Электроснабжение цеха
Сущность распределения и потребления электроэнергии на промышленных предприятиях. Определение конструкций распределительной сети и выбор защитных аппаратов. Анализ расчета электрических и силовых нагрузок цеха. Принцип выбора головного выключателя.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 17.06.2014 |
Размер файла | 588,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
Список принятых сокращений
Введение
1. Расчет электрических нагрузок
1.1 Расчет силовой нагрузки
1.2 Расчет нагрузки цеха
2. Расчет распределительной сети цеха
2.1 Определение конструкций распределительной сеть и выбор защитных аппаратов
2.2 Выбор кабеля от ПС до ШМА
2.3 Выбор головного выключателя
3. Расчет КТП
3.1 Расчет цехового трансформатора
3.2 Выбор высоковольтного кабеля
3.3 Выбор вводного выключателя
4. Расчет токов КЗ
Заключение
Список литературы
Приложения
Список принятых сокращений
ЭП - электроприемник;
ШРА-распределительный шинопровод;
ШМА-магистральный шинопровод;
КТП-комплектная трансформаторная подстанция;
КЗ - короткое замыкание;
ПС - подстанция.
Введение
распределительный электрический защитный
Передача, распределение и потребление электроэнергии на промышленных предприятиях должны производиться с высокой экономичностью, надежностью и требуемым качеством электроэнергии.
В цеховых электрических сетях используется огромное количество проводникового материала и электрической аппаратуры, поэтому выбор питания определяется не только качество и особенности работы электрооборудования, но и технико-экономические показатели всей системы электроснабжения.
В цеховых сетях различают питающую и распределительную сети. Линии сети, отходящие от цеховой трансформаторной подстанции или вводного устройства, образуют питающую сеть, а линии, непосредственно подводящие электроэнергию к потребителям - распределительную сеть.
Основной целью расчета цехового электроснабжения является разработка схемы внутрицеховой сети, имеющий наилучшие показатели надежности электроснабжения, качества электроэнергии и экономичности.
1. Расчет электрических нагрузок
1.1 Расчет силовой нагрузки
Цель расчета: определение электрических параметров и расчетных нагрузок электроприемников цеха.
Расчет силовых электрических нагрузок производим по методу коэффициента использования Ки и коэффициенту расчетной нагрузки Кр, приведенному в [2]. Применяем схему с одним магистральным шинопроводом типа ШМА и с тремя распределительными шинопроводами типа ШРА в качестве источников питания. На плане цеха намечаем места расположения источников и прокладываем трассы прохождения проводов, питающих электроприемников (ЭП).
Шинопровод - это жесткий токопровод на напряжение до 1 кВ заводского изготовления, поставляемый комплектными секциями.
В цехах предприятий, где стайки и механизмы расположены по всей площади рядами и часто перемещаются вследствие изменения технологического процесса производства, в качестве питающих магистральных линий и распределительной сети применяют магистральные и распределительные закрытые шинопроводы.
Достоинства шинопроводов.
Основными достоинствами шинопроводов являются:
а) экономия цветных металлов в магистральной и распределительной сети,
б) скоростной монтаж,
в) гибкость в эксплуатации,
г) простота и надежность осмотра в условиях эксплуатации.
Классификация шинопроводов.
По конструктивному исполнению шинопроводы могут быть открытыми, защищенными и закрытыми.
Открытые шинопроводы применяют для магистральных сетей в помещениях с нормальной средой. К шинопроводам открытого типа относятся шинные магистрали и открытые крановые троллеи.
Их выполняют алюминиевыми шинами, прокладываемыми по изоляторам, прикрепленным к фермам и колоннам цеха, при этом должны соблюдаться нормы минимальных высот и наименьших расстоянии до трубопроводов и технологического оборудования. В производственных помещениях шинопроводы прокладывают на высоте не менее 3,5 м от уровня пола и не менее 2,5 м от настила мостового крана. Проход открытых шинопроводов через перекрытия, стены и перегородки выполняют в проемах или изоляционных плитах. В местах, опасных по условиям возможности прикосновения, открытые шинопроводы закрывают металлическими сетками или коробами.
Защищенные и закрытые шинопроводы являются основным видом сетей , применяемых для внутрицехового распределения электроэнергии.
У защищенных шинопроводов шины ограждены сеткой, коробом из перфорированных листов и т. п., предотвращающими случайное прикосновение к шинам и попадание на них посторонних предметов. У закрытых шинопроводов шины закрыты сплошным коробом.
Шинопроводы в защищенном исполнении устанавливают на высоте не менее 2,5 м от пола. Закрытые шинопроводы устанавливают на любой высоте. Это представляет большие удобства при монтаже цеховых электросетей, так как шинопровод можно прокладывать вдоль линии станков на высоте 0,5 - 1 м. Это уменьшает длину ответвлений от шинопровода к станку.
По своему назначению шинопроводы бывают магистральными и распределительными.
Магистральные шинопроводы.
Магистральные рассчитаны на большие токи (1600 - 4000 А) и на несколько присоединений к ним ответвлений для питания потребителей (два места на каждые 6 м).
Распределительные шинопроводы.
Распределительные шинопроводы рассчитаны на токи до 630 А и большое
количество мест (3 - 6) на трехметровой секции для подключения электроприемников.
В цехах промышленных предприятий широко используют закрытые распределительные шинопроводы. Их изготовляют на заводах и поставляют в виде комплекта из прямых участков -- секций (длина прямой секции 3 м), снабженных переходными элементами для последовательного соединения ряда секций, устройства ответвлений (ответвительные коробки), а также вводных коробок, присоединяющих шинопроводы к питающей сети.
Ответвительные коробки шинопроводов.
Ответвительные коробки шинопроводов предназначены для подключения станков и механизмов. В них устанавливают автоматы или предохранители. Подключаются электроприемиики к шинопроводу с помощью ответвительных коробок со штепсельными контактами (без снятия напряжения с шинопровода) или болтовыми соединениями. Соответственно шинопроводы называют штепсельными или шинопроводами с глухими отпайками. Наибольшее распространение получили штепсельные шинопроводы.
