Взаимодействие бета-частиц с веществом

Взаимодействие заряженных частиц и со средой. Детектирование. Определение граничной энергии бета-спектра методом поглощения. Взаимодействие заряженных частиц со средой. Пробег заряженных частиц в веществе. Ядерное взаимодействие. Тормозное излучение.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 06.02.2008
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

                                                                                          (5.4)

Пробеги измеряются либо в единицах длины, либо в г / см2 (мг / см2), причем

Отсюда следует, что пробег частицы есть функция ее кинетической энергии, поэтому измерения длин пробегов частиц позволяет найти их кинетические энергии. Отметим, что определение истинной длины пути частицы в веществе по толщине поглощающего слоя возможно только для тяжелых частиц, которые не испытывают заметного рассеяния в кулоновских полях ядер. Для бета - частиц, в отличие от тяжелых частиц, траектория в веществе не является прямолинейной. Бета - частицы проходят в веществе довольно извилистые пути, а величины пробегов моноэнергетических электронов сильно отличаются между собой. Бета - частица на своем пути испытывает множество актов рассеяния на атомах вещества. Этим обусловлены изломы на его пути. Рассеяние может происходить при соударении с орбитальными электронами или с ядрами вещества поглотителя.

Число бета - частиц, прошедших поглотитель заданной толщины является постепенно уменьшающейся функцией толщины поглотителя. Максимальная толщина поглотителя, поглощающая практически все падающие на нее бета - частицы, характеризует так называемый практический (или эффективный) пробег. Практический пробег является функцией максимальной энергии бета - излучения E0.

Детальное изучение энергетического спектра бета - излучения производят спектрометрическими методам, (магнитный бета - спектрометр, кремниевый полупроводниковый детектор и т.д.), требующими сложной аппаратуры. В тех случаях, когда требуется определить максимальную энергию бета - спектра с точностью, не превышающей 5 %, используют метод поглощения.

Цель настоящей работы состоит в определении максимальной энергии бета - излучения методом поглощения.

Для определения максимальной энергии бета - частиц методом поглощения снимают кривую поглощения бета - излучения в веществе (как правило, в алюминии), то есть находит, пользуясь набо-ром тонких фольг, зависимость интенсивности бета - частиц I, прошедших через фольгу, от толщины поглотителя. При малых толщинах поглотителя поглощение бета - излучения в веществе подчиняется в первом приближении экспоненциальному закону, но точно этому закону не следует, и практический пробег бета - частиц составляет для различных элементов пяти - десяти -  кратную величину толщины слоя половинного поглощения.

Результаты измерения наносят на полулогарифмический график. По оси абсцисс наносят толщину слоя, а по оси ординат - логарифмы интенсивности излучения. В случае изотопа с простым бета - спектром (бета - частицы имеющие одну максимальную энергию) и испускающего еще и гамма - излучение получается кривая, показанная на рис. 5.1. Практический пробег R находится путем экстраполирования кривой поглощения к уровню фона от гамма - излучения, или применяют метод сравнения Физера, который позволяет определить пробег в каком - либо веществе путем сравнения кривой поглощения в этом веществе с кривой поглощения в веществе с известным пробегом.

Радиационное торможение электронов (тормозное

излучение).

Согласно классиче-ской теории любая заряженная частица, Рис. 17. движущаяся с ускорением, должна излучать электромагнитные волны. Допустим, что частица с зарядом е, массой т и ско-ростью движется мимо ядра, обладаю-щего массой Ми зарядом Zяe. При рассеянии кулоновским центром частица претерпевает отклонение (рис. 17) и, следовательно получает ускорение. В соответствии с классической электродинамикой заряд, испытывающий ускорение в течение времени излучает энергию

Поскольку , то . Таким образом, радиационные потери энергии наиболее существенны у самых легких частиц - электронов; для протонов, например, при той же энергии эффект уже в раз меньше.

Релятивистский квантовый расчет, проведенный Бете и Гайтлером, позволяет найти потери энергии электроном на тормоз-ное излучение

(27)

где - так называемая постоянная тонкой структуры; - классический радиус электрона; п -- число атомов в см3 вещества; Е--полная энергия излучающего электрона.

Для того чтобы удобнее было сравнивать потери энергии на излучение в различных веществах, вводится так называемая «ра-диационная» единица длины :

(28)

другими словами, весь коэффициент при Е, имеющий размерность обозначается . Тогда и, если измерять толщину вещества в этих единицах, то

и (29)

Отсюда видно, что потери энергии электроном на одной t - еди-нице длины не зависят от вещества (но сама эта единица для раз-ных веществ, конечно, различна). Интегрируя (29), получаем про-стой закон изменения энергии частицы

(30)

где Ео-- начальная энергия электрона. Следовательно, t -единица -- это та длина, на которой энергия частицы уменьшается в е раз. Для воздуха, например, = 300 м, для свинца = 0,5 см.

