Термодинамические свойства воды и водяного пара
Расчет допустимого количества воды, сбрасываемой ГРЭС в пруд-охладитель. Подбор безразмерных соотношений для числа Шервуда Sh. Определение теплового потока на метр трубы. Постановка задачи теплообмена. Теплопроводность через цилиндрическую стенку.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 24.05.2015 |
Размер файла | 1,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Задание
Часть 1. Определить допустимое количество воды, сбрасываемой летом ГРЭС в пруд-охладитель, имеющий размеры 750 х 750 м.
Скорость ветра W, м/с, температура воды и воздуха tв.
Расчеты выполняются для случаев, когда окружающий воздух имеет относительную влажность: а) ??=??1; б)??=??2.
Часть 2. В процессе эксплуатации парового котла его стальные кипятильные трубы диаметром d1/d2снаружи покрылись слоем сажи толщиной ??с , а внутри слоем накипи толщиной ??н .Температура дымовых газов, омывающих кипятильные трубы поперечно - tг , давление пара в котле Рн . Определить температуры на границах между слоями стенки и тепловой поток на 1 пог. м на 1м2 наружной и внутренней поверхности трубы. Представить данные расчета в виде графической зависимости.
Примечание:
накипь богата силикатами.
марка стали Ст. У12.
Параметры |
Вариант №2 |
|
Скорость ветра, W , м/с |
12 |
|
Температура воды и воздуха, tв , ?С |
21 |
|
Относительная влажность воздуха а) ??1, % б) ??2 , % |
а)18 б)65 |
|
Наружный диаметр труб d1 , м |
0,180 |
|
Внутренний диаметр труб d2 , м |
0,162 |
|
Толщина накипи, мм |
1,3 |
|
Толщина сажи, мм |
1,1 |
|
Температура газов, tг , ?С |
775 |
|
Температура питательной воды tпв , ?С |
79 |
|
Скорость газов, Wг , м/с |
12,5 |
|
Давление пара, Рн , МПа |
1,82 |
|
Концентрация СО2 , % |
17,5 |
|
Концентрация Н2О, % |
16,5 |
|
Концентрация N2 , % |
64 |
|
Объект излучения - |
цилиндр |
Оглавление
Введение
Часть 1.Исходные данные
Часть 2.Исходные данные
2.1Постановка задачи теплообмена
2.2 Расчет параметров теплообмена
2.3 Выполнение нулевого приближения
2.4 Выполнение первого приближения
2.5 Выполнение второго приближения
Заключение
Перечень ссылок
Приложения
тепловой поток теплообмен вода
Введение
В дисциплине изучаются закономерности процессов теплообмена, сопровождающихся переносом вещества, то есть, массообменом.
На практике, тепломассообмен происходит во многих технических системах, использующих в своей работе жидкие или газообразные среды. Это -- котельные установки, тепловые сети, литейное производство, различное теплообменное оборудование, например, электростанций, конструкции зданий и сооружений и т. д. Сама рабочая среда, при этом, чистое вещество или различные смеси и растворы, может оставаться постоянной или, меняя агрегатное состояние, осуществлять фазовые переходы, такие как, испарение в паровоздушную среду, конденсация пара из смеси «пар -- воздух», остывание расплавов и т. п.
В данной курсовой работе предоставлено решение двух проблем.
Во-первых, это расчет допустимого количества воды, сбрасываемой ГРЭС в пруд-охладитель, а, во-вторых, определение теплового потока на 1 м2 трубы.
Часть 1.Исходные данные
Определить допустимое количество воды, сбрасываемой летом ГРЭС в пруд-охладитель, имеющий размеры 750 х 750 м.
Скорость ветра W=12 м/с, температура воды и воздуха tв=21 ?С.
Расчеты выполняются для случаев, когда окружающий воздух имеет относительную влажность: а) ??1=18; б)??2=65.
Решение
Эта задача относится к типу задач по процессам масообмена при вынужденной конвекции от плоской пластины. Прежде чем подобрать соответствующие безразмерные соотношения для числа Шервуда Sh (т.н. диффузионное число Нуссельта NuD), следует определить, будет ли течение воздуха на поверхности пруда ламинарным или турбулентным. Значение критерия Рейнольдса Re при достижении воздухом конца пруда равно:
значение коэффициента кинематической вязкости воздуха при 21 ?С;
нt=0 ?C = 13.3 *10-6 м2/с;
нt=100 ?C = 23 *10-6 м2/с;
нt=21 ?C = *21+13,3*= м2/c.
