Синхронные машины. Машины постоянного тока
Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 23.12.2009 |
Размер файла | 7,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В случае, если обмотка якоря двигателя и обмотка возбуждения подключены к источникам питания с различными напряжениями, его называют двигателем с независимым возбуждением. Такие двигатели применяют в электрических приводах, у которых питание двигателей осуществляется от генераторов или полупроводниковых преобразователей. Механические и рабочие характеристики двигателя с независимым возбуждением аналогичны характеристикам двигателя с параллельным возбуждением, так как у них ток возбуждения Iв также не зависит от тока якоря Iа.
Рис. 2.62 - Схема двигателя с последовательным возбуждением, зависимости его момента и частоты вращения от тока якоря
Двигатель с последовательным возбуждением. В этом двигателе (рис. 2.62, а) ток возбуждения Iв = Iа, поэтому магнитный поток Ф является некоторой функцией тока якоря Iа. Характер этой функции изменяется в зависимости от нагрузки двигателя. При токе якоря 1а < (0,8 ч 0,9) Iном, когда магнитная система машины не насыщена Ф = kфIа, причем коэффициент пропорциональности kФ в значительном диапазоне нагрузок остается практически постоянным. При дальнейшем возрастании тока якоря поток Ф растет медленнее, чем Iа, и при больших нагрузках (Iа > Iном) можно считать, что Ф = const. В соответствии с этим изменяются и зависимости n = f(Ia) и M - f(Ia).
При токе якоря Iа < (0,8 ч 0,9) Iном частота вращения
, (2.78)
где с1 и с2 - постоянные.
Следовательно, скоростная характеристика двигателя n = f (Ia) имеет форму гиперболы (рис. 2.62, б).
При токе якоря Iа > Iном частота вращения
, (2.78а)
где с'1 и с'2 - постоянные.
В этом случае скоростная характеристика n = f(Ia) становится линейной.
Аналогично может быть получена зависимость электромагнитного момента от тока якоря-M = f(Ia). При Iа < (0,8 ч 0,9) Iиом электромагнитный момент
, (2.79)
где c3 - постоянная.
Следовательно, моментная характеристика М = f(Iа) имеет форму параболы (рис. 2.62, б).
При Iа > Iном электромагнитный момент
, (2.79а)
где с'3-постоянная.
В этом случае зависимость M = f(Ia) становится линейной.
Механические характеристики n = f(M) (см. рис. 2.63, а) могут быть построены на основании зависимостей ni = f(Ia) и M=f(Ia). При токе якоря, меньшем (0,8 ч 0,9) Iном, частота вращения изменяется по закону
, (2.80)
где с»1-постоянная.
При токе якоря, большим Iном, зависимость n = f(M) становится линейной.
Кроме естественной характеристики 1, путем включения добавочных пусковых сопротивлений rп в цепь якоря можно получить семейство реостатных характеристик 2, 3 и 4. Эти характеристики соответствуют различным значениям rп2, rп3 и rп4; причем чем больше гп, тем ниже располагается характеристика.
Из рис. 2.63, а следует, что механические характеристики рассматриваемого двигателя (естественная и реостатные) являются «мягкими» и имеют гиперболический характер.
Рис. 2.63 - Механические и рабочие характеристики двигателя с последовательным возбуждением
При малых нагрузках частота вращения n резко возрастает и может превысить максимально допустимое значение (двигатель идет в «разнос»). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода и при небольшой нагрузке (различные станки, транспортеры и пр.). Обычно минимально допустимая нагрузка составляет (0,2 -0,25) Iном; только двигатели очень малой мощности (десятки ватт) используют для работы в устройствах, где возможен холостой ход. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой); применение ременной передачи или фрикционной муфты для включения недопустимо.
Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют в различных электрических приводах, особенно там, где имеют место изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.). Объясняется это тем, что мягкая характеристика рассматриваемого двигателя более благоприятна для указанных условий работы, чем жесткая характеристика двигателя с параллельным возбуждением. При жесткой характеристике частота вращения n почти не зависит от момента М, поэтому мощность
, (2.81)
где с4 - постоянная.
При мягкой характеристике двигателя с последовательным возбуждением частота вращения n обратно пропорциональна , вследствие чего
, (2.81а)
где c'4 - постоянная.
Поэтому при изменении нагрузочного момента в широких пределах мощность Р2, а следовательно, мощность Р1 и ток Iа у двигателей с последовательным возбуждением изменяются в меньших пределах, чем у двигателей с параллельным возбуждением. Кроме того, они лучше переносят перегрузки; например, при заданной кратности перегрузки по моменту М/Мном = kM ток якоря в двигателе с параллельным возбуждением увеличивается в kM раз, а в двигателе с последовательным возбуждением-только в раз. По этой же причине двигатель с последовательным возбуждением развивает больший пусковой момент, так как при заданной кратности пускового тока Iп/Iном = ki пусковой момент его Мп = k2iМном, в то время как у двигателя с параллельным возбуждением Мп = kiМном.
На рис. 2.63, б приведены рабочие характеристики двигателя с последовательным возбуждением. Характеристики n = f(P2) и M = f(Р2), как следует из рассмотренных ранее положений, являются нелинейными; характеристики P1 = f (P2), Iа = f(P2) и з = f(Р2) имеют примерно такую же форму, как и у двигателя с параллельным возбуждением.
