Інтерферометри

Інтерференційні пристрої, чутливі до різниці фазових набігів хвиль. Інтерферометр Жамена та вимірювання величини показника заломлення повітря інтерферометром Релея. Зоряний інтерферометр Майкельсона. Інтерференція проміння: інтерферометр Фабри-Перо.

Рубрика Физика и энергетика
Вид реферат
Язык украинский
Дата добавления 04.09.2009
Размер файла 87,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

12

Міністерство освіти і науки України

Реферат на тему:

“Інтерферометри"

Виконав:

Черкаси 2009

План

  • 1. Інтерферометр Жамена
    • 2. Інтерферометр Релея
    • 3. Інтерферометр Майкельсона
    • 4. Інтерферометр Фабрі-Перо

1. Інтерферометр Жамена

Інтерферометр Жамена, разом з інтерферометром Релея, є одним з найбільш чутливих до різниці фазових набігів хвиль інтерференційних пристроїв, що дозволяє використовувати його для точного визначення показників заломлення газів при тиску, близькому до атмосферного (при цьому тиску відповідний показник заломлення відрізняється від одиниці в четвертому-п'ятому знаку після коми).

Схематичне зображення конструкції інтерферометра Жамена представлено на мал. 1.

Мал. 1

Паралельний пучок світла падає на плоскопараллельную скляну пластину М1, на задню поверхню якій нанесено металеве дзеркало.

Два відображені пучки виявляються при достатній товщині пластини просторово розділеними і прямують порізно в дві кювети з досліджуваним газом і газом порівняння відповідно. Минулі пучки відображаються від ще однієї такої ж скляної пластини М2. Таким чином, обидва відображені пучки виявляються рівними по інтенсивності і зводяться у фокальній площині лінзи L. В результаті виникає інтерференційна картина з горизонтальних смуг, як показано на малюнку.

При цьому у відсутності по ходу розповсюдження пучків між лінзами додаткових об'єктів з показниками заломлення n1 (кювета з досліджуваним газом) і n2 (компенсатор фазового набігу з відомим керованим набігом фази оптичного випромінювання в ньому) нульовий максимум інтерференційної картини лежить на осі системи. Нульовий максимум - це максимум, відповідний нульовій різниці ходу D хвиль, створюючих інтерференційну картину. При використовуванні широкосмугового випромінювання (наприклад природного світла) він легко відрізнимо від максимумів вищих порядків

m: =ml0 де l0

- центральна довжина хвилі спектру випромінювання.

Дійсно, легко зрозуміти, що він єдиний має початкове біле забарвлення, тоді як максимуми вищих порядків “розтягнуті в спектр” через те що умови максимуму досягаються при різних зсувах від центру картини для різних довжин хвиль спектру пучка.

Якщо тепер внести в два тих, що розповсюджуються в міжлінзовому просторі пучка (т. з. плечі інтерферометра) кювету довжини L з досліджуваним газом n1, і керовану оптичну затримку n2 (наприклад, таку ж кювету з газом залежність показника заломлення якого від тиску відома), то пучки отримають додаткову різницю ходу:

D1=L (n2 - n1).

Тим самим нульова смуга інтерференційної картини зміститься, і центр поля придбає забарвлення.

Щоб “повернути картину на місце", необхідно зрівняти показники заломлення досліджуваного газу і еталонного в двох кюветах, що досягається варіацією тиску останнього. У результаті, відновивши центральность нульової “білої смуги" (а це можна зробити з великою точністю, порядка 1/40 смуги, DmЈ1/40), ми одержуємо точні відомості про показник заломлення досліджуваного газу. Реальні інструменти, виконані по схемі інтерферометра Релея дозволяють виміряти відмінності показника заломлення від одиниці:

(n-1) =l0Dm/L"10-8.

Тимчасові характеристики Час ініціації (log to від - 8 до - 5);

Час існування (log tc від - 5 до 15);

Час деградації (log td від - 8 до - 5);

Час оптимального прояву (log tk від - 5 до - 4).

Діаграма:

Технічна реалізація здійснюється в повній відповідності з мал.1 змістовної частини. Лазерний пучок гелий-неонового лазера (для наочності краще його розширити телескопом до діаметра міліметрів 10-15) ділиться першою пластиною на два, відображається від її обох граней, і зводиться другим дзеркалом і лінзою на екрані. Потім в одне з плечей інтерферометра вводиться кювета (близько 1 метра довжини із стислим повітрям). При варіюванні тиску повітря смуги на екрані зміщуються.

2. Інтерферометр Релея

Показник заломлення повітря, як і інших газів, за умов, близьких до “нормальних", мало відрізняється від одиниці. Повинне бути зрозумілим, що для вимірювання такої величини показника заломлення необхідний достатньо точний метод. Такого роду вимірювання можуть бути проведений за допомогою інтерферометра Релея.

x

1

S 0

2 l

экран

По суті схема отримання інтерференційної картини в цьому випадку насильно відрізняється від класичного досвіду Юнга. Джерелом світла служить освітлювана достатньо видаленим джерелом щілина S, від якої розповсюджується циліндрова хвиля. За допомогою лінзи хвиля перетвориться в плоску хвилю: проміння 1 і 2 стає паралельним. Вони проходять через кювети, довжини яких l можуть бути достатньо великі. Якщо показники заломлення газів в кюветах однакові, інтерференційна смуга (максимум) з нульовою різницею ходу поміщається в центрі екрану при x=0. Помітимо - вище її (на малюнку) розташуються лінії (максимуми), для яких оптична довжина шляху нижнього променя більше.

