Сканирующая зондовая микроскопия

Теоретические основы сканирующей зондовой микроскопии. Схемы сканирующих туннельных микроскопов. Атомно-силовая и ближнепольная оптическая микроскопия. Исследования поверхности кремния с использованием сканирующего зондового микроскопа NanoEducator.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 16.08.2014
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Содержание

Введение

1. Сканирующая зондовая микроскопия

1.1 Теоретические основы СЗМ

1.2 Сканирующие туннельные микроскопы

1.3 Атомно-силовая микроскопия

1.4 Ближнепольная оптическая микроскопия

2. Исследования поверхности кремния с использованием сканирующего зондового микроскопа NanoEducator

2.1 Конструкция и принцип работы сканирующего зондового микроскопа NanoEducator

2.2 Проведение СЗМ эксперимента

Список используемых источников

Введение

Физика поверхностных явлений в настоящее время является одним из наиболее интенсивно развивающихся разделов науки. Именно на фундаментальных исследованиях в области физики поверхности твёрдого тела основаны успехи современной микро и наноэлетроники. Поэтому исследование разнообразных электронных, атомных и молекулярных процессов, происходящих на поверхности твердых тел, остаётся актуальной задачей.

Наиболее распространенными методами решения таких задач являются растровая электронная микроскопия (РЭМ), просвечивающая электронная микроскопия (ПЭМ), атомно-силовая микроскопия (АСМ), сканирующая туннельная микроскопия (СТМ), микроскопия на основе фокусированных ионных пучков, вторичная ионная масс-спектрометрия, оже-спектроскопия и другие. С точки зрения исследования рельефа и физических свойств структур с высоким латеральным разрешением (менее 10 нм) одной из наиболее перспективных является атомно-силовая микроскопия(АСМ), важнейшее достоинство которой заключается в элементарной процедуре подготовки образцов.

Первостепенное значение для понимания свойств любого объекта имеет знание его атомной структуры. Последние 30 лет микроструктура поверхностей интенсивно изучалась методами дифракции и рассеяния электронных и ионных пучков, а также электронной спектроскопии. Однако большинство этих методов первоначально разрабатывались для исследования объёмной структуры твёрдых тел, поэтому они не всегда годятся для получения информации о структуре поверхности, тем более на атомном уровне.

В 1981 году Герхард Бинниг и Хайнрих Рёрер из лаборатории IBM в Цюрихе представили миру сканирующий туннельный микроскоп(СТМ). С его помощью были получены поразившие всех изображения поверхности кремния в реальном масштабе. Человек впервые смог увидеть атомы и прикоснуться к ним.

Развивая идеи, заложенные в СТМ, в 1986 году Герхард Бинниг, Калвин Куэйт и Кристофер Гербер создают атомно-силовой микроскоп (АСМ), благодаря которому были преодолены присущие СТМ ограничения. В свою очередь АСМ стал родоначальником широкого семейства сканирующих зондовых устройств и использующих их технологий, которое продолжает увеличиваться и посей день. В том же 1986 г. Г. Бинниг и Х. Рёрер были удостоены Нобелевской премии в области физики за открытие принципа туннельной, атомно-силовой и световой сканирующей микроскопии.

Изображения, получаемые с помощью СЗМ, относятся к разряду создаваемых микроскопическими методами образов, которые достаточно легко интерпретировать. В случае электронного или оптического микроскопа принцип получения изображения базируется на сложных электромагнитных дифракционных эффектах. Поэтому иногда могут возникнуть затруднения при определении, является ли некоторый элемент микрорельефа поверхности выступом или впадиной. Напротив, СЗМ регистрирует истинно трехмерные параметры. На СЗМ - изображении выступ однозначно предстает выступом, а впадина ясно видна как впадина. На получаемых при помощи оптических или электронных микроскопов изображениях, например, плоского образца, состоящего из чередующихся отражающих и поглощающих участков, могут возникать искусственные изменения контрастности. Атомно-силовой микроскоп, в свою очередь, практически безразличен к изменениям оптических или электронных свойств и дает информацию об истинной топографии поверхности.

В настоящее время существуют приборы, позволяющие отображать отдельные атомы: полевой ионный микроскоп и просвечивающий электронный микроскоп высокого разрешения. Однако оба они имеют существенные ограничения по применимости, связанные со специфическими требованиями к форме образцов. В первом случае образцы должны иметь форму острых игл из проводящего материала с радиусом закругления не более 100 А, а во втором -- форму тонких плёнок толщиной менее1000 А.

Сканирующая зондовая микроскопия охватывает в настоящее время широкий спектр методов исследования поверхности. Среди них -- СТМ, АСМ, сканирующая микроскопия ближнего светового поля и ряд других методов.

СЗМ эффективно используется для исследований в различных областях науки и техники: в биологии и медицине, в материаловедении, в исследованиях различных покрытий и тонких пленок, полимерных и наноструктурированных материалов, в химии и химической промышленности, физике и т.д.

Главным достоинством современных СЗМ являются: возможность получения достоверных данных о высоте микрорельефа, отсутствие дополнительных промежуточных процедур (напыление, изготовление реплик), снижающих достоверность результатов; возможность получения нанометрового, а иногда и ангстремного разрешения на воздухе. Кроме того, наряду с исследованием рельефа АСМ позволяет изучать различные локальные свойства поверхности: фрикционные, адгезионные, механические, электрофизические, магнитные и другие. Также АСМ используется для локальной модификации структуры и свойств поверхности.

Последнее десятилетие в экспериментальной физике характеризуется интенсивным развитием принципиально новых методов изучения поверхностей с нанометровым и атомарным пространственным разрешением. В настоящее время эти методы объединены под общим названием -- сканирующая зондовая микроскопия (СЗМ). Этот термин относится к любым типам микроскопов, в которых изображение формируется за счёт перемещения (сканирования) острого микрозонда (иглы) над исследуемой поверхностью. Родоначальником таких приборов является сканирующий туннельный микроскоп (СТМ).

1. Сканирующая зондовая микроскопия

1.1 Теоретические основы СЗМ

Для детального исследования поверхности твердых тел существует много разнообразных методов. Микроскопия, как средство получения увеличенного изображения, зародилась еще XV в. когда впервые были изготовлены простые увеличительные стекла для изучения насекомых. В конце XVII в. Антонио ван Левенгук изготовил оптический микроскоп, который позволял установить существование отдельных клеток, болезнетворных микробов и бактерий. Уже в 20 веке были разработаны методы микроскопии с помощью электронных и ионных пучков.