Рис. 2.64 - Схема двигателя со смешанным возбуждением и его механические характеристики
Двигатель со смешанным возбуждением. В этом двигателе (рис. 2.64, а) магнитный поток Ф создается в результате совместного действия двух обмоток возбуждения - параллельной и последовательной. Поэтому его механическая характеристика (рис. 2.64, б, кривые 3 и 4) располагается между характеристиками двигателей с параллельным (прямая 1) и последовательным (кривая 2) возбуждением. В зависимости от соотношения м. д. с. параллельной и последовательной обмоток при номинальном режиме можно приблизить характеристику двигателя со смешанным возбуждением к характеристике 1 (при малой м. д. с. последовательной обмотки) или к характеристике 2 (при малой м. д. с. параллельной обмотки). Одним из достоинств двигателя со. смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе, так как его частота вращения холостого хода n0 имеет конечное значение.
2.11 Пуск в ход электродвигателей постоянного тока
Для пуска двигателей постоянного тока могут быть применены три способа:
1) прямой пуск, при котором обмотка якоря подключена непосредственно к сети;
2) реостатный пуск с помощью пускового реостата, включаемого в цепь якоря для ограничения тока при пуске;
3) пуск путем плавного повышения напряжения, подаваемого на обмотку якоря.
Прямой пуск. Обычно в двигателях постоянного тока падение напряжения Iном?r во внутреннем сопротивлении цепи якоря составляет 5-10% от Uном, поэтому при прямом пуске ток якоря Iп = Uном/?r = (10 ч 20) Iном, что создает опасность поломки вала машины и вызывает сильное искрение под щетками. По этой причине прямой пуск применяют в основном для двигателей малой мощности (до нескольких сотен ватт), в которых сопротивление ?r относительно велико, и лишь в отдельных случаях-для двигателей с последовательным возбуждением мощностью в несколько киловатт. При прямом пуске таких двигателей Iп = (4 ч 6) Iном.
Переходный процесс изменения частоты вращения n и тока якоря ia в процессе пуска определяется нагрузкой двигателя и его электромеханической постоянной времени Тм. Для установления характера изменения n и ia при пуске двигателя с параллельным возбуждением будем исходить из уравнений:
; (2.82а)
, (2.82б)
где J - момент инерции вращающихся масс электродвигателя и сочлененного с ним производственного механизма; Мн-тормозной момент, создаваемый нагрузкой.
Из (2.82б) определяем ток якоря
. (2.83)
Подставляя его значение в (2.82а), получаем
(2.84а)
, (2.84б)
или
U где - частота вращения при идеальном холостом ходе;
уменьшение частоты вращения при переходе
от холостого хода к нагрузке; nн = n0 - Дnн-установившаяся частота вращения при нагрузке двигателя; - электромеханическая постоянная времени, определяющая скорость протекания переходного процесса.
При этом Iн = Мн/(смФ) - установившийся ток якоря после окончания процесса пуска, определяемый нагрузочным моментом Мн.
Решая уравнение (2.84б), получаем
. (2.85а)
Постоянную интегрирования А находим из начальных условий: при t = 0; n = 0 и А = - nн. В результате имеем
. (2.85б)
Рис. 2.65 - Переходный процесс изменения частоты вращения и тока якоря при прямом пуске двигателя постоянного тока
Зависимость тока якоря от времени при пуске двигателя определяется из (2.83). Подставляя в него значение
, (2.85в)
полученное из (2.846) и (2.856), и заменяя nн = n0 - Дn, имеем
. (2.86а)
Учитывая значение Дnн, n0, Тм и Мн/смФ, получим
, (2.86б)
где Iнач = U/?r - начальный пусковой ток.
На рис. 2.65 приведены зависимости изменения тока якоря и частоты вращения (в относительных единицах) при прямом пуске двигателя с параллельным возбуждением. Время переходного процесса при пуске принимается равным (3-4) Тм. За это время частота вращения n достигает (0,95 - 0,98) от установившегося значения nн, а ток якоря Iа также приближается к установившемуся значению.
Реостатный пуск. Этот способ получил наибольшее распространение. В начальный момент пуска при n = 0 ток Iп = U/(?r + rп). Максимальное сопротивление пускового реостата rп подбирается так, чтобы для машин большой и средней мощностей ток якоря при пуске Iп = (1,4 ч 1,8) Iном, а для машин малой мощности Iп = (2 ч 2,5) Iном. Рассмотрим процесс реостатного пуска на примере двигателя с параллельным возбуждением. В начальный период пуск осуществляется по реостатной характеристике 6 (рис. 2.66, а), соответствующей максимальному значению сопротивления rп пускового реостата; при этом двигатель развивает максимальный пусковой момент Мп.макс.
Рис. 2.66 - Изменение частоты вращения и момента при реостатном пуске двигателей с параллельным и последовательным возбуждением
Регулировочный реостат rр.в в этом случае выводится так, чтобы ток возбуждения Iв и поток Ф были максимальными. По мере разгона момент двигателя уменьшается, так как с увеличением частоты вращения растет э. д. с. Е и уменьшается ток якоря Ia=(U - E)/(?r +rп). При достижении некоторого значения Мп.мин часть сопротивления пускового реостата выводится, вследствие чего момент снова возрастает до Мп.макс. При этом двигатель переходит на работу по реостатной характеристике 5 и разгоняется до достижения Mп.мин. Таким образом, уменьшая постепенно сопротивление пускового реостата, осуществляют разгон двигателя по отдельным отрезкам реостатных характеристик 6,5,4,3 и 2 (см. жирные линии на рис. 2.66, а) до выхода на естественную характеристику 1. Средний вращающий момент при пуске Мп.ср = 0,5 (Мп.макс +Мп.мин) = const, вследствие чего двигатель разгоняется с некоторым постоянным ускорением. Таким же образом пускается в ход двигатель с последовательным возбуждением (рис. 2.66, б). Количество ступеней пускового реостата зависит от жесткости естественной характеристики и требований, предъявляемых к плавности пуска (допустимой разности Mп.макс - Мп.мин).