Якщо верхня кювета заповнюється газом з дещо великим показником заломлення, оптична довжина шляху променя 1 протягом кювети стане більше і лінія з нульовою різницею ходу (“центральна”) зміститься вгору.

x

1

S d 0

2 f

экран

Зображена на попередньому малюнку схема інтерферометра Релея запозичена із задачника Іродова. При такій схемі ширина інтерференційно смуги визначається виразом:

Реальний інтерферометр Релея влаштований трохи інакше: за діафрагмою встановлюється лінза, у фокальній площині якої і спостерігається інтерференційні смуги (за допомогою окуляра з достатнім збільшенням).

Але тоді кутова відстань між джерелами стає нульовою, інтерферувати повинне паралельне проміння. Причина утворення интерферационной картини стає не дуже зрозумілою, незрозуміло, ніж визначається ширина смуги.

Але все це не так загадково, як може показатися. Два точкові джерела є окремим випадком періодичного розташування джерел, розглянутим нами раніше. Помітивши, що ми обмежимося лише малими значеннями кутів q повторюваний для пари джерел проведені раніше міркування.

При q=0, природно, спостерігатиметься максимум. Наступний максимум буде при значенні q, яке визначається умовою

x

d

L

f

экран

і ширина смуги на екрані

Ці уточнення і розрахунки допоможуть нам зрозуміти принцип роботи іншого інтерферометра, про який мова піде нижчим. Але звернете увагу на те, що ширина максимуму на екрані визначається їх кутовою шириною яку треба помножити на фокусну відстань лінзи.

3. Інтерферометр Майкельсона

Якщо кутова відстань між двома зірками дуже мало, в телескоп вони видні як одна зірка. У такому разі говорять про подвійні зірки і треба провести спеціальне спостереження, щоб відрізнити їх від зірок одиночних. Для цього використовується зоряний інтерферометр Майкельсона, який дозволяє до того ж визначити кутову відстань міжзірками. Пристрій зоряного інтерферометра Майкельсона показаний не малюнку. Проміння світла, що прийшло від видаленої зірки, відображається від дзеркал, що рознесли на достатньо велику відстань D, потім від двох інших дзеркал і збираються лінзою на екрані, поміщеному у фокальній площині. Що рознесли на відстань D дзеркала можна розглядати як точкові джерела, відстань між якими і рівно D.

D

линза

x 0 X

Скористаємося отриманим раніше виразом для кутового розподілу максимумів випромінювання світла:

Інакше кажучи

На екрані спостерігатимуться максимуми на відстанях один від одного. Якщо спостерігаються дві близькі зірки, проміння світла від яких приходить під малим кутом j, то на екрані спостерігатимуться дві інтерференційні картини, зсунуті по відношенню один до одного на відстань. Вимірювання кутової відстані j між зірками проводиться таким чином. При зміні величини D змінюється.

Нескладно здогадатися, що при видимість інтерференційної картини погіршиться або вона взагалі не спостерігатиметься. Це дозволяє визначити кутову відстань між зірками:

E0

0

На малюнку показано саме таке взаимоположение інтерференційних картин, інтенсивність випромінювання одній із зірок дещо більше. При зміні відстані між дзеркалами змінюється величина Dq. У такий спосіб можна визначити вельми малі кутові відстані j.

4. Інтерферометр Фабрі-Перо

1 2 3

n=1

n>1

1'2'3'

Інтерференція проміння відобразилися від поверхонь плоскопараллельной пластини називається двохпроменевою. І для такої назви є підставу. Коефіцієнт віддзеркалення межі стекло - повітря r=I1/I0 невелике, декілька відсотків. Позначивши інтенсивність падаючого променя як I0, для интенсивностей іншого проміння ми отримаємо такі значення:

I1 =I0 ; I2 =I0 (1-) 2; I3 =I0 (1-) 24;

I1'=I0 (1-) 2; I2'=I0 (1-) 22; I3'=I0 (1-) 24.

Виходять ці вирази таким чином. Якщо коефіцієнт віддзеркалення r, то коефіцієнт проходження, як це витікає із закону збереження енергії, рівний (1-r). При визначенні інтенсивності кожного променя інтенсивність I0 слідує помножити на коефіцієнт віддзеркалення і на коефіцієнт проходження в ступені, рівному числу віддзеркалень і перетину межі розділу відповідно. При малому коефіцієнті віддзеркалення виходить тому для відображеного і пройшли через пластинку проміння:

I1 I2; I3 << I2;

I3'<< I2'<< I1'.

