяется по формуле:
где Рк. з. - потери короткого замыкания, кВт [4. табл.13.]. Расчёт проводится для каждой из ТП, исходя из 2-х вариантов мощности трансформаторов (максимальной и минимальной).
; ;
Эквивалентное сопротивление всей схемы
Таблица 4.5. Сопротивления трансформаторов
№ ТП |
Потери КЗ, кВт |
R, Ом |
|||||
1 вариант |
2 вариант |
1 вариант |
2 вариант |
||||
ТП1 |
1000 |
630 |
12,2 |
8,5 |
1,22 |
2,4 |
|
ТП2 |
1600 |
1600 |
18 |
18 |
0,703 |
0,703 |
|
ТПЗ |
1000 |
1000 |
12,2 |
12,2 |
1,22 |
1,22 |
|
ТП4 |
1000 |
630 |
12,2 |
8,5 |
1,22 |
2,14 |
|
'Ш5 |
630 |
400 |
8,5 |
5,5 |
2,14 |
3,44 |
|
ТП6 |
1000 |
1000 |
12,2 |
12,2 |
1,22 |
1,22 |
Входные реактивные мощности энергосистемы для соответствующих магистралей имеют следующие значения:
Распределение реактивной мощности от энергосистемы по трансформаторам отдельных магистралей приводится в таблице 4.6., там же находится значения минимальных мощностей компенсирующих устройств по магистралям. Рассмотрим магистраль М1.
Таблица 4.6. Распределение реактивной мощности
Магистраль |
||||||
М1 |
227,8/1525,9 |
146,8/983,3 |
81/542,6 |
1426,9-1351,8 |
720,9-683 |
|
М2 |
187,7/527,9 |
187,7/527,9 |
- |
1289,9-1117,4 |
||
М3 |
125,6/1090,3 |
49,6/430,6 |
76/659,7 |
378,4-358,6 |
435,4-480,5 |
|
М4 |
183,8/617,5 |
183,8/617,5 |
- |
1212,66-1050,9 |
Выбор КУ при компенсации на стороне 10 кВ
Выбираются следующие компенсационные устройства:
2хУК10,5-1125ЛУЗ+1хУК10,5-900ЛУЗ+1хУК10,5-400ЛУЗ=3550кВар
Определение Sтmin при компенсации реактивной мощности на стороне 0,4кВ. Выбор ККУ:
Магистраль М1:
;
Магистраль М2:
Магистраль М3:
;
Магистраль М4:
Минимальная мощность трансформаторов:
, результаты приведены в таблице 4.6.
4.3 Результаты выбора ку и мощности трансформаторов
Результаты выбора КУ и мощности трансформаторов для вариантов компенсации реактивной мощности на стороне 10 и 0,4 кВ сведены в таблице 4.7.
Таблица 4.7. Результаты выбора КУ и мощности трансформаторов для дух вариантов
Магистраль |
Варианты |
Трансформатор Т1 |
ТрансформаторТ2 |
|||
М1 |
I |
1600 |
ЗхЗ00+108 |
1000 |
- |
|
II |
1600 |
- |
630 |
2x200+150 |
||
М2 |
I |
1000 |
2x150+2x108 |
- |
- |
|
II |
1000 |
- |
- |
- |
||
М3 |
I |
630 |
3x150 |
1000 |
- |
|
II |
400 |
- |
630 |
300+200+150 |
||
М4 |
I |
1000 |
300+324 |
- |
- |
|
II |
1000 |
- |
- |
4.4 Расчёт приведённых затрат по вариантам
Используются следующие соотношения:
где Етп, Екл - общие ежегодные отчисления от капиталовложения на ГП и кабельные линии. Етп =0,223; Екл=0,165 [4]; Ктп - стоимость ТП с минимальным количеством оборудования на сторонах НН и ВН; Екл - стоимость кабельной линии с учётом строительных работ.
-
удельные затраты на КУ, установленные на стороне 10 кВ
Зо =Ео (Кя+Ккn) +ЕрОк - Кя, Кк, Кр -
соответственно стоимость ячейки, вакуумного выключателя и регулятора АРКОН с приставкой ППЗ.