Во всех описанных методах применяется следующий принцип: освещение исследуемого объекта потоком частиц и его последующее преобразование. В сканирующей зондовой микроскопии использован другой принцип - вместо зондирующих частиц в ней используется механический зонд, игла. Образно выражаясь, можно сказать, что, если в оптическом или электронном микроскопах образец осматривается, то в СЗМ - ощупывается.

Другим важным принципом, отраженным в названии метода СЗМ, является принцип сканирования, т.е. получение не усредненной информации об объекте исследования, а дискретное (от точки к точке, от линии к линии) перемещение зонда и считывание информации в каждой точке.

Общая конструкция сканирующего зондового микроскопа представлена на рис 1.

Виды сенсоров.

В основе сканирующей зондовой микроскопии лежит детектирование локального взаимодействия, возникающего между зондом и поверхностью исследуемого образца при их взаимном сближении до расстояния ~л, где л- характерная длина затухания взаимодействия «зонд-образец». В зависимости от природы взаимодействия «зонд-образец» различают: сканирующий туннельный микроскоп (СТМ, детектируется туннельный ток), сканирующий силовой микроскоп (ССМ, детектируется силовое взаимодействие), ближнепольный сканирующий оптический микроскоп (БСОМ, детектируется электромагнитное излучение) и т.п. Сканирующая силовая микроскопия в свою очередь подразделяется на атомно-силовую микроскопию (АСМ), магнитно-силовую микроскопию (МСМ), электро-силовую микроскопию (ЭСМ) и другие, в зависимости от вида силового взаимодействия.

Рис. 2. Обобщенная функциональная схема сканирующего зондового микроскопа

При измерении туннельного тока в туннельном сенсоре (рис. 2) используется преобразователь ток-напряжение (ПТН), включенный в цепь протекания тока между зондами образцом. Возможны два варианта включения: с заземленным зондом, когда напряжение смещения подается на образец относительно заземленного зонда или с заземленным образцом, когда напряжение смещения прикладывается к зонду относительно образца.

Рис. 2. Схема туннельного сенсора

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Традиционным датчиком силового взаимодействия является кремниевая микробалка, консоль или кантилевер (от англ. cantilever - консоль) с оптической схемой регистрации величины изгиба кантилевера, возникающего вследствие силового взаимодействия между образцом и зондом, расположенным на конце кантилевера (рис. 3).

Различают контактный, неконтактный и прерывисто-контактный («полуконтактный») способы проведения силовой микроскопии. Использование контактного способа предполагает, что зонд упирается в образец. При изгибе кантилевера под действием контактных сил отраженный от него луч лазера смещается относительно центра квадрантного фотодетектора. Таким образом, отклонение кантилевера может быть определено по относительному изменению освещенности верхней и нижней половинок фотодетектора.

При использование неконтактного способа зонд удален от поверхности и находится в области действия дальнодействующих притягивающих сил. Силы притяжения и их градиенты слабее отталкивающих контактных сил. Поэтому для их детектирования обычно используется модуляционная методика. Для этого с помощью пьезовибратора кантилевер раскачивается по вертикали на резонансной частоте. Вдали от поверхности амплитуда колебаний кантилевера имеет максимальную величину. По мере приближения к поверхности вследствие действия градиента сил притяжения резонансная частота колебаний кантилевера изменяется, при этом уменьшается амплитуда его колебаний. Эта амплитуда регистрируется с помощью оптической системы по относительному изменению переменной освещенности верхней и нижней половинок фотодетектора.

При «полуконтактном» способе измерений также применяется модуляционная методика измерения силового взаимодействия. В «полуконтактном» режиме зонд частично касается поверхности, находясь попеременно как в области притяжения, так и в области отталкивания.

Существуют и другие, более простые, способы детектирования силового взаимодействия, при которых происходит прямое преобразование силового взаимодействия в электрический сигнал. Один из таких способов основан на использовании прямого пьезоэффекта, когда изгиб пьезоматериала под действием силового взаимодействия приводит к появлению электрического сигнала.

Пьезоэлектрический двигатель. Сканеры.

Для контролируемого перемещения иглы на сверхмалых расстояниях в СЗМ используются пьезоэлектрические двигатели. Их задача - обеспечить прецизионное механическое сканирование зондом исследуемого образца путем перемещения зонда относительно неподвижного образца или перемещения образца относительно неподвижного зонда.

Работа большинства пьезоэлектрических двигателей, применяемых в современных СЗМ, основана на использовании обратного пьезоэффекта, который заключается в изменении размеров пьезоматериала под действием электрического поля. Основой большинства применяемых в СЗМ пьезокерамик является состав Pb(ZrTi)O3 (цирконат-титанат свинца, ЦТС) с различными добавками.

Удлинение закрепленной с одного конца пьезопластинки определяется выражением:

где- длина пластины, h-толщина пластины, U - электрическое напряжение, приложенное к электродам, расположенным на гранях пьезопластины,- пьезомодуль материала.

Существует много типов и форм, в которых выпускаются пьезокерамические двигатели. Каждый имеет свой уникальный пьезомодуль от 0,1 до 300 нм/В. Так, керамика с коэффициентом расширения 0,1 нм/В позволяет получить перемещение 0,1 А при приложении напряжения100 mV, что достаточно для получения атомного разрешения. Для получения больших диапазонов сканирования (до нескольких сотен микрон) используется пьезокерамика с большими значениями пьезомодуля.

Конструкции из пьезокерамик, обеспечивающие перемещение по трем координатам x, y (в латеральной плоскости образца) и z (по вертикали), называются «сканерами». Существует несколько типов сканеров, наиболее распространенными из которых являются треногий и трубчатый (рис. 4).

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

В треногом сканере перемещения по трем координатам обеспечивают расположенные в ортогональную структуру три независимые пьезокерамики.