Тому при складанні відображеного проміння ми враховуємо тільки два промені - 1 і 2, інтенсивності яких розрізняються несильно.

Тому інтенсивність в мінімумах близька до нуля.

В проходячому світлі також спостерігатиметься інтерференційна картина, але через швидке зменшення інтенсивності що беруть участь в інтерференції проміння відношення інтенсивності в максимумі і в мінімумі розрізняються трохи.

d

1

2

3

4

Пристрій інтерферометра Фабри-Перо показаний на малюнку. Роль пластинки грає повітряний проміжок між двома прозорими пластинами, на внутрішніх поверхні яких напилений тонкий шар металу.

Завдяки цьому досягається велике значення коефіцієнта віддзеркалення r - тепер він відрізняється від одиниці лише на декілька відсотків, а коефіцієнт проходження (1-r) виявляється малим. Це істотно змінює співвідношення між интенсивностями проміння:

I1 >> I2 I3;

I1' I2' I3'.

При таких співвідношеннях при обсчеті кутового розподілу інтенсивності проходячого світла необхідно враховувати багато проходячі через інтерферометр проміння. В цьому випадку інтерференція називається багатопроменевою.

Оскільки при проходженні прозорих пластин енергія зберігається, мінімуму у відображеному світлі повинен відповідати максимум в світлі проходячому.

Нарешті, оскільки в проміжку між пластинами показник заломлення (повітря) можна вважати рівним одиниці, ми одержуємо таку умову для максимуму в проходячому світлі:

При практичному використовуванні інтерферометра Фабри-Перо кут q малий, а відстань між пластинами d велика (порядка декількох сантиметрів). Отже довжина когерентності світлової хвилі l2/dl повинна бути достатньо великої.


Подобные документы

  • Загальне поняття інтерференції хвиль. Інтерференція монохроматичних світлових хвиль. Екстремальні значення результуючої інтенсивності. Форми інтерференційних смуг. Способи розподілу пучків світла. Просторова і тимчасова когерентність оптичних джерел.

    контрольная работа [412,4 K], добавлен 08.12.2010

  • Дослідження функцій гіроскопу. Ефект Саньяка. Гіроскопія на ефекті Саньяка. Волоконна гіроскопія на основі кільцевих інтерферометрів. Методи отримання максимально чутливих волоконних гіроскопів. Джерела додаткових невзаємностей волоконних гіроскопів.

    презентация [890,4 K], добавлен 07.08.2013

  • Шляхи пароутворення як виду фазових переходів, процес перетворення речовини з рідкого стану в газоподібний. Особливості випаровування й кипіння. Властивості пари, критична температура. Пристрої для вимірювання вологості повітря (психрометри, гігрометри).

    реферат [28,6 K], добавлен 26.08.2013

  • Класифікація планарних оптичних хвилеводів. Особливості роботи з хлороформом. Методи вимірювання показника заломлення оптичного хвилеводу. Спектрофотометричні методи вимірювання тонких плівок. Установка для вимірювання товщини тонкоплівкового хвилеводу.

    дипломная работа [2,2 M], добавлен 29.04.2013

  • Сутність і практичне значення принципу суперпозиції хвиль. Умови виникнення та методика розрахунку групової швидкості хвиль. Зв'язок між груповою та фазовою швидкістю, схожі та відмінні риси між ними. Поняття інтерференції, її сутність і особливості.

    реферат [249,4 K], добавлен 06.04.2009

  • Визначення показника заломлення скла. Спостереження явища інтерференції світла. Визначення кількості витків в обмотках трансформатора. Спостереження явища інтерференції світла. Вимірювання довжини світлової хвилі за допомогою дифракційної решітки.

    лабораторная работа [384,9 K], добавлен 21.02.2009

  • Анізотропія кристалів та особливості показників заломлення для них. Геометрія характеристичних поверхонь, параметри еліпсоїда Френеля, виникнення поляризації та різниці фаз при проходженні світла через призми залежно від щільності енергії хвилі.

    контрольная работа [201,6 K], добавлен 04.12.2010

  • Класифікація та методи вимірювання. Термодинамічні величини. Термодинамічна температура. Температурний градієнт. Температурний коефіцієнт відносної зміни фізичної величини. Теплота, кількість теплоти. Тепловий потік. Коефіцієнт теплообміну. Ентропія.

    реферат [65,6 K], добавлен 19.06.2008

  • Розробка уроку фізики, на якому дається уявлення про тепловий стан тіла і довкілля. Аналіз поняття "температура", ознайомлення зі способами вимірювання цієї величини. Опис шкал Цельсія, Реомюра, Фаренгейта, Кельвіна. Огляд конструкцій термометрів.

    конспект урока [8,4 M], добавлен 20.12.2013

  • Характеристики полупроводниковых материалов и источников излучения. Соединение источника с волокном. Конструкции одномодовых лазеров, особенности РБО-лазеров. Расчет параметров многомодового лазера с резонатором Фабри-Перо. Светоизлучающие диоды (СИД).

    реферат [561,8 K], добавлен 11.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.