Ответвление от шинопроводов к производственным механизмам выполняется в стальных тонкостенных трубах. Шинопроводы крепят к фермам, подвешивают на подвесках к строительным конструкциям цеха или устанавливают на стойках.
Типовые комплектные магистральные шинопроводы серии ШМА-73 выпускают на поминальные токи 1600, 2500 и 4000 А напряжением до - 1000 В, а распределительные штепсельные шинопроводы серии ШРА-73 -- на токи 250, 400 и 630 А напряжением до 380 В.
Осветительные шинопроводы ШОС.
Осветительные шинопроводы на 25 А, 380/220 В типа ШОС - четырехпроводные, с круглыми изолированными проводниками 6 мм2. Длина секций шинопровода ШОС - 3 м. Секция имеет шесть штепсельных однофазных присоединений (фаза - нуль) через каждые 0,5 м. В комплекте с шинопроводами ШОС идут штепсельные вилки на 10 А, прямые секции угловые , гибкие и вводные. С помощью набора этих элементов подбирают комплектный шинопровод для трасс любой сложности. Смежные секции шинопровода соединяют стыком с дополнительным закреплением двумя винтами.
Светильники подвешивают непосредственно к шинопроводу ШОС с помощью хомута с крючком и присоединяют к любому штепсельному соединению. Максимальное расстояние между точками крепления 2 м. В тех случаях, когда светильники не устанавливаются на коробках шинопроводов, шаг крепления шинопроводов ШОС67 может быть увеличен до 3 м.
Распределительные шинопроводы ШРА.
Распределительные шинопроводы ШРА состоят из прямых секций длиной 3 м и угловых секций.
Рисунок 1. ШРА-73
Элементы (секции) распределительного шинопровода 1 -- заглушка, закрывающая место резервною присоединения, 2 -- ответвительная коробка с предохранителями, 3 -- ответвительная коробка с автоматическим выключателем (видна рукоятка автоматическим выключателем), 4-- коробка с сигнальными лампами, указывающими наличие напряжения, 5 -- вводная коробка
На рисунке 1 показан общий вид распределительного штепсельного шинопровода серии ШРА-73 (четырехпроводного).
Все четыре шины (три фазовых проводника и нулевой) изготовлены из неизолированных алюминиевых шин прямоугольного сечения. Сечение фазовых и нулевого проводников одинаково. Шины секций шинопровода соединяют болтами. Каждая прямая трехметровая секция имеет восемь штепсельных окон для присоединения ответвительных коробок. Расстояние между ответвительными коробками 1 м. В ответвительной коробке устанавливаются автомат АЕ20 или А37 или предохранители ПН2 на номинальный ток 100 А.
Существуют также распределительные четырехпроводные шинопроводы ШРМ с медными шинами на 100 А переменного тока напряжением 380/220 В. Шинопроводы ШРМ обеспечивают присоединения как трехфазных, так и однофазных электроприемников, в том числе мощных светильников.
Шинопроводы распределительные типа ШРА73 предназначены для выполнения электрических сетей переменного тока частотой 50 и 60 Гц, напряжением до 660 В. Шинопроводы трехфазные с нулевым рабочим проводником на нормальные токи 250, 400, 630А с ответвительными коробками на ток 100, 160, 250А.
Степень защиты - IP 32 по ГОСТ 14254-96.
Климатическое исполнение - УЗ по ГОСТ 15150-69.
Шинопровод состоит из типовых элементов: секций прямых на 2 и 4 ответвления, прямых прогоночных, угловых вертикальных, угловых горизонтальных, вводных, для вертикальной прокладки, ответвительных коробок, торцовых заглушек, муфт переходных и конструкций для крепления (подвесов, кронштейнов, стоек).
Соединение секций - сборно-разборное.
Выступающие из секции концы шин снабжены болтами и гайками, с помощью которых шины соединяются.
Шинопровод устанавливается на конструкциях крепления, расположенных по трассе с шагом 3-4 м.
Шинопровод в рабочем положении (при горизонтальной прокладке) выдерживает сосредоточенную нагрузку в вертикальной и горизонтальной плоскостях не менее 450Н, приложенную в середине трехметрового пролета. Величина остаточной деформации в вертикальной и горизонтальной плоскостях не превышает 3 мм на один метр длины пролета.
Шинопровод ШРА-73 - четырехпроводный нулевой (N) провод замкнут на защитный металлический кожух и образует совмещенный PEN - проводник в системе с глухозаземленной нейтралью.[4]
Произведем рачет нагрузок для распределительного шинопровода ШРА-1. От ШРА-1 питаются 20 ЭП: № 1-11, 21, 23-30. На основании приложений к методическим указаниям заполним данные для расчетов, из [1] выбираем Ки, tgц. Для каждого ЭП определим КиPн и для всей группы ?Киi, ?Pнi.
ЭП №1 n=1шт, рн=55 кВт, Рн=1*55=55 кВт, Ки=0,2, tgц=1,73.
Определяем расчетные величины
КиРн=0,2*55=11. (1.1)
КиРнtgц=0,2*55*1,73=19,03. (1.2)
где n - количество ЭП,
Ки - коэффициент использования,
Рн - номинальная мощность, кВт.
Для остальных ЭП расчет проводим аналогично, результаты расчета приведены в таблице 1.
Далее для всего шинопровода:
?Рн=55+126,4+14+1,9+36=233,3кВт. (1.3)
?КиРн=11+21,48+2,24+1,23+5,76=41,72кВт. (1.4)
?КиРнtgц=19,03+28,58+2,98+0,93+7,89=59,4кВАр. (1.5)
?npн2=3025+1997,12+98+3,61+162=5285,73 (1.6)
Групповой коэффициент использования:
Ки=(?КиРн)/(?Рн)=41,72/233,3=0,178. (1.7)
Эффективное число ЭП:
Nэ=?Рн2/?npн2=233,32/5285,73=10,29 (1.8)
Округляем до ближайшего меньшего, nэ=10.