Re = = = .
Следовательно, течение воздуха полностью турбулентное(Re?2300).
Число Шмидта Sc (диффузионный критерий Прандтля Prd) равно:
Sct=0 ?C = 0.707
Sct=100 ?C = 0.688
Sct=21 ?C = * 21+0,707 = 0,703.
Число Шервуда Sh равно
Sh = 0,035*Re0.8 * Sc0.33 = = 322379.20.
Коэффициент диффузии равен
Dt=0 ?C = 6.76 м2/c
Dt=100 ?C = 12.1 м2/c
Dt=21 ?C = *21+6.76*= 7.881* м2/ч = 2,19* м2/c.
Коэффициент массоотдачи , отнесенный к разности объемных концентраций водяного пара в воздухе и характеризующий линейную скорость испарения воды
?? = = = 0.0094 м/с.
Определим концентрации паров воды у поверхности озера и в окружающем воздухе. У поверхности воды воздух насыщенный и его относительная влажность равна 100 %. Из таблиц для водяного пара давление насыщения при 21 ?C равно Рнас = 2,4877кПа. Концентрация водяного пара при 100% влажности равна:
= = = 0,01832 кг/м3.
а) При относительной влажности окружающего воздуха 18% концентрация водяного пара равна
= = = 0,003297 кг/м3.
Массовая скорость испарения воды равна:
m = ??*S( - ) = 0.0094*7502*(0.01832-0.003297) = 79.52кг/с.
б) При относительной влажности окружающего воздуха 65% концентрация водяного пара в воздухе равна
= = = 0,01191 кг/м3.
Массовая скорость испарения воды равна
m = ??*S( - ) = 0.0094*7502*(0.01832-0.01191) = 33,94 кг/с.
что на 42,7% меньше скорости испарения воды при относительной влажности окружающего воздуха 18%.
Часть 2. Исходные данные
В процессе эксплуатации парового котла его стальные кипятильные трубы диаметром d1/d2снаружи покрылись слоем сажи толщиной ??с , а внутри слоем накипи толщиной ??н .Температура дымовых газов, омывающих кипятильные трубы поперечно - tг , давление пара в котле Рн . Определить температуры на границах между слоями стенки и тепловой поток на 1 пог. м на 1м2 наружной и внутренней поверхности трубы. Представить данные расчета в виде графической зависимости.
Исходные данные
Наружный диаметр труб d1 , м |
0,180 |
|
Внутренний диаметр труб d2 , м |
0,162 |
|
Толщина накипи, мм |
1,3 |
|
Толщина сажи, мм |
1,1 |
|
Температура газов, tг , ?С |
775 |
|
Температура питательной воды tпв , ?С |
79 |
|
Скорость газов, Wг , м/с |
12,5 |
|
Давление пара, Рн , МПа |
1,82 |
|
Концентрация СО2 , % |
17,5 |
|
Концентрация Н2О, % |
16,5 |
|
Концентрация N2 , % |
64 |
|
Объект излучения - |
цилиндр |
|
Накипь богата силикатами |
||
Марка стали |
Ст. У12 |
Постановка задачи теплообмена
Рис.1 Теплопроводность через цилиндрическую стенку.
В общем случае дифференциальное уравнение теплопроводности для бесконечного цилиндра при отсутствии внутренних источников тепла (qv = 0) имеет вид:
(1)
При стационарном тепловом режиме температуры отдельных точек тела постоянны, поэтому и дифференциальное уравнение с учетом зависимости коэффициента теплопроводности ?? от температуры и радиуса для многослойной цилиндрической стенки имеет вид:
(2)
Граничные условия имеют вид (см. рис.1):
Граница дымовые газы - сажа:
r = rc
(3)
где: ??с - коэффициент теплопроводности сажи; qконв = ??г(tп - tн) - плотность теплового потока (конвективная составляющая) qизл - составляющая потока излучения дымовых газов.
Граница насыщенный пар - накипь:
r = rн
(4)
где: ??н - коэффициент теплопроводности накипи; qконв2 = ??конв2(tп - tн) - плотность теплового потока(конвективная составляющая омывания насыщенным паром покрытой накипью стенки трубы).
Граница накипь - металл:
r = r2
(5)
где: ??м - коэффициент теплопроводности металла(стальной трубы).
Граница металл - сажа:
r = r1
(6)
Нужно учесть, что рассматривается нелинейная задача, т.к. ?? = ??(t).