Трубчатые сканеры работают посредством изгиба полой пьезоэлектрической трубки в латеральной плоскости и удлинения или сжатия трубки по оси z. Электроды, управляющие перемещениями трубки в x и y направлениях, размещаются в виде четырех сегментов по наружной поверхности трубки (рис. 4 б). Для изгиба трубки в направлении X, на +X керамику подается напряжение для удлинения одной из ее сторон. Тот же самый принцип используется для задания движения в направлении Y. Смещения в X и Y направлениях пропорциональны приложенному напряжению и квадрату длины трубки. Движение в Z направлении генерируется подачей напряжения на электрод в центре трубки. Это приводит к удлинению всей трубки пропорционально ее длине и приложенному напряжению.

Процесс сканирования поверхности в СЗМ (рис. 5) имеет сходство сдвижением электронного луча по экрану в электроннолучевой трубке телевизора. Зонд движется вдоль линии (строки) сначала в прямом, а потом в обратном направлении (строчная развертка), затем переходит на следующую строку (кадровая развертка). Движение зонда осуществляется спомощью сканера небольшими шагами под действием пилообразных напряжений, подаваемых с генератора развертки (обычно, цифро-аналогового преобразователя). Регистрация информации о рельефе поверхности производится, как правило, на прямом проходе.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

К числу основных параметров, выбираемых перед началом сканирования, относятся:

- размер скана;

- число точек на линии NX и линий в скане NY, определяющие шаг сканирования ?;

- скорость сканирования.

Параметры сканирования выбираются исходя из предварительных данных (размера характерных поверхностных особенностей), которые имеются у исследователя об объекте исследования.

При выборе размера скана необходимо получить наиболее полную информацию о поверхности образца, т.е. отобразить наиболее характерные особенности его поверхности. Например, при сканировании дифракционной решетки с периодом 3 мкм необходимо отобразить хотя бы несколько периодов, т.е. размер скана должен составлять 10 - 15 мкм. В случае если расположение особенностей на поверхности исследуемого объекта неоднородно, то для достоверной оценки необходимо провести сканирование в нескольких отстоящих друг от друга точках на поверхности образца. При отсутствии информации об объекте исследования сначала, как правило, проводят сканирование в области, близкой к максимально доступной для отображения, с целью получения обзорной информации о характере поверхности. Выбор размера скана при повторном сканировании осуществляют исходя из данных, полученных на обзорном скане.

Число точек сканирования (NX, NY) выбирается таким образом, чтобы шаг сканирования ? (расстояние между точками, в которых производится считывание информации о поверхности) был меньше характерных ее особенностей, иначе произойдет потеря части информации, заключенной между точками сканирования. С другой стороны, выбор излишнего количества точек сканирования приведет к увеличению времени получения скана.

Скорость сканирования определяет скорость движения зонда между точками, в которых производится считывание информации. Излишне большая скорость может привести к тому, что система обратной связи не будет успевать отводить зонд от поверхности, что приведет к неправильному воспроизведению вертикальных размеров, а так же к повреждению зонда и поверхности образца. Малая скорость сканирования приведет к увеличению времени получения скана.

Система обратной связи.

В процессе сканирования зонд может находиться над участками поверхности, имеющими различные физические свойства, в результате чего величина и характер взаимодействия зонд-образец будут изменяться. Кроме того, если на поверхности образца есть неровности, то при сканировании будет изменяться и расстояние ?Z между зондом и поверхностью, соответственно будет изменяться и величина локального взаимодействия.

В процессе сканирования производится поддержание постоянной величины локального взаимодействия (силы или туннельного тока) с помощью системы отрицательной обратной связи. При приближении зонда к поверхности сигнал сенсора возрастает. Компаратор сравнивает текущий сигнал сенсора с опорным напряжением Vs и вырабатывает корректирующий сигнал Vfb, используемый в качестве управляющего для пьезопривода, который отводит зонд от поверхности образца. Сигнал для получения изображения топографии поверхности берется при этом из канала z - пьезопривода.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

На рис. 6 показана траектория движения зонда относительно образца (кривая2) и образца относительно зонда (кривая1) при сохранении постоянной величины взаимодействия зонд-образец. Если зонд оказывается над ямкой или областью, где взаимодействие слабее, то образец приподнимается, в противном случае - образец опускается.

Отклик системы обратной связи на возникновение сигнала рассогласования Vfb=V(t) - VS определяется константой цепи обратной связи K или несколькими такими константами. Конкретные значения K зависят от особенностей конструкции конкретного СЗМ (конструкции и характеристик сканера, электроники), режима работы СЗМ (размера скана, скорости сканирования и т.п.), а также особенностей исследуемой поверхности (степень шероховатости, масштаб особенностей топографии, твердость материала и пр.).

В целом, чем больше значение K тем точнее цепь обратной связи отрабатывает черты сканируемой поверхности и тем достовернее данные, получаемые при сканировании. Однако при превышении некоторого критического значения K система обратной связи проявляет склонность к самовозбуждению, т.е. на линии скана наблюдается зашумленность.

Формат СЗМ данных, способы обработки и представления результатов эксперимента.

Информация, полученная с помощью сканирующего зондового микроскопа, хранится в виде СЗМ кадра- двумерного массива целых чисел Zij (матрицы). Каждому значению пары индексов ij соответствует определенная точка поверхности в пределах поля сканирования. Координаты точек поверхности вычисляются с помощью простого умножения соответствующего индекса на величину расстояния между точками, в которых производилось считывании еинформации. Как правило, СЗМ кадры представляют собой квадратные матрицы, имеющие размер 200x200 или 300х300 элементов.

Визуализация СЗМ кадров производится средствами компьютерной графики, в основном, виде двумерных яркостных (2D) и трехмерных (3D) изображений. При 2D визуализации каждой точке поверхности Z=f(x,y) ставится в соответствие тон определенного цвета в соответствии с высотой точки поверхности (рис. 7а). При 3D визуализации изображение поверхности Z=f(x,y) строится в аксонометрической перспективе с помощью пикселей или линий. Наиболее эффективным способом раскраски3D изображений является моделирование условий подсветки поверхности точечным источником, расположенным в некоторой точке пространства над поверхностью (рис. 7 б). При этом удается подчеркнуть отдельные малые особенности рельефа.

а) б)

Рис. 7. Способы графического представления СЗМ - изображений:

а) - 2D, б) - 3D с боковой подсветкой

сканирующий зондовый микроскопия

СЗМ изображения, наряду с полезной информацией, содержат также много побочной информации, искажающей данные о морфологии и свойствах поверхности. На рис. 8 схематически представлены возможные искажения в СЗМ изображениях поверхности, обусловленные не идеальностью аппаратуры и внешними паразитными воздействиями.