Пусковые реостаты рассчитывают на кратковременную работу под током.
На рис. 2.67 показаны зависимости тока якоря ia, электромагнитного момента М, момента нагрузки Мн и частоты вращения n при реостатном пуске двигателя (упрощенные диаграммы).
Рис. 2.67 - Переходный процесс изменения частоты вращения, момента и тока якоря при реостатном пуске двигателя постоянного тока
При выводе отдельных ступеней пускового реостата ток якоря ia достигает некоторого максимального значения, а затем уменьшается согласно уравнению (2.85б) до минимального значения. При этом электромеханическая постоянная времени и начальный ток будут иметь различные для каждой ступени пускового реостата значения:
;
В соответствии с изменением тока якоря изменяется и электромагнитный момент М. Частота вращения n изменяется согласно уравнению
, (2.86в)
где nнач-начальная частота вращения при работе на соответствующей ступени пускового реостата.
Заштрихованная на рис. 2.67 область соответствует значениям динамического момента Мдин = М - Мн, обеспечивающего разгон двигателя до установившейся частоты вращения.
Пуск путем плавного повышения питающего напряжения. При реостатном пуске возникают довольно значительные потери энергии в пусковом реостате. Этот недостаток можно устранить, если пуск двигателя осуществлять путем плавного повышения напряжения, подаваемого на его обмотку. Но для этого необходимо иметь отдельный источник постоянного тока с регулируемым напряжением (генератор или управляемый выпрямитель). Такой источник используют также для регулирования частоты вращения двигателя.
2.12 Принципы регулирования частоты вращения двигателей постоянного тока
Частота вращения двигателя постоянного тока определяется формулой
. (2.87)
Следовательно, ее можно регулировать тремя методами:
1) включением добавочного резистора или реостата rдоб в цепь обмотки якоря;
2) изменением магнитного потока Ф;
3) изменением питающего напряжения U.
На примере двигателя с параллельным возбуждением рассмотрим принципиальные особенности, свойственные этим методам регулирования.
Включение реостата в цепь якоря. При включении реостата в цепь якоря частота вращения с ростом нагрузки уменьшается более резко, чем при работе двигателя без реостата:
. (2.88)
Это наглядно показано на рис. 2.68, где приведены характеристики двигателя с параллельным возбуждением: 1 - естественная (при rдо6 = 0); 2-реостатная (при rдоб > 0) Частоты вращения n0 при холостом ходе для обеих характеристик равны, в то время как значения уменьшения частоты вращения Дn при нагрузке различны. При одном и том же токе якоря
.
Чем больше добавочное сопротивление rдоб, тем круче е увеличением нагрузки падает частота вращения.
Рис. 2.68 - Скоростные характеристики двигателя с параллельным возбуждением при регулировании частоты вращения путем включения реостата в цепь якоря
- Механические характеристики п = f (M) двигателя с параллельным возбуждением могут быть получены из скоростных характеристик n = f(Ia) изменением масштаба по оси абсцисс, так как для двигателя этого типа
- ,
- т.е. момент пропорционален току якоря.
- Основным недостатком данного метода регулирования является возникновение больших потерь энергии в реостате, особенно при низких частотах вращения. Последнее видно из соотношения
- , (2.89)
- где ДР - потери в цепи якоря; Р1 - мощность, подведенная к якорю.
- Решая уравнение (2.89) относительно ДР, получим
- , (2.90)
- т.е. потери линейно возрастают с уменьшением частоты вращения якоря.
- Очевидно, что данный метод позволяет только уменьшать частоту вращения по сравнению с частотой при естественной характеристике. Иногда существенным является то обстоятельство, что при включении в цепь якоря значительного сопротивления характеристики двигателя становятся крутопадающими («мягкими»), вследствие чего небольшие изменения нагрузочного момента приводят к большим изменениям частоты вращения.
- Изменение магнитного потока двигателя. Чтобы изменить магнитный поток, необходимо регулировать ток возбуждения двигателя. При различных магнитных потоках Ф1 и Ф2 частоты вращения будут определяться формулами:
- (2.91)
Рис. 2.69 - Скоростная и механическая характеристики двигателя с параллельным возбуждением при регулировании частоты вращения путем изменения магнитного потока
В двигателе с параллельным возбуждением, например, частота вращения при холостом ходе и уменьшение ее при нагрузке изменяются обратно пропорционально изменению магнитного потока:
. (2.92)
Таким образом, скоростные характеристики двигателя при различных магнитных потоках не являются параллельными (рис. 2.69, а). Эти характеристики пересекаются при частоте вращения, равной нулю, так как в данном случае Е =сеФn = 0 и ток не зависит от величины потока:
; (2.93)
он определяется величинами напряжения и сопротивления цепи якоря. Величину тока Iак при n = 0 называют током короткого замыкания.