Для определения количества тепла, прошедшего через цилиндрическую поверхность (S) в единицу времени, воспользуемся законом Фурье:
С другой стороны, после интегрирования уравнения (2) получим:
Постоянные интегрирования С1 и С2 определим из граничных условий (для металлического слоя цилиндрической стенки):
при r = r1 t = tr1
при r = r2 t = tr2
Тогда имеем систему уравнений с двумя неизвестными:
Решением этой системы будет:
После подстановки С1 и С2 получим общее выражение для распределения температуры по толщине цилиндрической стенки, подчиняющееся логарифмическому закону:
Тогда с учетом выражения получаем выражение для определения плотности теплового потока цилиндрической стенки(в общем случае):
(7)
Полное количество тепла, проходящее через боковую поверхность цилиндрической стенки площадью S = 2??rl (l - длина цилиндрической стенки), удобно отнести к 1 погонному метру стенки, тогда уравнение (7) необходимо умножить на 2??r
(8)
Для многослойной стенки процесс теплопередачи можно рассчитать следующим способом(см. рис.2):
Рис. 2 - Распределение температур
Граница дымовые газы - сажа:
Теплопередача от греющей среды к саже определяется по закону
Ньютона-Рихмана:
qконв1 = ??г(tг - td3) (9)
где ??г - коэффициент теплопередачи от дымовых газов к саже;
tг - температура дымовых газов;
td3 - температура поверхности слоя сажи (на рис. td3 = t4).
Полное количество тепла, проходящее через d = d3 длиной 1 м определяется следующим образом:
(10)
В данном случае ??г состоит из конвективной и лучистой составляющей, т.е.
??г = ??конв1 + ??изл
Теплопроводность через сажу:
Количество тепла через слой сажи определяется на основании уравнения (8)
(11)
Теплопроводность через металл:
Количество тепла через металл трубы определяется из уравнения (8)
(12)
Теплопроводность через накипь:
Количество тепла, проходящее через накипь, определяется следующим образом:
(13)
Теплопроводности от накипи к насыщенному пару определяется законом Ньютона:
(14)
На основании закона сохранения энергии при стационарном тепловом режиме
(15)
тогда
(16)
Решая совместно систему уравнений (16) получим:
(17)
Выражение (17) можно записать в следующем виде:
Q = K(tг - tп) (18)
где К - коэффициент теплопередачи
(19)
Выражение (18) можно записать в другом виде:
(20)
где Rп - термическое сопротивление теплопроводности от накипи к пару,
Rн - термическое сопротивление теплопроводности накипи,
RM - термическое сопротивление материала трубы,
Rс - термическое сопротивление теплопроводности сажи,
Rг - термическое сопротивление теплопроводности от дымовых газов к саже,
Коэффициент теплоотдачи ??г состоит из конвективной и лучистой составляющей, т.е.:
(21)
Коэффициент теплоотдачи ??конв1 можно определить из критериального уравнения
(22)
где Nu -критерий Нуссельта; Re - критерий Рейнольдса; Prtг - критерий Прандтля при t = tг, Prtст - критерий Прандтля при t = tст.
Коэффициенты с, m, n выбираются в зависимости от формы обтекаемого тела и от диапазонов чисел Рейнольдса. Коэффициент с зависит также от температурного фактора и учитывается сомножителем в уравнении (22).
Число Рейнольдса (характер набегающего потока при внешнем обтекании цилиндра - ламинарный, переходной или турбулентный) можно определить по формуле
(23)
где dc - определяющий размер, в данном случае dc = d3 , нг - коэффициент кинематической вязкости газа.
Критерий Прандтля (характеризует соотношение между скоростями формирования полей скоростей и температур движущегося потока) можно определить по формуле:
(24)
где ??г - коэффициент температуропроводности дымовых газов.
Помимо уравнения(22), критерий Нуссельта можно определить следующим образом:
(25)
Отсюда
(26)
Лучистая составляющая ??изл определяется из закона Стефана-Больцмана:
(27)
Отсюда лучистая составляющая коэффициента теплоотдачи излучением определяется как:
(28)
где ??пр - приведенная степень черноты стенки ??0 = 5,67* Вт/м2К4.