-
затраты на компенсирующие устройства на магистрали М1
Эксплуатационные затраты:
где Стхх - стоимость потерь электроэнергии в трансформаторе при холостом ходе, Со - удельная стоимость потерь активной мощности, -стоимость потерь электроэнергии в сети 10 кВ и в трансформаторах от. протекания активных нагрузок, СДО - стоимость потерь электроэнергии в сети 10 кВ и в трансформаторах от протекания реактивных нагрузок, К-матрица узловых сопротивлений, Ррi-матрица расчетных нагрузок i-х трансформаторов
Суммарные приведенные затраты:
В качестве примера рассматривается магистраль М1.
Вариант 1:
Вариант 2:
ТП2-трансформатор S=1600 кВА, ТП1-трансформатор S=630 кВА.
Зтп=0,22313568+0,2235064=4154,9 руб.
Зкл=271,4ру5.
Затраты на КУ складываются да затрат на потери энергии в конденсаторах и отчислений от стоимости ККУ, соответственно для мощностей.
Остальные расчеты проводятся аналогично, результаты расчетов приведенных затрат по вариантам сведены в таблице 4.8
Результаты расчётов приведённых затрат 4.8
№ Магистр али |
Вариант |
||||||||
Руб. |
% |
||||||||
М1 |
I |
4749 |
271 |
2870 |
4218 |
12110 |
- |
- |
|
II |
4155 |
271 |
3103 |
2897 |
10430 |
1680 |
13,8 |
||
М2 |
I |
5143 |
32,522 |
473,23 |
839,1 |
6488 |
- |
- |
|
II |
5143 |
32,522 |
543,85 |
810,5 |
6530 |
-42 |
-0.6 |
||
М3 |
I |
2853 |
446,9 |
2051 |
2582 |
7932 |
- |
- |
|
II |
2195 |
446,9 |
2113 |
1165 |
5920 |
2012 |
25,4 |
||
М4 |
I |
5143 |
162,6 |
1161 |
916,6 |
7384 |
- |
- |
|
II |
5143 |
162,6 |
1438 |
805,7 |
7549 |
-165 |
-2,1 |
Для магистралей М1 и М3 экономичным оказался второй вариант с минимальной мощностью трансформаторов и установкой КУ на стороне 0,4 кВ.
Хотя для М2 и М4 экономически равноценны оба варианта, но учитывая технические преимущества применения БК-0,4кВ для них также принимаются второй вариант мощности трансформаторов.
Технические преимущества второго варианта складываются из возможности подключения БК-0,4кВ в питающей сети до 1 кВ, что разгрузит эти сети от перетоков реактивной мощности и уменьшит потери мощности в этой сети.
Обслуживание БК-0,4кВ значительно проще чем БК-10кВ т.к для их обслуживания необходима более высокая квалификация электриков и по правилам техники безопасности при обслуживании БК-10кВ необходим наряд на ведение работ и участие порой не менее трех человек. БК-10кВ размещены на ГПП или РП - 10кВ, а это не разгружает кабельные линии от перетоков реактивной мощности и энергии в этих сетях, что видно из таблицы 4.8 по эксплуатационным затратам (Зэ).
5. Главная понизительная подстанция
5.1 Конструктивное исполнение ГПП
Распределение устройств 110 кВ главной понизительной подстанции выполняется по схеме "Два блока с выключателями и неавтоматической перемычкой со стороны линии". ОРУ обеспечивает надежность работы, безопасность и удобство в обслуживании при минимальных затратах на сооружение, возможность расширения, максимальное применение
крупноблочных узлов заводского изготовления.
Все аппараты ОРУ располагаются на невысоких основаниях из
возможности механизации монтажа и ремонта оборудования. Шины выполняются гибкими из многопроволочных проводов и крепятся с помощью опорных изоляторов на железобетонных порталах.
Распределительное устройство 10 кВ выполняется из шкафов КРУН серии К-59.