Механические характеристики для двигателя с параллельным возбуждением строятся на основании следующих соображений. Каждая из механических характеристик является практически линейной (если пренебречь реакцией якоря) и может быть построена по двум точкам: точке холостого хода, в которой момент равен нулю, и точке короткого замыкания, в которой момент максимален.
Сравнивая моменты в режиме короткого замыкания при различных значениях магнитного потока, получим
. (2.94)
Таким образом, при уменьшении магнитного потока частота вращения холостого хода возрастает, а момент при коротком замыкании снижается. Следовательно, механические характеристики, построенные при различных величинах магнитного потока, пересекаются при частоте вращения, меньшей частоты вращения при холостом ходе, но большей нуля (рис. 2.69, б). Рассматривая механические характеристики, можно сделать вывод, что при величинах нагрузочного момента, существенно меньших Мкр, снижение потока ведет к увеличению частоты вращения.
Рис. 2.70 - Механические характеристики двигателей с параллельным и последовательным возбуждением большой и средней мощностей:
1-при нормальном возбуждении, 2 - при уменьшении магнитною потока
Это является характерным для двигателей средней и большой мощностей (рис. 2.70, а), где в рабочем диапазоне изменения токов имеют место небольшие падения напряжения в якоре (для получения высокого к. п. д.).
В микромашинах уменьшение потока, т.е. тока возбуждения, обычно применяют для снижения частоты вращения.
Рис. 2.71 - Включение регулировочного реостата в двигателе с последовательным возбуждением
Аналогично располагаются скоростные и механические характеристики двигателя с последовательным возбуждением; поэтому в двигателях большой и средней мощностей при уменьшении магнитного потока частота вращения возрастает (рис. 2.70, б). Уменьшение магнитного потока в этом двигателе осуществляется обычно путем включения регулировочного реостата rp.в параллельно обмотке возбуждения (рис. 2.71), вследствие чего ток возбуждения
, (2.95)
где rр.в-сопротивление регулировочного реостата, включенного параллельно обмотке возбуждения; kp.в = Iв/Ia - коэффициент регулирования возбуждения.
Рис. 2.72 - Скоростные и механические характеристики двигателей
с параллельным (независимым) (а) и последовательным (б) возбуждением при регулировании частоты вращения путем изменения напряжения на зажимах якоря
Рассмотренный метод регулирования весьма прост и экономичен, поэтому его широко применяют на практике. Однако регулирование частоты вращения этим методом можно осуществить только в сравнительно небольшом диапазоне; обычно nмакс/nмин = 2 ч З. Нижний предел nмин ограничивается насыщением магнитной цепи машины, которое не позволяет увеличивать в значительной степени магнитный поток. Верхний предел nмакс определяется условиями устойчивости (при сильном уменьшении Ф двигатель идет в «разнос»), а также тем, что при глубоком ослаблении возбуждения резко увеличивается искажающее действие реакции якоря и растет реактивная э.д.с, что повышает опасность возникновения искрения на коллекторе и появления кругового огня. По этой причине двигатели, предназначенные для работы в режимах глубокого ослабления возбуждения, должны иметь компенсационную обмотку и пониженную величину реактивной э. д. с. при номинальном режиме.
Изменение напряжения на зажимах якоря. При различных напряжениях на зажимах якоря U1 и U2 частоты вращения будут соответственно определяться формулами:
;
.
В двигателе с параллельным возбуждением частота вращения холостого хода изменяется пропорционально изменению напряжения:
, (2.96)
а падение частоты вращения при одинаковой нагрузке остается неизменным:
. (2.97)
В связи с этим скоростные характеристики n = f(Ia) двигателя с параллельным возбуждением представляют собой семейство параллельных прямых 1, 2 и 3 (рис. 2.72, а).
Механические характеристики n = f(M) получаются из скоростных простым изменением масштаба по оси абсцисс, так как момент пропорционален току якоря.
Скоростные и механические характеристики двигателя с последовательным возбуждением в основном строятся аналогично (рис. 2.72, б).
Регулирование частоты вращения двигателя путем изменения напряжения на зажимах якоря обычно ведут «вниз», т.е. уменьшают напряжение и частоту вращения по сравнению с номинальными.
2.13 Работа электродвигателей постоянного тока в тормозных режимах
Электрические двигатели, как правило, используют не только для вращения механизмов, но и для их торможения. Торможение необходимо в том случае, если нужно быстро остановить механизм или быстро уменьшить его частоту вращения. Применение механических тормозов для этих целей затруднительно из-за нестабильности их характеристик, малого быстродействия и трудностей автоматизации.
Различают три вида тормозных режимов двигателей постоянного тока:
1) генераторное торможение с отдачей электрической энергии в сеть (рекуперативное торможение);
2) генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря (реостатное, или динамическое, торможение);
3) электромагнитное торможение (торможение противоключением).
Во всех указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном n, т.е. является тормозным. Рассмотрим более подробно эти режимы.
Рекуперативное торможение. Двигатель с параллельным возбуждением переходит в режим рекуперативного торможения при увеличении его частоты вращения n свыше частоты вращения n0 = U/сеФ. В этом случае э. д. с. машины становится больше напряжения сети и ток меняет свое направление:
, (2.98)
т.е. двигатель переходит в генераторный режим, создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.