Подставив выражение для ??пр , окончательно получим:
(29)
??ст - степень черноты стенки, ??г - степень черноты газа при температуре газа. Для упрощения расчетов при заданных температурах дымового газа tг и стенки можно сделать допущение, приняв
Здесь ??СО2 и ??Н20 - степень черноты углекислоты и водяного пара, содержащихся в объеме дымовых газов одновременно, зависят от средней длины луча РіSi,
?? - поправочный коэффициент, учитывающий неодинаковую степень влияния толщины газового слоя Si и парциального давления Рі на єнергию излучения водяніх паров. Излучательная способность газов, молекулы которых состоят из одного или двух атомов, столь незначительна, что в теплотехнических расчетах они принимаются лучепрозрачными.
Для расчета коэффициента теплоотдачи ??конв2 при пузырьковом кипении воды в окисленных стальных трубах можно воспользоваться формулой (2)
(30)
где qn - плотность теплового потока, Вт/м2, Рн - давление насыщенного пара, бар (1 бар = 100кПа).
Расчет параметров теплообмена.
Расчет диаметров:
d1 = 0,18 м;
d2 = 0,162 м;
d3 = d1 + 2??c = 0,18+2*0,0011 = 0,1822 м;
d4 = d2 - 2??н = 0,162 - 2*0,0013 = 0,1594 м.
Определение теплопроводности (из данных [1]):
??с = 0,09 Вт/мК, табл.1; ??н = 0,175 Вт/мК
Определяем температуры насыщения ( из данных [2])
Рнас = 1,82 МПа;
tнас = 207,5 ?С (табл.4)
Для температуры дымовых газов tг:
Теплопроводность смеси дымовых газов (путем интерполяции данных [1])
??N2 = 66,45* Вт/мК
??H20 = 106,625* Вт/мК
??C02 = 73,5* Вт/мК
Вт/мК
Плотность смеси дымовых газов ( путем интерполяции данных [1]):
??N2 = 0.3265 кг/м3
??Н2О = 0.2095 кг/м3
??СО2 = 0,5152 кг/м3
??г = 0,3265*0,64+0,2095*0,165+0,5152*0,175) = 0,333 кг/м3
Теплоемкость смеси дымовых газов (путем интерполяции данных [1]):
СN2 = 1.166*103 Дж/кг* с
СН2О = 2,327*103 Дж/кг* с
ССО2 = 1.2427*103 Дж/кг* с
СPг = (1.166*0.64+0.165*2.327+0.175*1.2427)*103 = 1.347*103
Кинематическая вязкость смеси дымовых газов газов ( путем интерполяции данных [1]):
нN2 = 128*10-6 м2/c
нН2О = 140,75*10-6 м2/c
нСО2 = 81,82*10-6 м2/c
нг = (128*0,64+140,75*0,165+81,82*0,175)*10-6 = 1,19*10-4 м2/c
Коэффициент температуропроводности смеси дымовых газов:
??г = м2/c
Критерий Прандтля:
Prг = = = 0,732.
2.4 Выполнение нулевого приближения
Принимаем температуры
Расчет характеристик газов для tст = 400 ?С [1]
Теплопроводность смеси газов ( путем интерполяции данных [1]):
= 0,0558 Вт/мК
Плотность смеси газов( путем интерполяции данных [1]):
= 0,519 кг/м3.
Теплоемкость смеси газов ( путем интерполяции данных [1]):
= 1,228 * 103 Дж/кгК
Кинематическая вязкость смеси газов ([1]):
= 55,38 * 10-6 м2/с
Коэффициент температуропроводности смеси дымовых газов:
= = 7,97 * 10-5 м2/с
= = 0,694
Reг = = 16678,91
Nu(0) = 0.035* * Reг0,8 * ( = 0,035*0,7320,33 *16678,910,8 * = 76,36
= = = 35,15 Вт/м2К.
Определение парциального давления трехатомных газов:
РСО2 = = 0,175 * 105 Па
РН20 = = 0,165 * 105 Па
Эффективная длина луча:
l = 3,6 = 3,6 = 3,6 = 1.08 м.
Средняя длина луча:
l РСО2 = 1,08*0,175*105 = 18900 м*Н/м2
l РН2О = 1,08*0,165*105 = 17820 м*Н/м2
Определение степени черноты излучающих трехатомных компонентов при температуре tг и tст [3]
tг = 775 ?C
tст = 400 ?C
??со2 = 0,1397
= 0,12
??Н2О = 0,4307
= 0,48
поправочный коэффициент ?? = 1,1 [3]
Степень черноты смеси газов при температурах tг и tст
Определение коэффициента теплоотдачи излучением
= 65,08 Вт/м2К.
Вт/м2К.