Рис. 8. Возможные искажения в СЗМ изображениях

СЗМ изображения, как правило, содержат постоянную составляющую, которая не несет полезной информации о рельефе поверхности, а отражает точность подвода образца в середину динамического диапазона перемещений сканера по оси Z.Постоянная составляющая удаляется из СЗМ кадра программным способом.

Изображения поверхности, получаемые с помощью зондовых микроскопов, как правило, имеют общий наклон. Это может быть обусловлено несколькими причинами. Во-первых, наклон может появляться вследствие неточной установки образца относительно зонда или не плоско параллельности образца; во-вторых, он может быть связан с температурным дрейфом, который приводит к смещению зонда относительно образца; в-третьих, он может быть обусловлен нелинейностью перемещений пьезосканера. На отображение наклона тратится большой объем полезного пространства в СЗМ кадре, так что становятся невидны мелкие детали изображения. Для устранения данного недостатка производят операцию вычитания постоянного наклона (левелинга) (рис. 9).

Рис. 9. Устранение постоянного наклона из СЗМ - изображения

Не идеальность свойств пьезосканера приводит к тому, что СЗМ изображение содержит ряд специфических искажений. В частности, поскольку движение сканера в плоскости образца влияет на положение зонда над поверхностью (по оси Z), СЗМ изображения представляют собой суперпозицию реального рельефа и некоторой поверхности второго (а часто и более высокого) порядка. Для устранения искажений такого рода методом наименьших квадратов находится аппроксимирующая поверхность второго порядка, имеющая минимальные отклонения от исходной поверхности, и затем данная поверхность вычитается из исходного СЗМ изображения.

Шумы аппаратуры, нестабильности контакта зонд-образец при сканировании, внешние акустические шумы и вибрации приводят к тому, что СЗМ изображения, наряду с полезной информацией, имеют шумовую составляющую. Частично шумы СЗМ изображений могут быть удалены программными средствами с помощью применения различных фильтров.

2.2 Сканирующие туннельные микроскопы

Основными методами СТМ являются методы Постоянной Тока и Постоянной Высоты для получения данных о рельефе, дополняемые Методиками Спектроскопических измерений для получения распределений «работы выхода» («высоты барьера») и «локальной плотности состояний» (ЛПС), I(z) и I(V) кривые отображают химические и электронные свойства поверхности.

СТМ - метод постоянной тока (МПТ) предполагает поддержание в процессе сканирования постоянной величины туннельного тока с помощью системы обратной связи. При этом вертикальное смещение сканера (сигнал обратной связи) отражает рельеф поверхности. Скорость сканирования в МПТ ограничивается использованием системы обратной связи. Большие скорости сканирования могут быть достигнуты при использовании Метода Постоянной Высоты (МПВ), однако МПТ позволяет исследовать образцы с развитым рельефом. 4

Рис.10. Обобщенная схема метода постоянного тока

При использовании СТМ - метода постоянной высоты (МПВ) сканер СТМ перемещает зонд только в плоскости, так что изменения тока между острием зонда и поверхностью образца отражают рельеф поверхности. Поскольку по этому методу нет необходимости отслеживать зондом расстояние до поверхности образца, скорости сканирования могут быть более высокими. МПВ может быть применен, таким образом, к образцам с очень ровной поверхностью, поскольку неоднородности поверхности выше 5-10 А будут приводить к разрушению кончика зонда.

Рис.11. Обобщенная схема метода постоянной высоты

СТМ - отображение работы выхода - получается путем поточечного измерения логарифмических изменений туннельного тока при изменении расстояния зонд-образец, т.е. наклона кривой зависимости log I от z. При проведении измерений ЛВБ расстояние зонд-образец варьируется синусоидально, например, путем приложения дополнительного переменного напряжения к сигналу обратной связи, подаваемому на z-секцию пьезосканера. Частота модуляции выбирается много большей полосы пропускания системы обратной связи СТМ.

Рис.12. СТМ - отображение работы выхода

СТМ - отображение плотности состояний основывается на том, что измеряемый в СТМ ток определяется процессами туннелирования через зазор зонд-поверхность образца его величина зависит не только от высоты барьера, но также и от плотности электронных состояний. Соответственно получаемые в СТМ изображения являются не просто изображениями рельефа поверхности образца, на эти изображения может сильно влиять распределение плотности электронных состояний по поверхности образца. Определение ЛПС может также помочь в различении химической природы поверхностных атомов. Метод основывается на измерении распределения ЛПС и производится одновременно с получением СТМ изображения. В процессе сканирования напряжение смещения модулируется на величину dU. Частота модуляции выбирается много большей полосы пропускания системы обратной связи СТМ. Результирующая модуляция туннельного тока dI измеряется, делится на dU и результат представляется в качестве ЛПС изображения.

Рис.13. СТМ - отображение плотности состояний

Характерные величины туннельных токов при СТМ, регистрируемых в процессе измерений, являются достаточно малыми - вплоть до 0,03 нA (а со специальными измерительными СТМ головками - до 0,01 нA), что позволяет также исследовать плохо проводящие поверхности, в частности, биологические объекты. Среди недостатков СТМ можно упомянуть сложность интерпретации результатов измерений некоторых поверхностей, поскольку СТМ изображение определяется не только рельефом поверхности, но также и плотностью состояний, величиной и знаком напряжения смещения, величиной тока. Например, на поверхности высоко ориентированного пиролитического графита (ВОПГ) можно видеть обычно только каждый второй атом. Это связано со спецификой распределения плотности состояний (рис.14).

Рис. 14. Атомарное разрешение на ВОПГ

СТМ способен формировать изображения отдельных атомов на поверхностях металлов, полупроводников и других проводящих образцов путем сканирования образца остроконечной иглой на высоте порядка нескольких атомных диаметров, так что между острием и образцом протекает туннельный ток. Преимуществами являются возможность получения сверхвысоких (атомарных) разрешений (рис.14), недостатками - возможность работы только с проводящими образцами, высокие требования к чистоте поверхности.