Как видно из выражения (13), потери энергии на тормозное излучение подчиняются иным закономерностям, чем потери энер-гии вследствие неупругих соударений:

1) до энергий порядка тос2 они постоянны, а затем возра-стают пропорционально Е и при достаточно больших энергиях

становятся преобладающими;

2) потери на излучение пропорци-ональны квадрату заряда ядра, поэто-му для тяжелых элементов они более существенны, чем для легких.

Если сравнить формулы для по-терь энергии электронов на иониза-цию и тормозное излучение (19) и (27), то можно найти отношение этих потерь:

Отсюда следует, что в воздухе, например, потери на излучение ста-новятся сравнимыми с потерями на ионизацию при Ео = 80 МэВ. Для свинца это наступает уже при Ео = 6 МэВ (энергия, при ко-торой потери на излучение становятся равными потерям на иони-зацию, называется критической энергией Eкр) (рис. 18).

Поэтому относительный .вклад различных потерь энергии су-щественно зависит не только от вещества, массы, но и от энергии частицы.

Литература

Г.Бете, Ю.Дж.Ашкин Прохождение -- частиц через вещество. --В кн.: экспериментальная ядерная физика. Под ред. Э. Сегре. М.. 1955.

Г.Кноп, В.Пауль Альфа-, бета-, гамма-спектроскопия. Под ред. К. Зигбана. Т. 1. М., 1969.

Н.Бор Прохождение атомных частиц через вещество. М., 1950.

Н.И.Штейнбок Измерение толщины покрытий методом рассеяния бета-излучения. -- Применение радиоактивных излучателей в измерительной технике, 1960.

Ц.С. Ву, С.А.Мошковский Бета-распад. М., 1970


Подобные документы

  • Ускорители заряженных частиц как устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц. Общая характеристика высоковольтного генератора Ван-де-Граафа, знакомство с функциями.

    презентация [4,2 M], добавлен 14.03.2016

  • Ускорители заряженных частиц — устройства для получения заряженных частиц больших энергий, один из основных инструментов современной физики. Проектирование и испытание предшественников адронного коллайдера, поиск возможности увеличения мощности систем.

    реферат [685,8 K], добавлен 01.12.2010

  • Виды бета-распад ядер и его характеристики. Баланс энергии при данном процессе. Массы исходного и конечного атомов, их связь с массами их ядер. Энергетический спектр бета-частиц, роль нейтрино. Кулоновское взаимодействие между конечным ядром и электроном.

    контрольная работа [133,4 K], добавлен 22.04.2014

  • Сведения о радиоактивных излучениях. Взаимодействие альфа-, бета- и гамма-частиц с веществом. Строение атомного ядра. Понятие радиоактивного распада. Особенности взаимодействия нейтронов с веществом. Коэффициент качества для различных видов излучений.

    реферат [377,6 K], добавлен 30.01.2010

  • Взаимодействие заряженных частиц с веществом. Радиационное дефектообразование в ZnO. Расчет радиационных характеристик движущегося протона и концентрации наведенных дефектов с помощью программы SRIM. Концентрации дефектов в ZnO по спектрам поглощения.

    отчет по практике [2,3 M], добавлен 15.01.2014

  • Динамика частиц, захваченных геомагнитным полем, ее роль в механизме динамики космического изучения в околоземном пространстве. Геометрия радиационных поясов Земли. Ускорение частиц космического излучения. Происхождение галактических космических лучей.

    дипломная работа [1,2 M], добавлен 24.06.2015

  • Фундаментальные физические взаимодействия. Гравитация. Электромагнетизм. Слабое взаимодействие. Проблема единства физики. Классификация элементарных частиц. Характеристики субатомных частиц. Лептоны. Адроны. Частицы - переносчики взаимодействий.

    дипломная работа [29,1 K], добавлен 05.02.2003

  • Понятие и принцип работы ускорителей, их внутреннее устройство и основные элементы. Ускорение пучков частиц с высокой энергией в электрическом поле как способ их получения. Типы ускорителей и их функциональные особенности. Генератор Ван де Граафа.

    контрольная работа [276,8 K], добавлен 18.09.2015

  • Образование электрического тока, существование, движение и взаимодействие заряженных частиц. Теория появления электричества при соприкосновении двух разнородных металлов, создание источника электрического тока, изучение действия электрического тока.

    презентация [54,9 K], добавлен 28.01.2011

  • Изучение процессов рассеяния заряженных и незаряженных частиц как один из основных экспериментальных методов исследования строения атомов, атомных ядер и элементарных частиц. Борновское приближение и формула Резерфорда. Фазовая теория рассеяния.

    курсовая работа [555,8 K], добавлен 03.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.