5.1.1 Распределительное устройство 110 Кв
Схема изображена на рис.5.1. В нормальных условиях выключены все аппараты кроме разъединителей QS3, QS4. Наличие перемычки дает возможность связи трансформатора Т1 с линией W2 и трансформатора Т2 с линией WI. При работе с одной ЛЭП WI и трансформаторами Т1 и Т2 должны быть включены разъединители QS3, QS4 и отключен разъединитель QS2. Режим работы с двумя ЛЭП и одним трансформатором менее вероятен, так как ЛЭП WI и W2 должны быть рассчитаны на передачу всей мощности между источником питания и подстанцией.
На ГПП устанавливаются два трансформатора типа ТДН-16000/110. Регулирование напряжения осуществляется под нагрузкой.
Технические характеристики трансформатора Таблица 5.1
Cтоимость т. р. |
||||||
ТДН-16000/110 |
18 |
85 |
10,5 |
0,7 |
48 |
Для установки на ГПП рассматриваются маломасляные выключатели, обладающие следующими достоинствами: небольшое количество масла служащего дугогасящей средой и частично изоляцией между разомкнутыми контактами; относительно малая масса; удобный доступ к дугогасительным контактам.
К недостаткам маломасляных выключателей относятся взрыво и пожароопасность, хотя и значительно меньшая, чем у баковых выключателей, невозможность осуществления быстродействующего АПВ, и необходимость периодического контроля, доливки, относительно частот замены масла в дугогасительных бачках, трудность установки встроенных трансформаторов тока.
На ГПП устанавливается два выключателя типа ВМТ-110, выбор которых будет рассматриваться ниже.
На подстанции принимаются разъединители типа РНДЗ-110 горизонтально-поворотные. Разъединители двухколонковые, с заземляющими ножами, которые приспособлены работать и в зимнее время и при гололеде, выбор разъединителей будет рассматриваться ниже.
На ГПП для защиты от перенапряжений устанавливаются вентильные разрядники типа РВС-110. Разрядник разряжает волну перенапряжений на землю с последующим немедленным восстановлением нормальной изоляцией сети по отношению к земле.
Системы 110 кВ работают с эффективно-заземлённой нейтралью.
5.1.2 Распределительное устройство 10 Кв
В качестве РУНН применяется комплектное распределительное устройство наружной установки. При применении комплектных устройств повышается общее качество электроустановки, надёжность её работы, удобство и безопасность её обслуживания, обеспечивается быстрое расширение и мобильность при реконструкции. Электромонтаж сводиться лишь к установке различных комплектных электроустройств и присоединению их к электрическим сетям. Комплектные устройства полностью со всеми аппаратами, измерительными приборами и вспомогательными изготавливаются комплектуются и испытываются на заводе и в собранном виде доставляются на место установки. КРУН предназначены для открытой установки вне помещений. Оно состоит из металлических шкафов со встроенными в них аппаратами, приборами, устройствами защит и управления. Шкафы КРУН имеют уплотнения, обеспечивающие защиту аппаратуры от загрязнения и атмосферных осадков, КРУН рассчитываются для работы при температурах окружающего воздуха от
Для выполнения РУНН применяются шкафы КРУН серии К-59. К-59 предусматривает однорядную установку шкафов с коридором для обслуживания. Основные коммутационными аппаратом в шкафах серии К-59 является вакуумный выключатель ВВЭ-10 на токи до 1600 А. В качестве трансформатора собственных нужд ТСН используется трансформатор типа ТМ мощностью до 63 кВА, а также трансформаторы тока серии ТЛМ-10 и трансформаторы напряжения типа НАМИ.