По [1] находим Кр=f(nэ,Ки), для nэ=10, Ки=0,178, Кр=1,5. (1.9)
Находим расчетную активную нагрузку:
Рр=?KиРн*Кр=41,72*1,5=62,58кВт. (1.10)
Находим расчетную реактивную нагрузку:
Qр=1.1?КиРнtgц=1,1*59,4=65,34кВАр. (1.11)
где 1,1 - расчетный коэффициент, учитывается если nэ?10
Полная нагрузка шинопровода и расчетный ток:
Sр=. (1.12)
Iр=Sр/(*Up)=90,48/(*0.38)=137,47А. (1.13)
Аналогичным образом определяем расчетные нагрузки для ЭП, подключенных к ШРА-2 и ШРА-3, результаты расчетов занесены в таблицу 1.
1.2 Расчет нагрузки цеха
Цель расчета: расчет суммарной активной и реактивную нагрузки по всем источникам питания и расчетный ток всего цеха:
Рр?=62,58+152,83+46,86=262,27кВт. (1.14)
Qр?=65,34+57,97+36,52=159,85кВАр. (1.15)
Sр?=90,48+163,46+59,41=313,35кВА. (1.16)
Iр?=137,47+248,35+90,27=476,1А. (1.17)
2. Расчет распределительной сети цеха
2.1 Определение конструкций распределительной сеть и выбор защитных аппаратов
Цель расчета: определение подходящего питающего кабеля и защитного аппарата каждого электроприемника, расположенного в помещении.
Для распределения электроэнергии по цеху используются два распределительных шинопровода (ШРА). Количество присоединений на каждый ШРА:
ШРА-1 - 20 присоединений;
ШРА-2 - 14 присоединений,
ШРА-3 - 11 присоединений,
Электроснабжение выбранных источников питания осуществляется по кабельным линиям от РУ НН цеховой подстанции. Произведем расчет сети для ЭП. Выбираем распределительный шинопровод типа ШРА73 с номинальным током 250А.
Выберем провод для ЭП № 2, у которого Pн=15,8 кВт, cosц=0,6.
Определяем расчетный ток Iн:
Iн=Рн/(*Uн*cosц)=15,8/(*0,38*0,6)=40,05А. (2.1)
где Рн - номинальная мощность двигателя;
Uн - номинальное напряжение сети.
Выбираем четырехжильный провод АПВ. По таблице длительно допустимых токов [1] выбираем провод сечением 4х16 мм2 с длительно допустимым током 55 А, удельные сопротивления которого rуд=2,07мОм/м; худ=0,07 мОм/м.
Проверяем по условию допустимости нагрева:
Iдоп.пров>Iр, 55 А>40,05А.
Проверяем по допустимости потери напряжения, длину линии определяем с плана цеха и принимаем L=0,428м:
?U=*Ip*L*(rудcosц+xудsinц)*10-3*100%/Uн, (2.2)
?U=*40,05*0,428*(2,07*0,6+0,07*0,8)*10-3*100%/380=0,01%.
Оба условия выполняются, поэтому для ЭП №2 окончательно принимаем провод АПВ 4х16 мм2.
Для защиты питающей линии и ЭП применяем предохранители и выбираем их по следующим условиям.
1)Несрабатывание при максимальном рабочем токе:
Iн пр ? Iр
2)при защите одиночного асинхронного электродвигателя с короткозамкнутым ротором - несрабатывание при его пуске:
Iн пв ? Iпуск/kп;
где kп - коэффициент для защиты электродвигателя с короткозамкнутым ротором при легком пуске, равный 2,5.
Выбираем предохранитель ПР2-100, у которого Iн пр=100А., т.к. ПР2-60 не проходит по номинальному току плавкой вставки.
Проверяем по номинальному току: 100А ? 40,05А.
Проверяем плавкую вставку по условию несрабатывания предохранителя при пуске электродвигателя:
Iнпв?Iпуск/kп=240,3/2,5=96,12А. (2.3)
Iпуск=6*Iнпр=6*40,05=240,3А. (2.4)
Выбираем плавкую вставку с номинальным током 100 А.
Для остальных ЭП выбор производится аналогично. Результаты выбора приведены в таблице.2, 3, 4.
Описание и технические характеристики провода АПВ
Силовые провода АПВ распределяют электрическую энергию в различных сетях осветительного и электрического характера, при этом, они могут отлично функционировать при напряжении в четыреста пятьдесят вольт и частоте до четырехсот герц, или при постоянном напряжении в одну тысячу вольт. При помощи кабеля АПВ, электричеством могут быть оснащены различные машины, аппараты и станки. Провод может быть алюминиевым однопроволочным, а так же многопроволочным, но второй тип весьма ограничен в гибкости. Поливинилхлоридный пластик изолирует силовой провод, пластик может иметь разнообразную расцветку.
Существуют ограничения для эксплуатации силового провода АПВ - это минус пятьдесят градусов и плюс семьдесят, если влажность составляет сто процентов. Лучше всего производить монтаж провода при температуре, которая не достигает - минус пятнадцати градусов. По своей сути провода АПВ очень гибкие и легко гнуться на девяносто градусов. Этот вид провода стойко переносит грибковые атаки. Не получают воздействия от различных вибраций, перепадов напряжения, всех видов шумов и стойко переносят изгибы.
Провод распространяется оптом и в розницу и, обычно, имеет двухлетнюю гарантию и срок годности не превышающую пятнадцати лет. Условия прокладки и эксплуатации провода, не имеют особых ограничений, они отлично функционируют в помещениях и на улице. Благодаря широкому температурному диапазону использования, провода АПВ могут применяться даже на судах дальнего плавания. Они часто используются потребителями для подключения дачных домов, для временной проводки и подключения строительных городков и бытовок, гаражей в том числе металлических гаражей, в которых не выполнена теплоизоляция. Мы сталкивались даже с одним не очень обычным использованием АПВ. Наши клиенты приобретали у нас АПВ 2,5 для подключения елочных гирлянд на новогодних елках. Причем после праздника елки утилизировались вмести с проводом. Т.е. основное преимущество АПВ это низкая цена и не большой вес
Расшифровка аббревиатуры кабеля АПВ: Буква «А» -- обозначает алюминиевую жилу, которая и проводит ток. Буква «П» -- обозначает сам провод, а последняя буква «В» -- обозначает, ни что иное, как виниловую изоляцию.