Режим спектроскопии (ССМ) может быть использован не только в качестве инструмента для получения рельефа поверхности, но также и для картирования ряда других характеристик и материальных свойств образца, в честности, зарядовой плотности, адгезии и упругости, а также сил разрыва связей лиганд-рецептор. ССМ может быть использован также в качестве инструмента силовой спектроскопии - для измерений зависимости сил от расстояния. Для колеблющегося кантилевера сила взаимодействия зонд-поверхность может оказывать влияние также и на некоторые другие характеристики - амплитуду, частоту, фазу, добротность и т.д. Соответствующие зависимости этих характеристик от расстояния могут также рассматриваться как спектроскопические данные.

Спектроскопические измерения Локальной Высоты Барьера (ЛВБ спектроскопия) позволяет получать информацию о пространственном распределении микроскопической работы выхода поверхности, как описывается ниже. Туннельный ток в СТМэкспоненциально затухает с расстоянием зонд-образец z какгде константа затухания k определяется выражением

При отображении ЛВБ мы измеряем чувствительность туннельного тока к вариациям расстояния зонд-образец в каждом пикселе СТМ изображения. Получаемая по этому методу ЛВБ является так называемой видимой высотой барьера U.

Эта величина U обычно сравнивается со средней работой выхода Uav = (Up + Us)/2, где Up и Us являются работами выхода материала зонда и образца соответственно. Во многих случаях экспериментальная величина U не равна в точности Uav но является меньшей величиной. Тем не менее, известно, что величина U близка к локальному поверхностному потенциалу (локальной работе выхода) и является его хорошей мерой.

СТМ - I(z) спектроскопия измеряет туннельный ток в зависимости от расстояния зон - образец в каждой точке СТМ изображения. Для Uav= I eV 2k = 1.025 A-IeV-I. Резкая зависимость I(z) помогает определить качество острия зонда. Как установлено эмпирически если туннельный ток IT падает в два раза при Z < 3 A, то острие рассматривается как очень хорошее, если при Z < 10 A, то использование острия возможно для получения атомарного разрешения на ВОПГ. Если же ток спадает в два раза при Z > 20 A, то зонд не может быть использован и должен быть заменен.

Рис. 15. СТМ - I(z) спектроскопия

СТМ - I(v) спектроскопия (or Current Imaging Tunneling Spectroscopy, CITS) предполагает одновременное получение обычного изображения рельефа при фиксированных значениях тока Io и напряжения смещения Vo. В каждой точке изображения обратная связь разрывается, и напряжение смещения проходит ряд значений Vi при этом записываются соответствующие значения тока Ii. Затем напряжение возвращается к Vo и обратная связь включается снова.

Рис. 16. СТМ - I(v) спектроскопия

Каждая I-V кривая может быть получена за несколько миллисекунд, так что дрейф положения зонда не оказывает существенного влияния. Эта процедура генерирует полное токовое изображение Ii(x,y) для каждого значения напряжения Vi в дополнение к изображению рельефа z(x,y)|VoIo. CITS значения могут быть использованы для расчета токового разностного изображения DIVi, Vj(x,y) где Vi и Vj ограничивают частные поверхностные состояния, производя реальное пространственное отображение поверхностных состояний с атомарным разрешением. Эта методика может быть использована, например, в сверхвысоком вакууме для отображения заполненных состояний адатомов или ненасыщенных связей для реконструкций кремния.

1.3 Атомно-силовая микроскопия

В реальных условиях (в условиях окружающей атмосферы) в воздухе практически всегда присутствует некоторая влажность и на поверхностях образца и иглы присутствуют слои адсорбированной воды. Когда кантилевер достигает поверхности образца возникают капиллярные силы, которые удерживают иглу кантилевера в контакте с поверхностью и увеличивают минимально достижимую силу взаимодействия. Электростатическое взаимодействие между зондом и образцом может проявляться довольно часто. Оно может быть как притягивающим, так и отталкивающим. Ван дер Ваальсовы силы притяжения, капиллярные, электростатические и силы отталкивания в точке, где зонд касается образца, в равновесии уравновешиваются силой, действующей на кончик зонда со стороны изогнутого кантилевера. Недостатки туннельного режима были преодолены с изобретением Биннигом атомно-силового микроскопа.

При взаимодействии с поверхностью образца макроскопическая гибкая консоль (кантилевер) с острой иглой под действием атомных сил может быть изогнута на достаточно большую величину, чтобы быть измеренной с помощью обычных средств. При работе в Контактном методе изгиб кантилевера отражает отталкивающую силу и используется непосредственно, в системе обратной связи или в их комбинации для отображения рельефа поверхности.

Наряду с отображением рельефа в процессе сканирования могут отображаться и другие характеристики исследуемого образца. Если кантилевер с зондом являются проводящими, появляется возможность отображения сопротивления растекания образца. Если сканирование проводится в направлении перпендикулярном продольной оси кантилевера (в латеральном направлении), силы трения вызывают его скручивание. Измеряя это скручивание с помощью четырех секционного фотодетектора можно одновременно с отображением рельефа отображать также и распределение сил трения по поверхности образца.

Рис. 17. АСМ - метод постоянной высоты

Сила отталкивания F действующая на зонд связана с величиной отклонения кантилевера x законом Гука: F = -kx, где k является жесткостью кантилевера. Величина жесткости для различных кантилеверов варьируется от 0.01 до нескольких Н/м. Основным достоинством метода постоянной высоты является высокая скорость сканирования. Она ограничивается практически только резонансными свойствами кантилевера.

К недостаткам метода постоянной высоты относится требование достаточной гладкости поверхности образцов. Достаточно мягкие образы (подобно полимерам, биологическим объектам, ЛБ - пленкам и т.д.) при исследованиях могут разрушаться (процарапываться), поскольку зонд находится в непосредственном механическим контакте с поверхностью. При сканировании относительно мягких образцов с развитой поверхностью сила давления зонда на поверхность варьируется, одновременно неравномерно прогибается и поверхность образца. В результате полученный рельеф поверхности может быть искажен. Возможное наличие существенных капиллярных сил, обусловленных наличием слоя воды, также приводит к ухудшению разрешения.

При использовании АСМ - метода постоянной силы величина изгиба кантилевера поддерживается в процессе сканирования постоянной при помощи системы обратной связи. Таким образом, вертикальные смещения сканера отражают рельеф поверхности исследуемого образца.

Основным достоинством метода постоянной силы является возможность наряду с измерениями рельефа поверхности проводить измерения и других характеристик - сил трения, сопротивления растекания и др.