5.2 Расчёт токов короткого замыкания в сетях 110 И 10 кВ
Для расчета токов короткого замыкания необходимо составить расчётную схему, соответствующую нормальному режиму работы системы электроснабжения, считая, что трансформаторы работают раздельно, и схему замещении (рис.7,8)
Расчёт токов короткого замыкания проводится в относительных единицах. По заданной мощности короткого замыкания Sкз = 1000 МВА проводится расчёт установившихся токов короткого замыкания. За базисные величины принимаются:
Определение параметров схемы замещения: Система: Ес=1
Трансформатор:
Рассматривается трехфазное замыкания в точке К-2:
Периодический ток короткого замыкания:
Апериодический ток короткого замыкания:
[8. табл.3.8]
tотк = 0,2 [8. рис.3.62], определяется по расчётным зонам токов короткого замыкания (Та = 0,02 с)
Ударный ток короткого замыкания:
Рис 5.1 Расчётная схема Рис.5.2 Схема замещения
Двухфазное замыкание в точке К-2:
Однофазное замыкание в точке К-2:
Для определения однофазного тока короткого замыкания составляются схемы замещения трех последовательностей - прямой, обратной и нулевой
Рассматриваются короткие замыкания в точке короткого замыкания К-3:
Трёхфазное КЗ:
Периодический ток короткого замыкания:
Апериодический ток короткого замыкания:
Та = 0,03 для системы связкой со сборными шинами 6-10 кВ, где рассматривается короткое замыкание через трансформаторы мощностью 32 МВА [8 табл.3.8]
Ударный ток короткого замыкания:
Двухфазное короткое замыкание в точке К-3:
Рассматривается короткое однофазное замыкание в точке К-1:
Распределение тока однофазного КЗ по ветвям:
Со стороны системы:
Итог расчёта сводится в таблицу 5.2
Таблица 5.2. Расчёт токов короткого замыкания
110 кВ |
10 кВ |
110 кВ |
10 кВ |
110 кВ |
10 кВ |
|||||||||
- |
- |
3,144 |
- |
0,61 |
6,72 |
|||||||||
- |
- |
2,722 |
- |
0,529 |
5,82 |
|||||||||
От системы |
5,35 |
5, 19 |
- |
- |
2,874 |
- |
- |
- |
- |
- |
- |
|||
От линии |
0,16 |
- |
- |
- |
- |
5.3 Выбор аппаратов ГПП на напряжении 110 кВ
Выбор выключателей осуществляется по следующим условиям: по напряжению установки Uном>Uуст по длительному току: Iном>Iнорм; Iном>Iмах. по отключающей способности
а) проверка на симметричный ток отключения Iотк ном >Iпо
б) проверка отключения апериодической составляющей тока КЗ:
, где
- нормированное значение содержания апериодической составляющей в отключающем токе.
По включающей способности:
а) Iномвкл>Iпо
б) iвклQ>iуд проверка на термическую стойкость где ВК - тепловой импульс тока КЗ
Проверка на электродинамическую стойкость:
а) IдинIпо
б) iдин iуд
предварительно выбирается выключатель ВМТ-110Б-20/1000 УХЛ-1 проверка условий выбора выключателя сведена в таблицу 5.3.
5.3.1 Выбор разъединителей
Выбор разъединителей осуществляется по следующим условиям: по и напряжению установки: Uном>Uуст по длительному току: Iном>Iнорм; Iном>Iмах
на электродинамическую стойкость:
а) Iдин>Iпо
б) Iдин>Iуд
проверка на термическую стойкость
Предварительно выбран разъединитель РДНЗ-П0/1000У1. Проверка условий выбора разъединителя сведена в таблицу 5.3
Таблица 5.3. Выбор выключателей и разъединителей 110 кВ
Расчетные значения |
ВМТ-ПОБ-20/1000УХЛ1 |
РДНЗ-110/1000У1 |
||||
110 |
110 |
110 |
||||
117,56 |
1000 |
1000 |
||||
3,144 |
20 |
- |
- |
|||
52 |
||||||
52 |
||||||
2,5 |
7.1 |
- |
- |
|||
7,145 |
52 |
80 |
||||
6,8 |
1200 |
3969 |
Выбранные выключатели и разъединители проходят по условиям проверки.
5.4 Выбор аппаратов ГПП на напряжение 10 кВ
5.4.1 Выбор выключателей
Условия выбора выключателей остаются те же. В КРУН серии К-59 устанавливаются выключатели типа ВВЭ-10. В таблице 5.5 приведены результаты проверки условий выбора для вводных выключателей. Остальные выключатели выбираются аналогично
Предварительно выбран выключатель ВВЭ-10-20/1600УЗ
Таблица 5.5. Выбор выключателей 10 кВ
Расчетные значения |
ВВЭ-10-20/1600УЗ |
|||
10 |
10 |
|||
1293 |
1600 |
|||
6,72 |
20 |
|||
20 |
||||
20 |
||||
2,5 |
52 |
|||
16,34 |
52 |
|||
7,916 |
60 |
Выбранный выключатель удовлетворяет всем условиям выбора.