Принимая за нулевое приближение плотность теплового потока q = 10000Вт/м, определяем коэффициент теплоотдачи от накипи к пару:
??П = 3,14q0.7 * = 3,14*100000,7 *18,20,15 = 3061,54 Вт/м2К.
tм = = = 300 ?C
??м = 41,4 Вт/мК.
Определение термических сопротивлений:
= 0,0174 м ?С/Вт
=0,00065 м ?С/Вт
= 0.0215 м ?С/Вт
= 0.000405 м ?С/Вт
= 0,0147 м ?С/Вт
?R(0) = 0.0174+0.00063+0.0215+0.000405+0.0147=0.0547 м ?С/Вт
Количество тепла, проходящее через 1 метр цилиндрической поверхности.
q = = = 10372,393 Вт/м
Плотности тепловых потоков, проходящих через внутреннюю и наружную поверхности цилиндрической трубы.
= = 19979.38 Вт/м2.
= = = 17479,22 Вт/м2.
Расчет температур на границах между слоями стенки:
= 775-10372,393*0,0174 = 594,11 ?С
= 775-10372,393*(0.0174+0.0215) = 371,17 ?С
= 775-10372,393*(0.0174+0.0215+0.000405)=
= 366,97 ?С
= 775-10372,393 * (0.0174 +0.0215 +0.000405 +0,0147)) = 214,27 ?С
Определение погрешности вычислений нулевого приближения:
?? = * 100% = *100% = -3,7 ?2%
2.5 Выполнение первого приближения
Принимаем за начальные температуры нулевое приближение:
Тепловой поток на один метр цилиндрической поверхности
q = 10372,393 Вт/м.
Определение среднеинтегральной теплопроводности металла трубы: (3)
= = = 369,07 = 37,927 Вт/мК
Расчет теплофизических характеристик газов для tст = 594 [1]
Теплопроводность смеси дымовых газов (путем интерполяции, аналогично нулевого приближения):
Вт/мК
Плотность смеси дымовых газов (путем интерполяции ):
0,395*0,64+0,6228*0,175+0,2276*0,165=0,3993 кг/м3
Теплоемкость смеси дымовых газов (путем интерполяции ):
= (1,1276*0,64+1,1898*0,175+2,269*0,165)*103 = 1,3043*103 Дж/кг/К
Кинематическая вязкость смеси дымовых газов (путем интерполяции ):
= (93,256*0,64+57,634*0,175+120,668*0,165)*10-6 = 89,68*10-6 м2/с
Расчетный коэффициент температуропроводности смеси газов:
= = 12,537* 10-5 м2/с
Критерий Прандтля:
= = 0,715
Reг = = 16678,91
Nu(1) = 0.035* * Reг0,8 * ( = 0,035*0,7320,33 *16678,910,8 * = 75,8
= = = 34,88 Вт/м2К.
Определение степени черноты излучающих трехатомных компонентов при температуре tст. [3]
tст = 594 ?С
= 0,1302
= 0,4545
Степень черноты смеси газов при температуре tст.
Определение коэффициента теплоотдачи излучением при температуре tст.
= 82,99 Вт/м2К.
Вт/м2К.
Принимая за нулевое приближение плотность теплового потока q = 10372,39Вт/м, определяем коэффициент теплоотдачи от накипи к пару:
??П = 3,14q0.7 * = 3,14*10372,390,7 *18,20,15 = 3140,91 Вт/м2К.
Определение термических сопротивлений:
= 0,0148 м ?С/Вт
=0,00063 м ?С/Вт
= 0.0215 м ?С/Вт
= 0.000442 м ?С/Вт
= 0,0147 м ?С/Вт
?R(1) = 0.0148+0.00063+0.0215+0.000442+0.0147=0.0521 м ?С/Вт
Количество тепла, проходящее через 1 метр цилиндрической поверхности.
q = = = 10887,859 Вт/м
Плотности тепловых потоков, проходящих через внутреннюю и наружную поверхности цилиндрической трубы.
= = 21753,27 Вт/м2.
= = = 19031,13 Вт/м2.
Расчет температур на границах между слоями стенки:
= 775-10887,859*0,0148 = 613,55 ?С
= 775-10887,859*(0.0148+0.0215) = 379,53 ?С
= 775-10887,859*(0.0148+0.0215+0.000442)=
= 374,72 ?С
= 775-10887,859 * (0.0148 +0.0215 +0.000442 +0,0147)) = 214,43 ?С
Определение погрешности вычислений нулевого приближения:
?? = * 100% = *100% = 4,7 ?2%
2.6 Выполнение второго приближения:
Принимаем за начальные температуры первое приближение:
Тепловой поток на один метр цилиндрической поверхности
q = 10887,859 Вт/м.