Рис. 18. АСМ - метод постоянной силы

АСМ - контактный метод рассогласования может рассматриваться как промежуточный между методом постоянной силы и методом постоянной высоты, если коэффициент усиления системы обратной связи (т.е. скорость отработки сигнала рассогласования) устанавливается таким, чтобы система была способна отрабатывать относительно гладкие особенности рельефа и в то же время быть достаточно медленной, чтобы отрабатывать крутые ступеньки. В результате сигнал рассогласования будет плохо отображать гладкие особенности рельефа и с высоким контрастом отображать резкие шероховатости. Такой способ отображения может быть полезным для поиска небольших неоднородностей на большом относительно гладком фоне.

Рис. 19. АСМ - контактный метод рассогласования

АСМ - метод латеральных сил позволяет различать области с различными коэффициентами трения, а также подчеркивать особенности рельефа поверхности. Эти возможности могут быть использованы одновременно с получением рельефа поверхности для более полной характеризации исследуемого образца. При сканировании гладкой поверхности с участками с различными коэффициентами трения угол скручивания меняется на каждом участке. Это позволяет проводить измерения локальной силы трения. Если же поверхность не гладкая, то такая интерпретация затруднена. Для того, чтобы различить участки с различными коэффициентами трения и неоднородности рельефа необходимо использовать второй проход в противоположном направлении. Кроме того измерения латеральных сил позволяют относительно просто достигать атомарного разрешения на слюде и на других слоистых материалах. Метод латеральных сил имеет важное значение при исследовании полупроводников, полимеров, пленочных покрытий, запоминающих сред, при изучениях поверхностных загрязнений, химических особенностей и фрикционных характеристик, а также постоянно растущий ряд новых применений. Физические основы метода латеральных сил заключаются в следующем. При сканировании по методу постоянной силы перпендикулярно продольной оси кантилевера помимо изгиба кантилевера в нормальном направлении происходит также и его торсионный изгиб. Он обусловлен моментом силы действующей на зонд. Для малых отклонений угол закручивания пропорционален поперечной (латеральной) силе. Торсионное закручивание кантилевера измеряется оптической следящей системой микроскопа.

Рис. 20. АСМ - метод латеральных сил

АСМ - отображение сопротивления растекания возможно при использовании проводящего зонда АСМ, находящегося в контакте с поверхностью образца. К зонду прикладывается напряжение - смещение и проводятся измерения результирующего тока через образец в зависимости от положения зонда одновременно с получением данных о рельефе по методу постоянной силы. При постоянном контактном сопротивлении зонд-поверхность при заданном смещении величина тока пропорциональна локальному сопротивлению исследуемого образца. Отображение сопротивления растекания может быть также использовано и при анализе сложных структур, таких как интегральные схемы.

Рис. 21. АСМ - отображение сопротивления растекания.

АСМ - контактная емкостная микроскопия (КЕМ) - в процессе проведения контактной емкостной микроскопии определяется изменение реакции зонда над поверхностью образца при приложении различных напряжений. В результате строится относительная характеристика изменения поверхностной емкости. КЕМ позволяет определять зоны с различной электрической емкостью, такие как зоны различной степени легирования в полупроводнике.

Рис. 22. АСМ - контактная емкостная микроскопия

В процессе реализации метода модуляции силы одновременно со сканированием образца в соответствии с методом постоянной силы сканер (или образец) совершает вертикальные периодические колебания. При периодическим движении кантилевер «чувствует» поверхность образца. При этом давление зонда на поверхность образца не остается постоянной, но содержит периодическую (обычно синусоидальную) компоненту. В соответствии с локальной жесткостью образца величина соответствующих вмятин будет изменяться в процессе сканирования. На жестких участках поверхности образца вмятины будут мельче, а на мягких участках - глубже. Отслеживание рельефа поверхности образца проводится с использованием усредненного изгиба кантилевера в системе обратной связи. Если известны величины вертикального смещения сканера Dz, вертикального смещения зонда D и жесткость кантилевера кс, то можно определить локальную жесткость исследуемого образца Кs:

Кs = Кс· (Dz/D - 1)

Рис. 23. АСМ - метод модуляции силы

В свою очередь при известной локальной жесткости можно определить модуль упругости образца. Это может быть сделано с использованием калибровочных измерений или с использованием модели Герца. Методы модуляции силы широко используется при исследованиях полимеров, полупроводников, биообъектов, в особенности при исследованиях композитов.

АСМ - полуконтактные методы основаны на использование колеблющегося кантилевера в Сканирующей Силовой Микроскопии впервые было предложено Биннигом. Он показал влияние градиентов сил на сдвиг резонансной частоты кантилевера и возможность бесконтактного сканирования поверхности образца. Была найдена возможность сканирования поверхности образца не только в притягивающих, но и в отталкивающих силах. Относительно слабый сдвиг частоты колебаний под влиянием отталкивающих сил означает, что контакт зонда с поверхностью образца в процессе колебаний не является постоянным. Только в течение короткой части периода колебаний зонд «ощущает» контактные отталкивающие силы. Особенно это касается колебаний с большой амплитудой. Сканирование поверхности образца с колеблющимся таким образом кантилевером является не бесконтактным, а скорее прерывисто-контактным. Соответствующий метод сканирующей силовой микроскопии (Прерывисто-контактный или "Полуконтактный" метод) довольно часто используется на практике.

Рис. 24. АСМ - полуконтактные методы

Полуконтактный метод обладает определенными преимуществами по сравнению контактными методами. Прежде всего, при использовании этого метода давление кантилевера на поверхность образца существенно меньше, что позволяет работать с более мягкими и легко разрушающимися материалами, такими как полимеры и биоматериалы. "Полуконтактный" метод также более чувствителен к различным взаимодействиям с поверхностью, что дает возможность определить ряд характеристик поверхности - распределение вязкости и упругости, электрических и магнитных доменов

АСМ - метод отображения фазы - когда в процессе колебаний кончик зонда касается поверхности образца, он испытывает не только отталкивающие, но и адгезионные, капиллярные и ряд других сил. В результате взаимодействия зонда с поверхностью образца происходит сдвиг фазы колебаний. Если поверхность образца является неоднородной по своим свойствам, соответствующим будет и фазовый сдвиг. Распределение фазового сдвига по поверхности будет отражать распределение характеристик материала образца. Позволяет получать информацию в широкой области применений: для исследований биологических объектов, образцов с магнитными и электрическими характеристиками, и др.