5.4.2 Контрольно-измерительные приборы на подстанции
В цепях на ГПП требуется устанавливать следующие контрольно-измерительные приборы.
В цепи вводного выключателя: трансформаторы тока и напряжения для подключения амперметра, ваттметра, счетчики активной и реактивной энергии.
На сборных шинах: трансформатор напряжения для подключения вольтметра для измерения междуфазного напряжения, вольтметр с переключением для измерения трех фазных напряжений и счетчики активной и реактивной энергии.
Трансформатор тока в цепи секционного выключателя для подключения амперметра.
Трансформаторы тока на линиях 10 кВ к потребителям для подключения счетчиков активной и реактивной энергии.
5.4.3 Выбор трансформаторов тока
В шкафах серии К-59 устанавливаются трансформаторы тока типа ТЛМ-10. Трансформаторы тока выбираются по следующим условиям:
По напряжению: Uном>Uуст.
Потоку: Iном>Iнорм; Iном>Iмах.
По конструкции и классу точности (в данном случае класс точности должен быть не ниже 0,5).
По электродинамической стойкости (электродинамическая стойкость шинных трансформаторов тока определяется устойчивостью самих шин, поэтому такие трансформаторы не проверяются по этому условию).
По термической стойкости:
или
где Кт - кратность термической стойкости.
По вторичной нагрузке: , где - номинальная допустимая нагрузка трансформатора тока в выбранном классе точности.
Так как индуктивное сопротивление токовых цепей не велико, то , , rприб - сопротивление приборов, rпр - сопротивление проводов, rк - сопротивление контактов, при количестве приборов до трех rк = 0,05 Ом, при большем количестве rк = 0,1 Ом
Зная rпр можно определить сечение соединительных проводов:
,
где - удельное сопротивление материала
для провода с алюминиевыми жилами, Iрасч - расчетная длина, зависящая от схемы соединения трансформаторов тока.
Выбор трансформаторов тока проводится на примере для цепи вводных выключателей.
Предварительно для установки выбирается трансформатор тока ТЛМ-ЮУЗ
Таблица 5.7. Технические характеристики ТЛМ - 10 У3
Класс точности |
|||||||
10 |
1500 |
5 |
0,5 |
0,4 |
100 |
3969 |
Проверка условий выбора:
По напряжению: Uном>Uуст,
Потоку: Iном>Iнорм; Iном1>Iмах
Класс точности равен 0,5
,
Определяется суммарная мощность подключенных приборов
Таблица 5.8. Приборы и их мощность
Прибор |
Тип |
Нагрузка фазы, В - А |
|||
А |
В |
С |
|||
Амперметр |
Э-355 |
- |
0,5 |
- |
|
Ваттметр |
Д-355 |
0,5 |
- |
0,5 |
|
Счётчик |
САЗИ-681 |
2,5 |
- |
2,5 |
|
Счётчик |
СРИИ-676 |
2,5 |
- |
2,5 |
Наиболее загружены фазы А и С - 5,5 В-А. Общее сопротивление приборов:
В качестве соединительных проводов принимаются провода с алюминиевыми жилами.
Ориентировочная длина l=5 м. Трансформаторы тока соединяются в полную звезду: Lрасч = L = 5м
Сечение проводов принимается с учетом условия прочности 4
Отсюда:
, тогда
Выбранный трансформатор тока ТЛК - 10 УЗ удовлетворяет всем условиям.
Остальные трансформаторы тока выбираются аналогично.
5.4.4 Выбор трансформатором напряжения
В шкафах К - 59 устанавливаются трансформаторы напряжения типа НАМИ. Трансформаторы напряжения выбираются по следующим условиям:
по напряжению установки: Uном>Uуст
по конструкции и схеме соединения обмоток, по классу точности, по вторичной нагрузке , где - нагрузка всех измерительных приборов
Для упрощенного расчета принимается сечение проводов по условию механической прочности 2,5 для алюминиевых жил
Выбор трансформатора напряжения производится на примере - для сборных шин 10 кВ.