Техника безопасности
При покупке провода стоит обратить внимание на толщину и целостность поливинилхлоридной изоляции, ведь именно от ее качества зависит безопасность в целом. Не стоит закрывать глаза и на безопасность при прокладке провода АПВ, ведь неправильно зафиксированный или утопленный в землю/штукатурку провод может стать причиной большой опасности. Например, если в доме присутствуют домашние животные, которые могут разгрызть ПВХ изоляцию, или, если в доме есть ребёнок, который во время игры, может не заметить оголённый провод. Пренебрежение техникой безопасности может привести к летальному исходу, поэтому стоит тщательно проконтролировать качество приобретаемого провода и правильность его прокладки.
Необходимо учитывать, что удара током в результате пробоя изоляции провода на корпус эл. машин и механизмов, а также труб, металлорукавов и лотков в которых проложены провода, можно избежать, благодаря использованию техники заземления и устройств защитного отключения (УЗО). Работа системы заземления базируется на том, чтобы все металлические конструкции, которые и составляют основную угрозу, были снабжены штырями (или подключены к штырям) из того же металла, которые глубоко забиваются в землю, куда и направляется ток, при перепадах напряжения.
Техника безопасности обязывает всех потребителей использовать эту систему. Заземляющий провод невозможно провести наугад, нужно хорошо просчитать и посоветоваться с профессиональными электриками. Проводник заземления, который считается основным в системе обеспечения электробезопасности потребителя, обязан иметь определённое сечение и желто-зеленую расцветку. Если дом, в котором потребитель собирается прокладывать кабель, стоит на большом фундаменте, установка заземляющий приспособлений может не понадобиться. Если фундамент не достаточно большой, или есть другие минусы в сооружении, позволяющие току причинить вред людям, нужно сооружать заземляющую систему. Для больших домов существует особое правило, при котором происходит устройство этой системы. Металлические пруты или штыри, посаженные в землю должны соединяться лентой из стали. Только выполнение всех правил ПУЭ при монтаже и покупка только качественных проводов и материалов, позволит потребителю спокойно пользоваться всеми электрическими приборами, а провода будут служить долгие годы.
Массогабаритные параметры провода АПВ
Ориентировочные массы наиболее распространенных сечений проводов для целей упаковки и транспортировки приведены в таблице 5. Приведенные значения могут отличаться для проводов различных партий и производителей на 10% в меньшую или большую сторону.
Таблица5 .
Сечение |
Значение массы для целей упаковки и транспортировки, кг/км |
|
2,5 |
15,5 |
|
4 |
21 |
|
6 |
29 |
|
10 |
47 |
|
16 |
66 |
|
25 |
114 |
|
35 |
146 |
|
50 |
202 |
Доступные методы контроля качества провода АПВ
Приведены методы контроля, которые, не являясь строго соответствующими ГОСТ, позволяют сделать предварительные выводы о качестве провода, если измеренные значения существенно отличаются от регламентированных. Окончательное заключение о соответствии провода ГОСТ может быть сделано только после проведения испытаний провода в специализированной лаборатории по строгим методикам и в объемах, указанных в ГОСТ.
Визуальный осмотр
Могут быть проверены: маркировка, число проволок в жиле, расцветка и целостность изоляции.
Измерение конструкционных размеров
Могут быть проверены с помощью подходящих измерительных инструментов толщина изоляции и наружный диаметр. Измерение диаметра проволоки dпр и расчет сечения жилы по формуле 0,785dпр2 N (где N - число проволок в жиле) не является строгим методом контроля сечения жил, т.к. подтверждением соответствия сечения является электрическое сопротивление, однако существенное отклонение рассчитанного сечения от номинального (более, чем на 10%) может служить основанием для сомнений в качестве.
Измерение электрического сопротивления токопроводящих жил
Может быть проведено на готовом проводе омметром с подходящим пределом измерения (при небольшом сечении и нормальной длине провода в бухте или на барабане может составлять несколько Ом) и пересчитано на длину 1км. Особое внимание следует уделять хорошему контакту с измерительными проводами.[5]
Описание и технические характеристики предохранителя.
Предохранители - это электрические аппараты, предназначенные для защиты электрических цепей от токов короткого замыкания и токов перегрузки. Преимущественно предохранители используются для защиты от токов короткого замыкания, а для защиты от токов перегрузки в большинстве случаев предпочтение отдается тепловым реле и автоматическим выключателям.
Основной элемент предохранителя - плавкая вставка постоянного или переменного сечения, которая при токах срабатывания сгорает (плавится с последующим возникновением и гашением электрической дуги), отключая электрическую цепь.
По конструктивному исполнению предохранители условно можно разделить на открытые (вставка не защищена патроном или размещена в трубке, открытой с торцов), закрытые (вставка расположена в закрытом патроне) и засыпные (вставка находится в патроне, полностью заполненном мелкозернистым наполнителем, например, кварцевым песком).
Наиболее распространенные материалы плавких вставок - медь, цинк, алюминий, свинец и серебро. Медь подвержена сравнительно интенсивному окислению, что может привести к увеличению сопротивления медной вставки и, следовательно, к изменению защитной характеристики предохранителя. Поэтому медные вставки подвергаются лужению (покрываются слоем олова).
В засыпных предохранителях наиболее распространенным наполнителем является кварцевый песок с содержанием оксида кремния SiО2 не менее 99%. Наиболее лучшим наполнителем по своим дугогасящим свойствам является мел (СаСО3), который после перегорания вставки в отличие от песка не образует остаточных токопроводящих путей и пригоден для многократного использования. Но мел значительно дороже песка и это ограничивает его широкое применение.
Для лучшего использования наполнителя как теплоотводящей и дугогасящей среды в засыпном предохранителе обычно размещены несколько параллельно соединенных вставок, суммарное сечение которых эквивалентно сечению одной вставки предохранителя на тот же рабочий ток.