Рис. 25. Метод отображения фазы

Широко используемый прерывисто-контактный ("полуконтактный"). Метод обладает определенными недостатками, связанными с использованием системы обратной связи. Скорость сканирования в "полуконтактном" методе ограничивается временем срабатывания обратной связи. Однако, в результате правильного подбора коэффициента усиления обратной связи этот недостаток может быть устранен. Также возможна настройка для оптимального отображения пологих и незначительных изменений рельефа.

Рис. 26. АСМ - полуконтактный метод рассогласования

АСМ - бесконтактные методы - Бесконтактная ССМ (БК ССМ), предложенная в 1987 г., обладает уникальными возможностями по сравнению другими методами зондовой микроскопии, такими как Контактная ССМ и СТМ. Отсутствие сил отталкивания в БК ССМ позволяет использовать ее в исследованиях «мягких образцов», при этом в БК ССМ, в отличие от СТМ, не требуется наличие проводящих образцов. БК ССМ использует принцип определения «модуляции амплитуды». Соответствующая измерительная схема использует изменения амплитуды колебаний кантилевера (A), обусловленные взаимодействием зонда с образцом. Работа по методу БК ССМ может быть описан в терминах градиентно-силовой модели. В соответствии с этой моделью в пределе малых A при приближении кантилевера к образцу резонансная частота кантилевера сдвигается на величину к своему новому значению в соответствии с выражением

где есть новое значение резонансной частоты кантилевера с номинальной величиной жесткости , а - градиента силы взаимодействия кантилевера с образцом. Величина z представляет эффективный зазор зонд-образец, для случая сил притяжения величина

отрицательна.

Рис. 27. АСМ - бесконтактные методы

Если возбуждающая частота колебаний кантилевера , то сдвиг резонансной частоты в сторону меньших значений приводит к уменьшению амплитуды колебаний кантилевера с частотой при приближении к образцу. Эти изменения амплитуды A используются в качестве входного сигнала в системе обратной связи. Для получения сканированного изображения по методу БК ССМ необходимо, прежде всего, выбрать некую амплитуду Aset в качестве уставки, при этом Aset < A(fset) когда кантилевер находится вдали от поверхности образца. Система обратной связи подводит кантилевер поближе к поверхности, пока его мгновенная амплитуда A не станет равной амплитуде Aset при заданной частоте возбуждения колебаний . Начиная с этой точки может начаться сканирование образца в x-y плоскости с удержанием системой обратной связи A = Aset = constant для получения БК ССМ изображения. Система обратной связи подводит кантилевер ближе к образцу (в среднем) если Aset уменьшается в какой-либо точке, и отодвигает кантилевер от образца (в среднем) если Aset увеличивается. В целом, как следствие вышеизложенной модели в пределе малых A сканированное изображение может рассматриваться как рельеф постоянного градиента силы взаимодействия зонд-образец. Метод БК ССМ обладает тем преимуществом, что зонд не контактирует с образцом и поэтому не разрушает его и не искажает его изображения. В частности, это может быть важным при исследовании биологических образцов.

1.4 Ближнепольная оптическая микроскопия (СБОМ)

Традиционные методы получения оптических изображений объектов

имеют существенные ограничения, связанные с дифракцией света. Одним из основополагающих законов оптики является существование так назы-ваемого дифракционного предела, который устанавливает минимальный размер(R) объекта, изображение которого может быть построено оптической системой при использовании света с длиной волны л:

где n-- показатель преломления среды. Для оптического диапазона длин волн предельный размер составляет величину порядка200ч300 нм. В ближнепольной оптической микроскопии используются другие принципы построения изображения объекта, которые позволяют преодолеть трудности, связанные с дифракцией света, и реализовать пространственное разрешение на уровне10 нм и лучше.

Идея СБОМа была предложена в1928 году Сингхом (E.H. Syngh), но она намного опередила технические возможности своего времени и осталась практически незамеченной. Ее первое подтверждение было получено Эшем (E.A. Ash) в опытах с микроволнами в1972 году. Сканирующий ближнепольный оптический микроскоп был изобретен Дитером Полем (лаборатория фирмыIBM, г. Цюрих, Швейцария) в 1982 году сразу вслед за изобретением туннельного микроскопа. В основе работы данного прибора используется явление прохождения света через субволновые диафрагмы (отверстия с диаметром много меньше длины волны падающего излучения).

Рис. 28. (а) -- Прохождение света через отверстие в экране с субволновой апертурой. (б) -- Линии постоянной интенсивности оптического излучения в области субволнового отверстия

При прохождении света через субволновое отверстие наблюдается ряд особенностей. Электромагнитное поле в области диафрагмы имеет сложную структуру. Непосредственно за отверстием на расстояниях Z < 100а располагается так называемая ближняя зона, в которой электромагнитное поле существует, в основном, в виде эванесцентных (не распространяющихся) мод, локализованных вблизи поверхности диафрагмы. В области расстояний Z > 100a располагается дальняя зона, в которой наблюдаются лишь излучательные моды. Мощность излучения за субволновой диафрагмой в дальней зоне может быть оценена по следующей формуле:

где k - волновой вектор, - плотность мощности падающего излу-чения. Оценки показывают, что для излучения с длиной волны порядка л = 500 нм и диафрагмы с отверстием ~ 5 нм мощность излучения в дальней зоне составляет по порядку величин 10-10 от мощности падающего излучения. Поэтому, на первый взгляд, кажется, что использование малых отверстий для построения растровых оптических изображений исследуемых образцов практически невозможно. Однако, если поместить исследуемый объект непосредственно за отверстием в ближней зоне, то вследствие взаимодействия эванесцентных мод с образцом часть энергии электромагнитного поля переходит в излучательные моды, интенсивность которых может быть зарегистрирована оптическим фотоприемником. Таким образом, ближнепольное изображение формируется при сканировании исследуемого образца диафрагмой с субволновым отверстием и регистрируется в виде распределения интенсивности оптического излучения в зависимости от положения диафрагмы I(x,y). Контраст на СБОМ изображениях определяется процессами отражения, преломления, поглощения и рассеяния света, которые, в свою очередь, зависят от локальных оптических свойств образца.