Определение среднеинтегральной теплопроводности металла трубы: (3)
= = = 377,13 = 37,686Вт/мК
Расчет теплофизических характеристик газов для tст = 614 [1]
Теплопроводность смеси дымовых газов (путем интерполяции, аналогично нулевого приближения):
Вт/мК
Плотность смеси дымовых газов (путем интерполяции ):
0,3864*0,64+0,6092*0,175+0,2229*0,165=0,3906 кг/м3
Теплоемкость смеси дымовых газов (путем интерполяции ):
= (1,1321*0,64+1,1963*0,175+2,2831*0,165)*103 = 1,310*103 Дж/кг/К
Кинематическая вязкость смеси дымовых газов (путем интерполяции ):
= (96,918*0,64+60,134*0,175+125,5*0,165)*10-6 = 93,258*10-6 м2/с
Расчетный коэффициент температуропроводности смеси газов:
= = 12,981* 10-5 м2/с
Критерий Прандтля:
= = 0,718
Reг = = 16678,91
Nu(2) = 0.035* * Reг0,8 * ( = 0,035*0,7320,33 *16678,910,8 * = 75,72
= = = 34,851 Вт/м2К.
Определение степени черноты излучающих трехатомных компонентов при температуре tст. [3]
tст = 614 ?С
= 0,1312
= 0,4519Степень черноты смеси газов при температуре tст.
Определение коэффициента теплоотдачи излучением при температуре tст.
= 84,56 Вт/м2К.
Вт/м2К.
Принимая за нулевое приближение плотность теплового потока q = 10887,859Вт/м, определяем коэффициент теплоотдачи от накипи к пару:
??П = 3,14q0.7 * = 3,14*10887,8590,7 *18,20,15 = 3249,377 Вт/м2К.
Определение термических сопротивлений:
= 0,0146 м ?С/Вт
=0,000615 м ?С/Вт
= 0.0215 м ?С/Вт
= 0.000445 м ?С/Вт
= 0,0147 м ?С/Вт
?R(2) = 0.0146+0.000615+0.0215+0.000445+0.0147=0.0519 м ?С/Вт
Количество тепла, проходящее через 1 метр цилиндрической поверхности.
q = = = 10931,56 Вт/м
Плотности тепловых потоков, проходящих через внутреннюю и наружную поверхности цилиндрической трубы.
= = 21753,27 Вт/м2.
= = = 19031,12 Вт/м2.
Расчет температур на границах между слоями стенки:
= 775-10931,56*0,0146 = 496,42 ?С
= 775-10931,56*(0.0146+0.0215) = 380,03 ?С
= 775-10931,56*(0.0146+0.0215+0.000445)=
= 375,16 ?С
= 775-10931,56 * (0.0146 +0.0215 +0.000445 +0,0147)) = 214,22 ?С
Определение погрешности вычислений нулевого приближения:
?? = * 100% = *100% = 0,4 ?2%
т.к. полученная погрешность не превышает заданную, то расчет верен.
Заключение
В результате выполнения курсовой работы были рассчитаны следующие параметры:
Допустимое количество воды, сбрасываемой летом ГРЭС в пруд - охладитель заданных размеров.
Тепловой поток через цилиндрическую стенку.
Тепловой поток через внешнюю поверхность труб.
Тепловой поток через внутреннюю поверхность труб.
Температуры на границах слоев.
Перечень ссылок
Казанцев Е.И. Промышленные печи: - М.: Металлургия 1975 - 368, с.
Ривкин С.Л. Термодинамические свойства воды и водяного пара: - М.: Энергоатомиздат 1984 - 80 с.
Кутателадзе С.С. Справочник по теплопередаче: - М.: Госэнергоиздат 1958 - 415 с.