Помимо перечисленных предохранителей традиционного исполнения в особую группу можно выделить жидкометаллические предохранители и предохранители инерционного типа. В жидкометаллическом предохранителе в качестве плавкого элемента применяется жидкий металл (галлий, сплав галлий/ивдий/олово и др.), которым заполняется канал расчетного по рабочему току сечения в герметизированном и вакуумированием патроне. Предохранитель электрически (последовательно) и механически связан с защитным аппаратом, например, автоматическим выключателем. При срабатывании такого предохранителя металл из жидкого состояния переходит в парообразное. Возникающее при этом в патроне давление через специальный шток воздействует на расцепитель автоматического выключателя, который и осуществляет отключение электрической цепи. Сразу же после этого пары металла вновь переходят в жидкое состояние (через 0,5-2 мс) и предохранитель готов к повторному срабатыванию. Инерционные предохранители от обычных отличаются наличием двух вставок разного сечения и исполнения, которые обеспечивают защиту потребителя (наиболее часто - асинхронные двигатели) как при значительных токах короткого замыкания, так и при сравнительно небольших токах перегрузки.
Следует подчеркнуть, что в настоящее время (и скорее всего в обозримом будущем эта тенденция сохранится) предохранитель чаще всего применяется либо как аппарат защиты от токов короткого замыкания, либо как аппарат защиты от предельно больших токов короткого замыкания при совместном действии с автоматическим выключателем (по схеме: предвключенный предохранитель с автоматическим выключателем).
Рисунок 2. Времятоковая характеристика предохранителя.
Рабочая (защитная) времятоковая характеристика предохранителя дана на рис. 2, где Iном - номинальный ток, указывается на плавкой вставке, а Iп - пограничный ток (ток, при котором плавкая вставка перегорает за время не менее одного часа), в большинстве случаев принимается за исходный при расчетах. В зависимости от материала вставки пограничный ток может превышать номинальный на 10-70 %. Меньшие значения относятся к материалам с более стабильной защитной характеристикой (менее подверженным внешним атмосферным условиям и режимам эксплуатации электрооборудования), например, серебро, большие - к нестабильным в указанном отношении материалам (например, алюминий).[7]
Основные требования, предъявляемые к плавким предохранителям
К предохранителям предъявляются следующие требования:
1. Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта.
2. При коротком замыкании предохранители должны работать селективно.
3.Время срабатывания предохранителя при коротком замыкании должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны работать с токоограничением.
4. Характеристики предохранителя должны быть стабильными. Разброс параметров из-за производственных отклонений не должен нарушать защитные свойства предохранителя.
5. В связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность.
6. Замена сгоревшего предохранителя или плавкой вставки не должна требовать много времени.
Плавкие предохранители с гашением дуги в закрытом объеме ПР-2
Устройство предохранителей ПР-2
Предохранители ПР-2 на токи от 15 до 60 А имеют упрощенную конструкцию. Плавкая вставка 1 прижимается к латунной обойме 4 колпачком 5, который является выходным контактом. Плавкая вставка 1 штампуется из цинка, являющегося легкоплавким и стойким к коррозии материалом. Указанная форма вставки позволяет получить благоприятную времятоковую (защитную) характеристику. В предохранителях на токи более 60 А плавкая вставка 1 присоединяется к контактным ножам 2 с помощью болтов.
Вставка предохранителя ПР-2 располагается в герметичном трубчатом патроне, который состоит из фибрового цилиндра 3, латунной обоймы 4 и латунного колпачка 5.
Принцип действия предохранителей ПР-2
Процесс гашения дуги в плавком предохранителе ПР-2 происходит следующим образом. При отключении сгорают суженные перешейки плавкой вставки, после чего возникает дуга. Под действием высокой температуры дуги фибровые стенки патрона выделяют газ, в результате чего давление в патроне за доли полупериода поднимается до 4--8 МПа. За счет увеличения давления поднимается вольт-амперная характеристика дуги, что способствует ее быстрому гашению.
Плавкая вставка предохранителя ПР-2 может иметь от одного до четырех сужений в зависимости от номинального напряжения. Суженные участки вставки способствуют быстрому ее плавлению при коротком замыкании и создают эффект токоограничения.
Рисунок 3. Предохранитель типа ПР-2
Поскольку гашение дуги в плавком предохранителе ПР-2 происходит очень быстро (0,002 с), можно считать, что уширенные части вставки в процессе гашения остаются неподвижными.
Давление внутри патрона плавкого предохранителя пропорционально квадрату тока в момент плавления вставки и может достигать больших значений. Поэтому фибровый цилиндр должен обладать высокой механической прочностью, для чего на его концах установлены латунные обоймы 4. Диски 6, жестко связанные с контактными ножами 2, крепятся к обойме патрона 4 с помощью колпачков 5.
Предохранители ПР-2 работают бесшумно, практически без выброса пламени и газов, что позволяет устанавливать их на близком расстояния друг от друга. Плавкие предохранители ПР-2 выпускаются двух осевых размеров -- короткие и длинные. Короткие предохранители ПР-2 предназначены для работы на переменном напряжении не выше 380 В. Они имеют меньшую отключающую способность, чем длинные, рассчитанные на работу в сети с напряжением до 500 В.
Технические характеристики предохранителей ПР-2
В зависимости от номинального тока выпускается шесть габаритов патронов различных диаметров. В патроне каждого габарита могут устанавливаться вставки на различные номинальные токи. Так, в патроне на номинальный ток 15 А могут быть установлены вставки на ток 6, 10 и 15 А.
Различают нижнее и верхнее значения испытательного тока. Нижнее значение испытательного тока -- это максимальный ток, который, протекая в течение 1 ч, не приводит к перегоранию предохранителя. Верхнее значение испытательного тока -- это минимальный ток, который, проходя в течение 1 ч, плавит вставку предохранителя. С достаточной точностью можно принять пограничный ток равным среднеарифметическому испытательных токов.[6]
2.2 Выбор кабеля от ПС до ШМА
Цель расчета: определение подходящего питающего кабеля от цеховой подстанции до магистрального шинопровода.
Определяем расчетный ток IH:
IH=IШРА1+ IШРА2+ IШРА3 (2.5)
IH=137,47+222,02+125,74=485,24 А
Для питания ШМА от КТП предварительно выбираем два параллельных кабеля ВВГ 4*185мм2.