Предварительно выбирается трансформатор напряжения НАМИ-10
Таблица 5.9. Технические характеристики НАМИ-10
Номинальное напряжение обмоток, В |
Класс точности |
||||||
1-я обмотка |
2-я обмотка |
3-я обмотка |
|||||
10 |
10000 |
100 |
100: 3 |
120 |
0,5 |
960 |
Определяется нагрузка от измерительных приборов
Таблица 5.10. Приборы и их мощность
Приборы |
Тип |
Число обмоток |
Число приборов |
Общая потребляемая мощность |
|||||
Вводной выключатель |
САЗИ-681 |
2Вт |
2 |
0,38 |
0,925 |
1 |
4 |
9,7 |
|
Счетчик активной энергии |
|||||||||
Счетчик реактивной энергии |
СРИИ-676 |
3Вт |
2 |
0,38 |
0,925 |
1 |
6 |
14,5 |
|
Сборные шины |
Э-335 |
2Вт |
1 |
1 |
0 |
1 |
2 |
0 |
|
Вольтметр |
|||||||||
Вольтметр |
Э-335 |
2Вт |
1 |
1 |
0 |
1 |
2 |
0 |
|
Линии 10 |
САЗИ-681 |
2Вт |
2 |
0,925 |
3 |
12 |
29,2 |
||
Счетчик активной энергии |
|||||||||
Счетчик реактивной энергии |
СРИИ-676 |
3Вт |
2 |
0,38 |
0,925 |
3 |
18 |
43,8 |
|
Итого |
44 |
94,2 |
Вторичная нагрузка трансформатора напряжения одной секции:
Выбранный трансформатор напряжения удовлетворяет всем условиям. На второй секции шин устанавливается аналогичный трансформатор напряжения НАМИ-10.
6. Схема распределительной сети предприятия
При проектировании электроснабжения завода важнейшей задачей является выбор распределительной схемы внутреннего электроснабжения. Правильно выбранная схема должна обеспечивать необходимую степень надёжности питания потребителей, должна быть удобной и экономичной в эксплуатации.
Внутризаводская схема распределения электроэнергии выполняются по магистральному, радиальному или смешанному принципу. Выбор схемы определяется категорией надёжности потребителей электроэнергии, их территориальным размещением особенностями режима работы.
Радиальными схемами является такие, в которых электроэнергия от источника питания передаётся непосредственно к приемному пункту. Питание крупных подстанций с преобладанием потребителей 1 - категории осуществляется не менее чем по двум радиальным линиям, отходящим от разных секций источника питания. Отдельно расположенные однотрансформаторные подстанции мощностью 400-630 кВА питаются по одиночным радиальным линиям, если отсутствуют потребители 1 и 2
Магистральные схемы распределения электроэнергии принимаются в случае, когда потребителей много и радиальные схемы нецелесообразны. Основное преимущество магистральной схемы заключается в сокращении звеньев коммутации. Магистральные схемы целесообразно принимать при расположении подстанций на территории предприятия, что способствует прямому прохождению магистралей от источника питания до потребителя и тем самым сокращению длины магистралей. Недостатком магистральных схем является более низкая надёжность, по сравнению с радиальными, так как исключается возможность резервировать на низком напряжении их по одной магистрали.
Цеховые КТП по способу компоновки выполняются внутрицеховые (открытыми и закрытыми), встроенными, пристроенными и отдельно стоящими.
При радиальном питании КТП кабельными линиями от распределительного устройства 10 кВ по схеме блок-линия трансформатор допускается глухое присоединение к трансформатору. Глухой ввод выполняется в виде металлического короба, подвешиваемого на силовой трансформатор. Внутреннее электроснабжение рассматривается на примере термического цеха.
6.1 Характеристика цеха
Заданный цех серийного производства включает в состав: литейный участок, кузнечное отделение, участок термической обработки. На литейном участке производится изготовление болванок и заготовок нужной формы путём расплавления материалов. В кузнечном отделении производятся обработка изделий путём ковки, штамповки, волочения и др.
На участке термической обработки деталям придаются нужные физические свойства: твёрдость, прочность и т.д. путем закалки, отжига, отпуска и других операций.