СБОМ позволяет решать следующие задачи:

1. Определять рельеф исследуемого образца;

2. Получать данные об оптических свойствах поверхности образца (коэффициентах отражения и пропускания, распределения люминесцентных характеристик);

3. Проводить измерения локальных спектральных характеристик;

4. Выполнять нанолитографические операции.

Все ближнепольные микроскопы включают несколько базовых элементов конструкции:

1. зонд;

2. система перемещения зонда относительно поверхности образца по2-м (X-Y) или 3-м (X-Y-Z) координатам(система развертки);

3. регистрирующая система;

4. оптическая система.

Исследование оптических характеристик с разрешением ниже дифракционного предела производится с помощью СБОМ измерительной головки с оптоволоконным зондовым датчиком, ввод излучения в который осуществляется с помощью лазерного модуля. Выбор участка поверхности образца для исследований и контроль процедуры подвода зонда к образцу осуществляется с помощью системы видеонаблюдения. Конструкция сменного основания позволяет наряду со СБОМ изображением получать и оптическое изображение исследуемого образца с помощью инвертированного микроскопа. Объектив инвертированного микроскопа располагается в сменном основании, в котором встроены системы грубой и точной фокусировки, позволяющие использовать высокоразрешающие объективы, в т.ч. иммерсионные. В сменном основании помимо системы грубого ручного позиционирования образца содержится также система точного XY позиционирования, также позволяющая осуществлять XY сканирование. Получение высокого разрешения обеспечивается также использованием виброизолирующей платформы с системой активной виброизоляции.

Оптический инвертированный микроскоп позволяет получать наряду со СБОМ изображением также и оптическое, визуально следить за процессом подвода зонда, а также снимать оптический сигнал с помощью модуля ФЭУ.

Базовый блок Интегра служит для установки на него сменного основания, а также подключения через него измерительной головки и сменного основания к контроллеру.

В базовом блоке расположен механизм подвода, обеспечивающий подвод объектива к образцу автоматизировано, с помощью шагового двигателя, либо вручную.

Сканирующее сменное основание служит для установки исследуемого образца, измерительной головки и объектива инвертированного микроскопа.

Лазерный модуль предназначен для ввода лазерного излучения в оптическое волокно. Используется твердотельный лазер с длиной волны 488 нм.

СБОМ измерительная головка предназначена для измерения рельефа поверхности образца и его приповерхностных оптических характеристик, при этом в процессе измерений могут регистрироваться амплитуда и фаза колебаний зонда.

Основной элемент любого ближнепольного микроскопа - оптический зонд - оптоволоконный зондовый датчик, представляющий собой аксиально-симметричный оптический волновод из материалов с отличающимися показателями преломления (Рис. 30).

Рис. 30. Схематическое изображение строения оптического волокна

Оптическое волокно состоит из сердцевины (core) и оболочки (cladding). Снаружи волокно покрывается защитным слоем. Сердцевина и оболочка изготавливаются, как правило, из особого кварцевого стекла. При этом стекло, используемое для оболочки, имеет меньший показатель преломления, чем стекло для сердцевины. (На практике показатель преломления стекла регулируется с помощь легирующих добавок, так что коэффициенты преломления сердцевины и оболочки различаются на величины порядка1%). Такая система, вследствие явления полного внутреннего отражения, позволяет локализовать оптическое излучение в области сердцевины и практически без потерь транспортировать его на большие расстояния.


Подобные документы

  • Принципы работы сканирующих зондовых микроскопов. Сканирующие элементы, защита зондовых микроскопов от внешних воздействий. Стабилизация термодрейфа положения зонда над поверхностью. Формирование и обработка изображений. Атомно-силовая микроскопия.

    курсовая работа [3,0 M], добавлен 17.12.2014

  • Решение проблемы увеличения разрешающей способности микроскопов без разрушения или изменения исследуемого образца. История появления зондовой микроскопии. Атомно-силовой микроскоп и его конструктивные составляющие, обработка полученной информации.

    реферат [692,6 K], добавлен 19.12.2015

  • История микроскопа - прибора для получения увеличенного изображения объектов, не видимых невооруженным глазом. Методы световой микроскопии. Принцип действия и устройство металлографического микроскопа. Методы микроскопического исследования металлов.

    реферат [3,3 M], добавлен 10.06.2009

  • Общие сведения об атомно-силовой микроскопии, принцип работы кантилевера. Режимы работы атомно-силового микроскопа: контактный, бесконтактный и полуконтактный. Использование микроскопа для изучения материалов и процессов с нанометровым разрешением.

    реферат [167,4 K], добавлен 09.04.2018

  • Сканирующие зондовые методы исследования и атомного дизайна. Основные методы и приборы для исследования размеров зерен и их распределения в нанокристаллическом образце. Гранулометрия и классификация наночастиц. Ближнепольная оптическая микроскопия.

    реферат [1,1 M], добавлен 13.06.2010

  • Основы сканирующей электронной микроскопии. Методические особенности электронно-микроскопического исследования металлических расплавов. Особенности микроскопов, предназначенных для исследования структуры поверхностных слоев металлических расплавов.

    реферат [1,5 M], добавлен 11.05.2013

  • Магнитно-силовая микроскопия как инструмент для исследования микро- и наномагнитных структур. Определение рельефа с использованием контактного или прерывисто-контатного методов. Магнитное взаимодействие, явление парамагнетизма и ферромагнетизма.

    реферат [592,7 K], добавлен 18.10.2013

  • Взаимодействие зонда и исследуемой поверхности с использованием обратной связи. Методы постоянного туннельного тока и постоянной высоты для получения изображения рельефа поверхности. Принципы атомно-силовой оптической и магнитно-силовой микроскопии.

    реферат [517,5 K], добавлен 18.04.2016

  • Система изготовления острий (зондов). СТМ для сканирующих туннельных микроскопов как прецизионный инструмент для изготовления острий (зондов) из вольфрамовой проволоки методом электрохимического травления. Конструкция СТМ, режимы и порядок работы.

    презентация [13,3 M], добавлен 19.02.2016

  • История развития нанотехнологии. Сканирующая зондовая микроскопия (СЗМ). Наночастицы. Перспективы и проблемы. Финансирование. Медицина и биология. Промышленность и сельское хозяйство. Экология. Освоение космоса. Информационные и военные технологии.

    реферат [504,7 K], добавлен 16.03.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.