Переход машины с параллельным возбуждением из двигательного режима в генераторный может происходить автоматически, если под действием внешнего момента якорь будет вращаться с частотой, большей частоты вращения холостого хода: n > n0. Можно перевести машину в генераторный режим и принудительно, уменьшив частоту вращения n0 за счет увеличения магнитного потока (тока возбуждения) или снижения напряжения, подводимого к двигателю. Механические характеристики в генераторном режиме являются продолжением механических характеристик, имеющих место в двигательном режиме, в область отрицательных моментов (рис. 2.73).
Двигатели с последовательным возбуждением не могут автоматически переходить в режим рекуперативного торможения. В случае необходимости иметь рекуперативное торможение схему двигателей в тормозном режиме изменяют, превращая двигатели в генераторы с независимым возбуждением. Двигатели со смешанным возбуждением могут автоматически переходить в генераторный режим, что обусловило их применение в троллейбусах, трамваях и т.п., где имеются частые остановки, а двигатель должен обладать «мягкой» механической характеристикой.
Рис. 2.73 - Механические характеристики двигателя с параллельным возбуждением в двигательном и генераторном режимах
Рис. 2.74 - Схема включения двигателя с параллельным возбуждением в режиме динамического торможения; механические характеристики двигателей с параллельным и последовательным возбуждением в этом режиме
Динамическое торможение. При динамическом (реостатном) торможении двигателя с параллельным возбуждением обмотку якоря отключают от сети и к ней присоединяют реостат rдоб (рис. 2.74, а). При этом машина работает генератором и создает тормозной момент. Однако выработанная электрическая энергия гасится в реостате. Регулирование тока якоря Iа = Е/(?r + rдоб) и тормозного момента М при этом способе торможения осуществляется путем изменения сопротивления rдоб, подключенного к обмотке якоря (рис. 2.74, б), или э.д.с. Е (воздействуя на ток возбуждения). При n = 0 тормозной момент равен нулю, следовательно, машина не может быть заторможена в неподвижном состоянии.
Рис. 2.75 - Схема включения двигателя с параллельным возбуждением в режиме электромагнитного торможения (а); механические характеристики двигателей с параллельным (б) и последовательным (в) возбуждением в этом режиме
Двигатель с последовательным возбуждением может работать в режиме динамического торможения, но при переводе его в этот режим нужно переключить провода, подводящие ток к обмотке возбуждения. Последнее необходимо для того, чтобы при изменении направления тока в якоре (при переходе с двигательного режима в генераторный) направление тока в обмотке возбуждения оставалось неизменным и создаваемая этой обмоткой м.д.с. Fв совпадала по направлению с м. д. с. Fост от остаточного магнетизма. В противном случае генераторы с самовозбуждением размагничиваются. Механические характеристики для этого двигателя в тормозных режимах (рис. 2.74, в) нелинейны. Двигатель со смешанным возбуждением также может работать в режиме динамического торможения.
Электромагнитное торможение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление вращения, т.е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя, путем переключения проводов, подводящих ток к обмотке якоря (рис. 2.75, а) или к обмотке возбуждения. Чтобы ограничить величину тока в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление rдоб. Регулирование величины юка Ia = (U + Е)/(?r + rдоб), т.е. тормозного момента М, осуществляют изменением сопротивления rдоб (рис. 10-75, б, в) или э.д.с. Е (тока возбуждения Iв).
С энергетической точки зрения рассматриваемый способ торможения является самым невыгодным, так как машина потребляет как механическую, так и электрическую энергию, которые гасятся в обмотке якоря и во включенном в ее цепь реостате. Но при этом способе можно получать большие тормозные моменты при низких частотах вращения и даже при n -0, поскольку в этом случае ток Iа = U/?r + rдоб).
2.14 Современные способы регулирования частоты вращения электродвигателей постоянного тока
Описанные принципы регулирования частоты вращения в двигательном и тормозных режимах находят свою практическую реализацию в четырех основных способах регулирования:
1) реостатно-контакторное управление;
2) регулирование по системе «генератор-двигатель»;
3) регулирование по системе «управляемый выпрямитель-двигатель»;
4) импульсное регулирование.
Подробное исследование этих способов регулирования дается в курсах электропривода и теории автоматического регулирования. В этом разделе будут рассмотрены только основные положения, имеющие непосредственное отношение к теории электрических машин.
Реостатно-контакторное управление. В настоящее время это управление применяют весьма широко для регулирования частоты вращения двигателей малой и средней мощности, а иногда (на железнодорожном транспорте) и для регулирования мощных двигателей.
Обычно при реостатно-контакторном управлении используют два метода регулирования: при частотах вращения, меньших номинальной, в цепь якоря включают дополнительные сопротивления; при повышенных частотах вращения регулируют ток возбуждения.
Машины малой мощности при отсутствии автоматизированного управления имеют два ползунковых регулировочных реостата, один из которых включен в цепь якоря, а другой - в цепь возбуждения. При больших мощностях, а также при необходимости автоматизации процесса величину сопротивлений изменяют ступенчато (рис. 10-76) при помощи контакторов. Если требуется точное регулирование, то число контакторов должно быть очень большим, при этом вся установка становится громоздкой, дорогой и сравнительно малонадежной.