Литейный участок имеет потребителей 1-ой категории: вентиляторы дутья варганок, разливочные краны.
Перечень потребителей участков цеха представлен в таблице 6.3.
План цеха показан на рисунке 6.2.
Общая площадь цеха составляет 1520м, габаритные размеры 20х76м, ширина пролета равна 6м. Высота цеха составляет 8,5м.
Расстояние от ГПП до цеха - 25 м. Принимаем коэффициенты отражения равными: Рпотолка = 30%, Рстен = 10%, Рпола = 10% по [2].
Рис.6.1 Схема распределительных сетей
6.2 Расчёт электрического освещения
6.2.1 Выбор типа и системы освещения
Во всех отделениях цеха применяем систему общего освещения с равномерным размещением светильников под потолком.
Рабочее освещение устраивается во всех помещениях и обеспечивает на рабочих поверхностях нормированную освещенность.
Также, цех оснащается аварийным освещением, необходимым для безопасной эвакуации людей, в случае погасания рабочего освещения. Аварийное освещение должно обеспечивать освещенность не менее 0,5лк
6.2.2 Выбор источниковсвета и светильнико
Подобные документы
Определение расчетных нагрузок цехов по установленной мощности и коэффициенту спроса. Центр электрических нагрузок предприятия. Выбор рационального напряжения. Технико-экономическое сравнение вариантов схем внешнего электроснабжения производства.
курсовая работа [2,7 M], добавлен 13.03.2015Расчет распределительной сети 0,4 кВ, с последующим выбором коммутационно-защитных аппаратов, выбрана и рассчитана схема внешнего электроснабжения. Технико-экономическое сравнение трех вариантов схем внешнего электроснабжения, выбор оптимального.
курсовая работа [311,4 K], добавлен 29.06.2013Разработка системы электроснабжения агропромышленного предприятия. Расчет электрических нагрузок, их центра. Определение числа и мощности трансформаторов. Проектирование распределительной сети предприятия. Проблемы компенсации реактивной мощности.
курсовая работа [1,7 M], добавлен 16.01.2016Основные характеристики электрических нагрузок РМЦ. Расчет электрического освещения цеха. Выбор варианта компенсации реактивной мощности. Выбор и обоснование оптимального внутреннего электроснабжения, технико-экономическое сравнение разных вариантов.
дипломная работа [297,0 K], добавлен 20.03.2010Расчет электрических нагрузок цехов, определение центра электрических нагрузок. Выбор местоположения главной распределительной подстанции. Расчет мощности цехов с учетом потерь в трансформаторах и компенсации реактивной мощности на низкой стороне.
курсовая работа [1,2 M], добавлен 22.11.2010Определение ожидаемых электрических нагрузок промышленного предприятия. Проектирование системы электроснабжения группы цехов сталелитейного завода. Компенсация реактивной мощности в электрических сетях. Расчёт максимальной токовой защиты трансформаторов.
дипломная работа [796,8 K], добавлен 06.06.2013Определение электрических нагрузок предприятия. Выбор цеховых трансформаторов и расчет компенсации реактивной мощности. Разработка схемы электроснабжения предприятия и расчет распределительной сети напряжением выше 1 кВ. Расчет токов короткого замыкания.
дипломная работа [2,4 M], добавлен 21.11.2016Расчет электрических нагрузок промышленного предприятия. Выбор числа, мощности и типа трансформаторов цеховых трансформаторных подстанций предприятия. Технико-экономическое обоснование схемы внешнего электроснабжения. Расчет токов короткого замыкания.
дипломная работа [1,2 M], добавлен 13.03.2010Расчет электрических нагрузок предприятия. Выбор числа и мощности силовых трансформаторов. Технико-экономическое сравнение вариантов схем внешнего электроснабжения. Расчет трехфазных токов короткого замыкания. Расчет ежегодных издержек на амортизацию.
курсовая работа [820,9 K], добавлен 12.11.2013Расчёты электрических нагрузок и освещения для группы цехов металлургического завода. Выбор числа, мощности и типа цеховых трансформаторных подстанций предприятия. Определение напряжения внешнего электроснабжения. Полная расчетная нагрузка системы.
дипломная работа [836,3 K], добавлен 04.06.2013