Проверяем по условию допустимости нагрева
Iдоп.пров > Iр, 496,8 А > 485,24 А.
Проверяем по допустимости потери напряжения,
?U=*Ip*L*(rудcosц+xудsinц)*10-3*100%/Uн, (2.5)
где L - длина кабеля, L=30м;
rуд, худ - удельные активное и реактивное сопротивления, Ом/м;
rуд=0,18мОм/м; худ=0,21 мОм/м.
?U=*485,24*30*(0,18*0,84+0,21*0,54)*10-3*100%/380=1,75%
Оба условия выполняются, поэтому для ШМА окончательно принимаем кабель ВВГ 4х185 мм2.
Силовой кабель ВВГ имеет в своей структуре медные жилы по ним происходит передача электрической энергии. ВВГ делится по номинальному напряжению на 0,66 кВ и 1,0 кВ. Кабель ВВГ имеет широкое применение и используется во всех промышленных, бытовых, офисных и других видов зданий. Его используют при подключении промышленных приборов, уличного освещения, при укладке домашней электросети. Укладывать кабель рекомендуют при температуре не ниже -15 градусов. Укладывая кабель ВВГ в земле необходимо позаботится об использовании кабель каналов или труб ПВХ, все это необходимо для защиты кабеля от механических повреждений.
Считается что использование кабеля ВВГ наиболее выгодное и безопасное. Так как кабель имеет улучшенную защиту по сравнению с обычными проводами. Сейчас в каждом строящемся доме используют именно кабель ввг, на розетки используют трех жильный кабель сечением на 2,5 мм2. На освещение идет ВВГ 3х1,5 правда как показывает практика на осветительных приборах редко кто использует заземление, будем наедятся что в ближайшее время это отношение изменится. Для электроплит используют более мощный кабель как правило это ввг 3х4. Такого кабеля вполне достаточно чтоб выдержать среднюю варочную поверхность и духовку. Для расчета площади сечения медного кабеля можно воспользоватся простой формулой, 1мм2 способен выдержать 2 кВт нагрузки. Мощность электроприбора можно посмотреть в его паспортных данных.
Кабель ВВГ полное название Винил Винил Гибкий - другими словами медный силовой гибкий кабель с виниловой оболочкой и изоляцией.
Структура кабеля ВВГ
Кабель ввг состоит двух, трех или четырех жил, так же бывает с наличием заземляющие и нулевой жилы. Для удобства подключения жилы кабеля ввг окрашены в различные цвета. Следует знать, что СИНИЙ или ГОЛУБОЙ цвет означает, что жила является нулевой, а ЖЕЛТО-ЗЕЛЕНАЯ жила означает заземление. При укладке проводки следует учитывать это!
Технические характеристики кабеля ВВГ
Вид климатического исполнения кабелей УХЛ и Т, категорий размещения 1 и 5 по ГОСТ 15150-69
Диапазон температур эксплуатации: от -50°С до +50°С
Относительная влажность воздуха при температуре до +35°С: до 98%
Прокладка и монтаж кабелей без предварительного подогрева производится при температуре не ниже: -15°С
Минимальный радиус изгиба при прокладке кабелей одножильных марки ВВГ - 10 наружных диаметров, кабелей одножильных марки ВВГнг - 15 наружных диаметров, кабелей многожильных - 7.5 наружных диаметров.
Номинальная частота кабеля силового ВВГ: 50 Гц Испытательное переменное напряжение частотой 50 Гц:
на напряжение 0,66 кВ - 3 кВ
на напряжение 1 кВ - 3.5 кВ
Длительно допустимая температура нагрева жил кабелей при эксплуатации: +70°С Строительная длина кабелей для сечений основных жил:
1.5 - 16 мм2 - 450 м
25 - 70 мм2 - 300 м
95 мм2 и выше - 200 м
Гарантийный срок эксплуатации: 5 лет с даты ввода кабелей в эксплуатацию
Срок службы: 30 лет(8)
2.3 Выбор головного выключателя
Цель расчета: определение подходящего защитного аппарата для магистрального шинопровода и всех электроприемников запитанных от ШРА.
Для защиты кабеля и ШМА применяем автоматический выключатель.
Автоматический выключатель (автомат) служит для нечастых включений и отключений электрических цепей и защиты электроустановок от перегрузки и коротких замыканий, а также недопустимого снижения напряжения. По сравнению сплавкими предохранителями автоматический выключатель обеспечивает более эффективную защиту, особенно в трёхфазных цепях, так как в случае, например, короткого замыкания производится отключение всех фаз сети. Предохранители в этом случае, как правило, отключают одну или две фазы, что создаёт неполнофазный режим, который также является аварийным.
Автоматический выключатель (рис. 1) состоит из следующих элементов: корпуса, дугогасительных камер, механизма управления, коммутирующего устройства, расцепителей.
Рис. 4. Автоматический выключатель, серия ВА 04-36.
Устройство выключателя: 1- основание, 2- камера дугогасительная, 3, 4-пластины искрогасительные, 5-крышка, 6-пластины. 7-звено, 8-звено, 9-рукоятка, 10-рычаг опорный, 11-защелка, 12- рейка отключающая, 13- пластина термобиметаллическая, 14-расцепитель элетромагнитный, проводник гибкий, 16-токопровод, 17- контактодержатель, 18-контакты подвижные
Для включения автоматического выключателя, находящегося в расцепленном положении (положение «Отключено автоматически»), механизм должен быть взведен путем перемещения рукоятки 9 выключателя в направлении знака «О» до упора. При этом происходит зацепление рычага 10 с защелкой 11, а защелки - с отключающей рейкой 12. Последующее включение осуществляется перемещением рукоятки 9 в направление знака «1» до упора. Провал контактов и контактное сжатие при включении обеспечивается за счет смещения подвижных контактов 18 относительно контактодержателя 17.
Автоматическое отключение автомата происходит при повороте отключающей рейки 12 любым расцепителем независимо от положения рукоятки 9 выключателя. При этом рукоятка занимает промежуточное положение между знаками «О» и «1», указывая, что выключатель отключен автоматически. Дугогасительные камеры 2 установлены в каждом полюсе выключателя и представляют собой деионные решетки, состоящие из ряда стальных пластин 6.