Рис. 2.76 - Схема реостатно-контакторного регулирования частоты вращения двигателя с последовательным возбуждением
Реостатно-контакторная система при двигателях с параллельным возбуждением позволяет в зоне высоких частот вращения осуществлять рекуперативное торможение путем увеличения тока возбуждения. В зоне низких частот вращения применяют реостатное торможение, причем регулирование тормозного усилия осуществляют при помощи той же реостатно-контакторной установки, которая регулирует двигательный режим, после соответствующего переключения схемы.
В связи со сложностью автоматизации и большими расходами, идущими на ремонт и эксплуатацию, реостатно-контакторное управление в настоящее время постепенно заменяют более совершенными системами управления.
Система «генератор-двигатель». В этой установке (рис. 2.77) двигатель Д получает питание от автономного генератора Г с независимым возбуждением, который приводят во вращение от какого-либо первичного двигателя ПД (электродвигателя, дизеля и пр.). Регулирование частоты вращения осуществляют изменением:
1) напряжения на якоре двигателя путем изменения тока возбуждения генератора;
2) магнитного потока двигателя путем регулирования тока возбуждения двигателя.
Пуск в ход и получение низких частот вращения производят при максимальном токе возбуждения двигателя, но при уменьшенном токе возбуждения генератора, т.е. при пониженном напряжении. Ослабление магнитного потока двигателя (уменьшение его тока возбуждения) производят только после того, как исчерпана возможность повышения напряжения, т.е. когда установлен максимальный ток возбуждения генератора. Изменение направления вращения двигателя производят путем изменения полярности подводимого к якорю напряжения, для чего изменяют направление тока в обмотке возбуждения генератора.
Система «генератор - двигатель» выгодно отличается тем, что в ней отсутствуют силовые контакторы, реостаты и т.п. Поскольку управление двигателем осуществляют путем регулирования сравнительно небольших токов возбуждения, управление легко поддается автоматизации.
Установки типа «генератор-двигатель» получили широкое распространение в промышленности и на транспорте, в тех устройствах, где требуется регулирование частоты вращения в широких пределах. В транспортных установках генератор приводится во вращение дизелем. В промышленности обычно для привода генератора используют трехфазные синхронные или асинхронные двигатели.
Систему «генератор - двигатель» широко применяют в металлургической промышленности для привода прокатных станов с двигателями мощностью 10 000 кВт и более при диапазоне регулирования частоты вращения 1:200 и точности поддержания заданной частоты вращения (погрешности) менее 1%.
Следует отметить, что в этой системе уменьшение частоты вращения производят с использованием рекуперативного торможения: сначала, увеличивая ток возбуждения двигателя, а затем, постепенно уменьшая ток возбуждения генератора, можно перевести двигатель в генераторный режим и быстро затормозить механизм. При этом накопленная кинетическая энергия якоря и механизма отдается в электрическую сеть.
Рис. 2.77 - Схема регулирования двигателя с независимым возбуждением при питании его от генератора
Если нагрузка толчкообразная, то иногда на валу первичного двигателя, вращающего генератор, ставят маховик, который уменьшает перегрузки первичного двигателя.
Недостатки системы «генератор-двигатель»:
1) большие масса, габариты и стоимость установки;
2) сравнительно низкий к. п. д. (порядка 0,6 - 0,7), так как производится трехкратное преобразование энергии.
В последнее время на транспорте (тепловозы, большие автомобили, корабли и т.п.) вместо генератора постоянного тока в системе «генератор-двигатель» применяют синхронный генератор с полупроводниковым выпрямителем. Это позволяет снизить вес и уменьшить стоимость генератора. В промышленных установках такое усовершенствование не получило широкого распространения, так как из-за выпрямителя теряется возможность рекуперативного торможения.
Система «управляемый выпрямитель-двигатель». Развитие полупроводниковой техники позволило применить для регулирования частоты вращения двигателя управляемый выпрямитель УВП, выполненный на тиристорах, где одновременно с выпрямлением производится регулирование выпрямленного напряжения (рис. 2.78). Применение системы «управляемый выпрямитель - двигатель» позволяет увеличить коэффициент полезного действия и уменьшить массу установки.
Рис. 2.78. Схема регулирования двигателя с независимым возбуждением при питании его от управляемого вентильного преобразователя
Если требуется быстрая остановка механизма, с последующим реверсированием, то для осуществления рекуперативного торможения параллельно с выпрямителем ставят инвертор, т.е. еще один полупроводниковый преобразователь, позволяющий отдавать электрическую энергию от машины постоянного тока в сеть переменного тока.
Недостатком системы «управляемый выпрямитель-двигатель» является низкий коэффициент мощности при пониженном выходном напряжении. Кроме того, несколько ухудшается коммутация двигателя из-за пульсаций тока якоря. Особенно велики пульсации тока при питании от сети однофазного тока (электровозы переменного тока), где обеспечение удовлетворительной коммутации вырастает в большую проблему.
В настоящее время система «управляемый выпрямитель-двигатель» имеет меньшую надежность, чем система «генератор - двигатель», из-за сложности полупроводникового оборудования, особенно системы управления.
Импульсное регулирование частоты вращения. В последние годы в связи с развитием полупроводниковой техники широко применяют импульсный метод регулирования частоты вращения двигателей постоянного тока. При этом на двигатель с помощью импульсного прерывателя периодически подаются импульсы напряжения определенной частоты.