Приложения
Таблица 1 Физические свойства дымовых газов
Таблица 2
t, °С |
Р |
|
t, °С |
Р |
|
t, °С |
Р |
||||
кПа |
мм рт.ст. |
кПа |
мм рт.ст. |
кПа |
мм рт.ст. |
||||||
0 |
0.61129 |
4.585 |
|
34 |
5.3229 |
39.93 |
|
68 |
28.576 |
214.3 |
|
1 |
0.65716 |
4.929 |
|
35 |
5.6267 |
42.20 |
|
69 |
29.852 |
223.9 |
|
2 |
0.70605 |
5.296 |
|
36 |
5.9453 |
44.59 |
|
70 |
31.176 |
233.8 |
|
3 |
0.75813 |
5.686 |
|
37 |
6.2795 |
47.10 |
|
71 |
32.549 |
244.1 |
|
4 |
0.81359 |
6.102 |
|
38 |
6.6298 |
49.73 |
|
72 |
33.972 |
254.8 |
|
5 |
0.87260 |
6.545 |
|
39 |
6.9969 |
52.48 |
|
73 |
35.448 |
265.9 |
|
6 |
0.93537 |
7.016 |
|
40 |
7.3814 |
55.37 |
|
74 |
36.978 |
277.4 |
|
7 |
1.0021 |
7.516 |
|
41 |
7.7840 |
58.38 |
|
75 |
38.563 |
289.2 |
|
8 |
1.0730 |
8.048 |
|
42 |
8.2054 |
61.55 |
|
76 |
40.205 |
301.6 |
|
9 |
1.1482 |
8.612 |
|
43 |
8.6463 |
64.85 |
|
77 |
41.905 |
314.3 |
|
10 |
1.2281 |
9.212 |
|
44 |
9.1075 |
68.31 |
|
78 |
43.665 |
327.5 |
|
11 |
1.3129 |
9.848 |
|
45 |
9.5898 |
71.93 |
|
79 |
45.487 |
341.2 |
|
12 |
1.4027 |
10.52 |
|
46 |
10.094 |
75.71 |
|
80 |
47.373 |
355.3 |
|
13 |
1.4979 |
11.24 |
|
47 |
10.620 |
79.66 |
|
81 |
49.324 |
370.0 |
|
14 |
1.5988 |
11.99 |
|
48 |
11.171 |
83.79 |
|
82 |
51.342 |
385.1 |
|
15 |
1.7056 |
12.79 |
|
49 |
11.745 |
88.09 |
|
83 |
53.428 |
400.7 |
|
16 |
1.8185 |
13.64 |
|
50 |
12.344 |
92.59 |
|
84 |
55.585 |
416.9 |
|
17 |
1.9380 |
14.54 |
|
51 |
12.970 |
97.28 |
|
85 |
57.815 |
433.6 |
|
18 |
2.0644 |
15.48 |
|
52 |
13.623 |
102.2 |
|
86 |
60.119 |
450.9 |
|
19 |
2.1978 |
16.48 |
|
53 |
14.303 |
107.3 |
|
87 |
62.499 |
468.8 |
|
20 |
2.3388 |
17.54 |
|
54 |
15.012 |
112.6 |
|
88 |
64.958 |
487.2 |
|
21 |
2.4877 |
18.66 |
|
55 |
15.752 |
118.1 |
|
89 |
67.496 |
506.3 |
|
22 |
2.6447 |
19.84 |
|
56 |
16.522 |
123.9 |
|
90 |
70.117 |
525.9 |
|
23 |
2.8104 |
21.08 |
|
57 |
17.324 |
129.9 |
|
91 |
72.823 |
546.2 |
|
24 |
2.9850 |
22.39 |
|
58 |
18.159 |
136.2 |
|
92 |
75.614 |
567.2 |
|
25 |
3.1690 |
23.77 |
|
59 |
19.028 |
142.7 |
|
93 |
78.494 |
588.8 |
|
26 |
3.3629 |
25.22 |
|
60 |
19.932 |
149.5 |
|
94 |
81.465 |
611.0 |
|
27 |
3.5670 |
26.75 |
|
61 |
20.873 |
156.6 |
|
95 |
84.529 |
634.0 |
|
28 |
3.7818 |
28.37 |
|
62 |
21.851 |
163.9 |
|
96 |
87.688 |
657.7 |
|
29 |
4.0078 |
30.06 |
|
63 |
22.868 |
171.5 |
|
97 |
90.945 |
682.1 |
|
30 |
4.2455 |
31.84 |
|
64 |
23.925 |
179.5 |
|
98 |
94.301 |
707.3 |
|
31 |
4.4953 |
33.72 |
|
65 |
25.022 |
187.7 |
|
99 |
97.759 |
733.3 |
|
32 |
4.7578 |
35.69 |
|
66 |
26.163 |
196.2 |
|
100 |
101.32 |
760.0 |
|
33 |
5.0335 |
37.75 |
|
67 |
27.347 |
205.1 |
|
|
|
|
Таблица 3
Физические свойства стали У12 |
|||||||
T (Град) |
E 10- 5 (МПа) |
? 10 6 (1/Град) |
? (Вт/(м·град)) |
? (кг/м3) |
C (Дж/(кг·град)) |
R 10 9 (Ом·м) |
|
20 |
2.09 |
|
|
7830 |
|
|
|
100 |
2.05 |
10.5 |
45 |
7809 |
469 |
252 |
|
200 |
2 |
11.8 |
43 |
7781 |
503 |
333 |
|
300 |
1.93 |
12.6 |
40 |
7749 |
519 |
430 |
|
400 |
1.85 |
13.4 |
37 |
7713 |
536 |
540 |
|
500 |
1.78 |
13.1 |
35 |
7675 |
553 |
665 |
|
600 |
1.66 |
14.8 |
32 |
7634 |
720 |
802 |
|
700 |
|
15.3 |
28 |
7592 |
611 |
964 |
|
800 |
|
15 |
24 |
7565 |
712 |