Искрогасители, содержащие искрогасительные пластины 3 и 4, закреплены в крышке 5 выключателя перед отверстиями для выхода газов в каждом полюсе автоматического выключателя. Если в защищаемой цепи, хотя бы одного полюса ток достигает величины равной или превышающей значение уставки по току, срабатывает соответствующий расцепитель и выключатель отключает защищаемую цепь независимо от того, удерживается ли рукоятка во включенном положении или нет. Электромагнитный максимальный расцепитель тока 14 устанавливается в каждом полюсе выключателя. Расцепитель выполняет функцию мгновенной защиты от короткого замыкания.
Дугогасительные устройства необходимы в электрических аппаратах, коммутирующих большие токи, так как возникающая при разрыве токаэлектрическая дуга вызывает подгорание контактов.
Механизм управления предназначен для обеспечения ручного включения и выключения аппарата при помощи кнопок или рукоятки.
Коммутирующее устройство автоматического выключателя состоит из подвижных и неподвижных контактов (силовых и вспомогательных). Пара контактов (подвижный и неподвижный) образуют полюс автоматического выключателя, количество полюсов бывает от 1 до 4. Каждый полюс комплектуется отдельной дугогасительной камерой.
Механизм, который отключает автоматический выключатель при аварийных режимах, называется расцепителем. Различают следующие виды расцепителей:
- электромагнитный максимального тока (для защиты электроустановок от токов короткого замыкания),
- тепловой (для защиты от перегрузок),
- комбинированный, имеющий электромагнитный и тепловой элементы,
- минимального напряжения (для защиты от недопустимого снижения напряжения),
- независимый (для дистанционного управления автоматическим выключателем),
- специальный (для реализации сложных алгоритмов защиты).
Электромагнитный расцепитель автоматического выключателя представляет собой небольшую катушку с обмоткой из медного изолированного провода и сердечником. Обмотка включается в цепь последовательно с контактами, то есть по ней проходит ток нагрузки.
В случае возникновения короткого замыкания ток в цепи резко возрастает, в результате создаваемое катушкой магнитное поле вызывает перемещение сердечника (втягивание в катушку или выталкивание из неё). Сердечник при перемещении действует на отключающий механизм, который вызывает размыкание силовых контактов автоматического выключателя. Существуют автоматические выключатели с полупроводниковыми расцепителями, реагирующими на максимальный ток.
Тепловой расцепитель автоматического выкючателя представляет собой биметаллическую пластину, изготовленную из двух металлов с различными коэффициентами линейного расширения, жестко соединенных между собой. Пластина не является сплавом металлов, их соединение производится обычно прессованием. Биметаллическая пластина включается в электрическую цепь последовательно с нагрузкой и нагревается электрическим током.
В результате нагрева происходит изгибание пластины в сторону металла с меньшим коэффициентом линейного расширения. В случае возникновения перегрузки, то есть при небольшом (в несколько раз) увеличении тока в цепи по сравнению с номинальным, биметаллическая пластина, изгибаясь, вызывает отключение автоматического выключателя.
Время срабатывания теплового расцепителя автоматического выключателя зависит не только от величины тока, но и от температуры окружающей среды, поэтому в ряде конструкций предусмотрена температурная компенсация, которая обеспечивает корректировку времени срабатывания в соответствии с температурой воздуха.
Независимый расцепитель минимального напряжения по конструкции аналогичны электромагнитному и отличаются от него условиями срабатывания. В частности, независимый расцепитель обеспечивает отключение автомата при подаче напряжения на расцепитель независимо от наличия аварийных режимов.
Условия эксплуатации
Автоматические выключатели выпускаются в исполнениях с разной степенью защиты от прикосновений и внешних воздействий (IPOO, IP20, IP30, IP54). При этом степень защиты зажимов для присоединения внешних проводников может быть ниже степени защиты оболочки выключателя.
Выключатели изготавливают в 5-ти климатических исполнениях и 5-ти категорий размещения, что кодируется буквами У, УХЛ, Т, М, ОМ и цифрами 1,2,3,4,5.
Выключатели рассчитаны для работы в продолжительном режиме в следующих условиях:
установка на высоте не более 1000 м над уровнем моря (выключатели серии АП50 и АЕ1000 - на высоте не более 2000 м над уровнем моря);
температура окружающего воздуха от - 40 (без выпадения росы и инея) до +40°С (для выключателей серии АЕ1000 - от +5 до +40°С);
относительная влажность окружающей среды не более 90% при 20°С и не более 50% при 40°С;
окружающая среда - невзрывоопасная, не содержащая пыли (в том числе токопроводящей) в количестве, нарушающем работу выключателя, и агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию;
место установки выключателя - защищенное от попадания воды, масла, эмульсии и т.п.;
отсутствие непосредственного воздействия солнечной и радиоактивной радиации;
отсутствие резких толчков (ударов) и сильной тряски; допускается вибрация мест крепления выключателей с частотой до 100 Гц при ускорении не более 0,7 g.
Эксплуатация в нерабочем состоянии (хранение и транспортирование при перерывах в работе) соответствует ГОСТ 15543-70 и ГОСТ 15150-69.
Выбор по условиям нормального режима.
Номинальному напряжению выключателя Uвн;
Uвн?Uн,
Расчетному току защищаемой линии;
Iнв ? Iр,
Выбор по условиям защиты от перегрузки и КЗ.
Для защиты от перегрузки служат максимальные расцепители ( с выдержкой времени);
Iн р?Iр.
Для защиты от КЗ служат мгновенные расцепители ( без выдержки времени);
Iмгн р?1,25*Iпик.
Для ШРА-1предварительно выбираем автоматический выключатель типа ВА52-33 с номинальными данными Uвн=380В, Iнв=160А.
Выбираем по условиям нормального режима:
Uвн?Uн, 380В=380В.
Iнв?Iр, 160А>137,47А.
Выбираем максимальный расцепитель с током срабатывания 160А:
Iн р?Iр, 160А>137,47А.