Импульсный прерыватель (рис. 2.79, а) состоит из входного фильтра Lф-Сф, электронного ключа ТK (транзисторного или тиристорного), обратного диода Д и индуктивности L. В период времени ф, когда электронный ключ замкнут (транзистор или тиристор открыт), питающее напряжение U подается полностью на якорь двигателя, и его ток ia увеличивается (рис. 10-79, б); когда электронный ключ разомкнут (транзистор или тиристор заперт), ток iа продолжает протекать через якорь двигателя и обратный диод Д под действием электромагнитной энергии, запасенной в индуктивностях La + L цепи якоря; при этом ток ia уменьшается. Частота следования импульсов при номинальном режиме обычно составляет 200-400 Гц, вследствие чего период Т примерно на два порядка меньше постоянной времени цепи якоря. Поэтому за время импульса ф ток в двигателе не успевает значительно возрасти, а за время паузы (Т - ф) - уменьшиться.
Рис. 2.79 - Схема импульсного регулирования двигателя постоянного тока (а); графики изменения напряжения и тока при работе двигателя в режиме непрерывного тока (б)
Среднее напряжение, подаваемое на обмотку якоря,
, (2.99)
где б = ф/Т - коэффициент регулирования напряжения, равный относительной длительности включения ключа ТК.
При этом частота вращения двигателя
, (2.100)
где Iа= Iср-среднее значение тока якоря.
Изменение тока при работе импульсного прерывателя ДI = Iмакс - Iмин определяется по приближенной формуле
, (2.101)
где La+L - индуктивность цепи якоря двигателя.
Если параметры схемы выбраны так, что пульсация тока не превосходит 5-10%, то работа двигателя практически не отличается от работы двигателя при постоянном напряжении. Скоростные и механические характеристики двигателя 1, 2 и 3 (рис. 2.80), полученные при различных напряжениях, подаваемых на обмотку якоря, в таком режиме работы аналогичны соответствующим характеристикам двигателя при изменении питающего напряжения U.
Рис. 2.80 - Скоростные и механические характеристики двигателя с параллельным возбуждением при импульсном регулировании
При уменьшении нагрузки двигателя с параллельным возбуждением возрастают пульсации тока якоря, и при некоторой критической нагрузке наступает режим прерывистых токов. Поскольку условие Iа = 0 имеет место при Е = U, частота вращения при идеальном холостом ходе n0 = U/(сеФ) не будет зависеть от времени т, т.е. от коэффициента регулирования напряжения б. Благодаря этому при некоторой критической частоте вращения nкр, когда двигатель переходит в режим прерывистых токов, угол наклона скоростных и механических характеристик к оси абсцисс резко изменяется. В диапазоне n0> n> nкр эти характеристики имеют примерно такую же форму, как и при регулировании частоты вращения путем включения реостата в цепь якоря. Критическая частота вращения
, (2.102)
где в = Т/Та. Здесь Та = (L + Lа)/?r - постоянная времени цепи обмотки якоря.
Среднее напряжение Uср, подаваемое на двигатель, регулируется путем изменения либо продолжительности периода Т между подачей управляющих импульсов на электронный ключ ТK при ф=const (частотно-импульсное регулирование), либо времени ф при постоянном значении Т (широтно-импулъсное регулирование).
Используют также комбинированное регулирование, при котором изменяется как Т, так и ф.
В настоящее время импульсное регулирование двигателей малой мощности и микродвигателей осуществляют с помощью импульсных прерывателей, в которых коммутирующими элементами являются транзисторы. Для регулирования двигателей средней и большой мощностей применяют прерыватели с тиристорами. Так как тиристор, в отличие от транзистора, является не полностью управляемым вентилем, то для его запирания применяют различные схемы искусственной коммутации, обеспечивающие прерывание проходящего тока путем подачи на его электроды обратного напряжения.
Рис. 2.81 - Схемы включения двигателя постоянного тока через тиристорный импульсный прерыватель при частотно-импульсном и широтно-импульсном регулировании
На рис. 2.81 показаны две простейшие схемы импульсных тиристорных прерывателей. Схему, изображенную на рис. 2.81, а, используют при частотно-импульсном регулировании Тиристор Т отпирается путем подачи импульсов гока управления на его управляющий электрод, запирание же его осуществляется с помощью коммутирующего конденсатора Ск Перед включением тиристора конденсатор Ск заряжен до напряжения U. При подаче отпирающего импульса на управляющий электрод тиристор Т открывается и через двигатель начинает проходить ток ia. Одновременно происходит перезаряд конденсатора Ск - через резонансный контур, содержащий индуктивность L1. После окончания перезаряда, когда полярность конденсатора изменится, к тиристору будет приложено обратное напряжение. При этом он восстанавливает свои запирающие свойства и прохождение тока через тиристор прекращается. В дальнейшем конденсатор заряжается через нагрузку и схема оказывается подготовленной для последующего отпирания тиристора. Время открытого состояния тиристора определяется параметрами резонансной цепи:
Схему, изображенную на рис. 2.81, б, используют при широтно-импульсном и комбинированном регулирований. В этом случае импульсный прерыватель имеет два тиристора: главный Т1 и вспомогательный Т2. Запирание главного тиристора Т1 осуществляется коммутирующим конденсатором Ск, который подключается к тиристору Т1 в требуемые моменты времени вспомогательным тиристором Т2. После запирания тиристора Т1 коммутирующий конденсатор заряжается от источника питания через тиристор Т2 и якорь двигателя, а после повторного открытия главного тиристора Т1 перезаряжается через цепочку, содержащую индуктивность L1 и диод Д1, и приобретает полярность, требуемую для последующего запирания тиристора Т1.