1152 |
|
900 |
|
16.3 |
25 |
7489 |
703 |
1196 |
|
1000 |
|
16.8 |
|
|
699 |
|
Таблица 4 Физические свойства водяного пара на линии насыщения
Размещено на Allbest.ru
Подобные документы
Расчет допустимого количества воды, сбрасываемой ГРЭС в пруд. Процессы массообмена при вынужденной конвекции от плоской пластины. Определение теплового потока. Давление пара в котле. Определение температуры на границах между слоями стенки парового котла.
курсовая работа [141,7 K], добавлен 17.05.2014Стационарная теплопроводность шаровой (сферической) стенки. Обобщенный метод решения задач стационарной теплопроводности. Упрощенный расчет теплового потока через плоскую, цилиндрическую и шаровую стенки (ГУ 1 рода). Методы интенсификации теплопередачи.
презентация [601,4 K], добавлен 15.03.2014Определение мощности теплового потока при конвективной теплопередаче через трубу заданного диаметра. Расход пара на обогрев воды в пароводяном теплообменнике, превращение пара в конденсат. Изменение температуры теплоносителей вдоль поверхности нагрева.
контрольная работа [308,7 K], добавлен 13.05.2015Подогреватели сетевой воды вертикальные. Расчет средней температуры воды. Определение теплоемкости воды, теплового потока, получаемого водой. Коэффициент теплоотдачи от стенки трубы. Теплофизические параметры конденсата при средней температуре конденсата.
курсовая работа [507,5 K], добавлен 28.11.2012Исследование структурных свойств воды при быстром переохлаждении. Разработка алгоритмов моделирования молекулярной динамики воды на основе модельного mW-потенциала. Расчет температурной зависимости поверхностного натяжения капель воды водяного пара.
дипломная работа [1,8 M], добавлен 09.06.2013Методика нахождения недостающих параметров цикла адиабатного процесса. Расчет теплообмена от нагретых газов к воде через многослойную стенку из слоёв сажи, накипи, металла и масла. Вычисление коэффициента теплопроводности со стороны воды и газа.
контрольная работа [159,0 K], добавлен 13.11.2009Теплопроводность как один из способов изменения внутренней энергии тела. Стационарная теплопроводность через шаровую стенку. Уравнение температурной кривой внутри однородной шаровой стенки. Роль и значение закона Фурье в отношении теплового потока.
презентация [150,3 K], добавлен 18.02.2015Задачи и их решения по теме: процессы истечения водяного пара. Дросселирование пара под определенным давлением. Прямой цикл – цикл теплового двигателя. Нагревание и охлаждение. Паротурбинные установки. Холодильные циклы. Эффективность цикла Ренкина.
реферат [176,7 K], добавлен 25.01.2009Широкое применение воды и водяного пара в качестве рабочих тел в паровых турбинах тепловых машин, атомных установках и в качестве теплоносителей в различного рода теплообменных аппаратах химико-технологических производств. Характеристика процессов.
реферат [149,6 K], добавлен 25.01.2009Разделение теплопереноса на теплопроводность, конвекцию и излучение. Суммарный коэффициент теплоотдачи. Определение лучистого теплового потока. Теплопередача через плоскую стенку. Типы теплообменных аппаратов. Уравнение теплового баланса и теплопередачи.
реферат [951,0 K], добавлен 27.01.2012