Торможение при импульсном регулировании. При работе двигателя от импульсного прерывателя можно выполнить его рекуперативное и динамическое торможения. Наиболее интересная особенность рекуперативного торможения при импульсном регулировании - возможность осуществления его при величине э. д. с. двигателя, меньшей напряжения сети. В связи с этим рекуперативное торможение может осуществляться почти до полной остановки.
При рекуперативном торможении импульсный прерыватель ИП включают параллельно якорю двигателя, диод Д-между якорем и питающей сетью. При отпирании прерывателя ИП якорь машины вместе с индуктивностью L замыкается накоротко. При этом увеличивается ток ia и происходит накопление электромагнитной энергии в индуктивностях L + La, а возникающая э. д. с. самоиндукции eL уравновешивает э. д. с. машины Е. При запирании прерывателя ИП ток ia под действием э. д. с. самоиндукции протекает через диод Д и накопленная энергия отдается в сеть. Среднее значение тока, отдаваемого в сеть, определяется разностью между средней э. д. с. якоря Е и напряжением сети U.
Из закона сохранения энергии IaсрE=Iс.срU имеем
. (2.103)
Следовательно, по мере уменьшения частоты вращения якоря ток Iс.ср, отдаваемый в сеть, уменьшается, хотя ток якоря может оставаться постоянным, а следовательно, неизменным будет оставаться и тормозящий электромагнитный момент.
Рис. 2.104 - Схема рекуперативного торможения двигателя постоянного тока при импульсном регулировании
По мере снижения частоты вращения n и э. д. с. Е для поддержания требуемого значения тока Iа увеличивают частоту тока f при частотно-импульсном регулировании или длительность импульса ф при широтно-импульсном регулировании. При малой частоте вращения, когда б увеличивается до единицы, якорь машины остается все время замкнутым накоротко, и отдача энергии в сеть прекращается. Однако ток Iа протекает через якорь и режим торможения осуществляется практически до полной остановки.
Частота вращения nкр, при которой прекращается рекуперативное торможение,
,
где rи.п-сопротивление элементов импульсного прерывателя (тиристоров и индуктивности L), по которым замыкается ток ia.
Динамическое торможение осуществляют аналогично, однако в схеме вместо сети и фильтра LФ-Сф включают реостат, в котором гасится энергия, отдаваемая машиной.
Импульсное регулирование широко применяют при питании двигателей от сети постоянного тока, а также в автономных устройствах, где необходимо использовать аккумуляторы электрической энергии.
2.15 Универсальные коллекторные двигатели
В устройствах автоматики и различных электробытовых приборах широко применяют универсальные коллекторные двигатели мощностью от нескольких ватт до нескольких сотен ватт, которые могут работать от источника как постоянного, так и однофазного тока.
Устройство двигателя. Универсальный коллекторный двигатель устроен принципиально так же, как и двигатель постоянного тока с последовательным возбуждением. Отличие универсального двигателя от машины постоянного тока состоит в том, что магнитная система выполнена полностью шихтованной, а катушки обмотки возбуждения имеют две секции и промежуточные выводы. Выполнение статора и ротора машины шихтованными обусловлено тем, что при работе на переменном токе они пронизываются переменным магнитным потоком; секционирование же обмотки возбуждения вызвано тем, что в этом режиме из-за падения напряжения в индуктивном сопротивлении двигателя номинальная частота вращения оказывается меньшей, чем при работе на постоянном токе: Для выравнивания частот вращения при работе на постоянном токе в цепь якоря включают все витки обмотки возбуждения, а при работе на переменном токе - только часть их, вследствие чего соответственно уменьшается магнитный поток машины.
Подобные документы
Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.
реферат [3,6 M], добавлен 17.12.2009Роль и значение машин постоянного тока. Принцип работы машин постоянного тока. Конструкция машин постоянного тока. Характеристики генератора смешанного возбуждения.
реферат [641,0 K], добавлен 03.03.2002Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.
презентация [4,1 M], добавлен 03.12.2015Конструкция и принцип действия электрических машин постоянного тока. Исследование нагрузочной, внешней и регулировочной характеристик и рабочих свойств генератора с независимым возбуждением. Особенности пуска двигателя с параллельной системой возбуждения.
лабораторная работа [904,2 K], добавлен 09.02.2014Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.
реферат [3,2 M], добавлен 12.11.2009Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с "мертвой" секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.
презентация [4,9 M], добавлен 09.11.2013Генераторы синхронные с самовозбуждением. Описание работы корректора напряжения. Принцип действия электродвигателя постоянного тока типа ПГ1500/225.ОМ4. Предназначение и состав электроэнергетической системы. Устройство и работа рулевой машины.
реферат [37,3 K], добавлен 12.03.2012Основные определения и технические данные электрических машин. Электрические двигатели постоянного тока: устройство, краткие теоретические основы. Электрические генераторы постоянного тока. Обеспечение безыскровой коммутации. Электрическое равновесие.
реферат [37,4 K], добавлен 24.12.2011Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.
курсовая работа [1,6 M], добавлен 25.02.2010Изучение процесса пуска электрической машины постоянного тока при различных режимах работы и схемах включения обмотки возбуждения и добавочных реостатов в цепи. Исследование пусковых характеристик двигателя. Осциллограммы для схемы и электродвигателя.
лабораторная работа [1,6 M], добавлен 01.12.2011