Найдем значение пикового тока для выбора мгновенного расцепителя:
Iпик=Iр-Ки*Iнмах+Iпмах,А. (2.6)
где Iр - расчетный ток линии, А;
Ки и Iн мах - коэффициент использования и номинальный ток самого мощного ЭП, входящего в рассматриваемую группу;
Iп мах - пусковой ток самого мощного ЭП, входящего в рассматриваемую группу.
Iпик=137,47-0,2*167,3+1004=1108А. (2.7)
Из ЭП, подключенных к ШРА1, наибольшую мощность имеет ЭП №1 с номинальной мощностью 55 кВт, Ки=0,2, cosц=0,5. Номинальный ток ЭП №1
Iн мах=167,3 А.
Пусковой ток ЭП №43
Iп мах=1004 А.
Ток срабатывания мгновенного расцепителя
Iмгнр?1,25*1108=1385А. (2.8)
С учетом найденного тока по таблице находим кратность (отношение) тока срабатывания мгновенного расцепителя к току срабатывания максимального расцепителя - 10.
Ток срабатывания мгновенного расцепителя:
Iмгнр=10*Iнр=10*160=1600А. (2.9)
1600А ? 1385 А.
Окончательно принимаем выключатель ВА52-33 с номинальным током Iн=160 А, током срабатывания максимального расцепителя Iн.р=160 А и током срабатывания мгновенного расцепителя Iмгн р=1600 А.
Для ШРА-2 выбираем выключатель ВА52-35 с номинальным током Iн=250 А, током срабатывания максимального расцепителя Iн.р=250 А и током срабатывания мгновенного расцепителя Iмгн р=3000 А.
Для ШРА-3 выбираем выключатель ВА52-33 с номинальным током Iн=160 А, током срабатывания максимального расцепителя Iн.р=160 А и током срабатывания мгновенного расцепителя Iмгн р=1600 А.
Трансформатор тока отходящей лини выбираем по условию
Iн в?Ip,
Согласно этого условия, выбираем ТТ с номинальным током 150 А.
Технические характеристики трансформаторов тока
Номинальный первичный и вторичный ток трансформаторов тока
Трансформаторы тока характеризуются номинальным первичным током Iном1 (стандартная шкала номинальных первичных токов содержит значения от 1 до 40000 А) и номинальным вторичным током Iном2, который принят равным 5 или 1 А. Отношение номинального первичного к номинальному вторичному току представляет собой коэффициент трансформации КТА= Iном1/ Iном2
Токовая погрешность трансформаторов тока
Трансформаторы тока характеризуются токовой погрешностью ?I=(I2K-I1)*100/I1 (в процентах) и угловой погрешностью (в минутах). В зависимости от токовой погрешности измерительные трансформаторы тока разделены на пять классов точности: 0,2; 0,5; 1; 3; 10. Наименование класса точности соответствует предельной токовой погрешности трансформатора тока при первичном токе, равном 1--1,2 номинального. Для лабораторных измерений предназначены трансформаторы тока класса точности 0,2, для присоединений счетчиков электроэнергии -- трансформаторы тока класса 0,5, для присоединения щитовых измерительных приборов -классов 1 и 3.
Нагрузка трансформаторов тока
Нагрузка трансформатора тока -- это полное сопротивление внешней цепи Z2, выраженное в омах. Сопротивления r2 и х2 представляют собой сопротивление приборов, проводов и контактов. Нагрузку трансформатора можно также характеризовать кажущейся мощностью S2 В*А. Под номинальной нагрузкой трансформатора тока Z2ном понимают нагрузку, при которой погрешности не выходят за пределы, установленные для трансформаторов данного класса точности. Значение Z2ном дается в каталогах.
Электродинамическая стойкость трансформаторов тока
Электродинамическую стойкость трансформаторов тока характеризуют номинальным током динамической стойкости Iм.дин. или отношением kдин = Термическая стойкость определяется номинальным током термической стойкости Iт или отношением kт= Iт / I1ном и допустимым временем действия тока термической стойкости tт.
3. Расчет КТП
3.1 Расчет цехового трансформатора
Цель расчета: определение подходящего по мощности трансформатора для питания проектируемого цеха.
Комплектная трансформаторная подстанция (КТП) - это электрическая установка, предназначенная для приема, преобразования и распределения электроэнергии трехфазного тока. Она состоит из одного или двух трансформаторов, устройства высшего напряжения УВН) с коммутационной аппаратурой, комплектного РУ со стороны низшего напряжения (РУНН) и служит для распределения энергии между отдельными электроприемниками или группами электроприемников в цехе.
Условное обозначение комплектной трансформаторной подстанции КТП-Х/10//0,4-81-У1 расшифровывается так: К - комплектная, Т - трансформаторная , П - подстанция, Х - мощность силового трансформатора (25, 40, 63, 100, 160), кВА, 10 - класс напряжения в кВ, 0,4 -номинальное напряжение на стороне НН, 81 - год разработки, У1 - вид климатического исполнения.
Условия эксплуатации комплектных трансформаторных подстанций
Высота установки трансформатора над уровнем моря не более 1000 м.
Температура окружающего воздуха от -40 до +40 гр С.
Отсутствие тряски, вибрации, ударов.
Окружающая среда - невзрывоопасная, химически неактивная.
Гарантийный срок - три года со дня ввода КТП в эксплуатацию.
Защита комплектных трансформаторных подстанций от коротких замыканий
Защита КТП от многофазных коротких замыканий отходящих линий осуществляется выключателями со встроенными электромагнитными и тепловыми расцепителями.
Подключение комплектной трансформаторной подстанции при радиальной схеме питания
При радиальном питании КТП кабельными линиями от распределительного пункта 6 - 10 кВ по схеме блок - линия - трансформатор допускается глухое присоединение к трансформатору.
Подключение комплектной трансформаторной подстанции при магистральной схеме питания
Установка шкафа УВН с отключающей и заземляющей аппаратурой перед трансформатором КТП при магистральной схеме питания обязательна.
При мощности трансформаторов 1000 - 1600 кВА к одной магистрали следует присоединять две-три КТП, при меньшей мощностях - три-четыре.
Подключение комплектных трансформаторных подстанций мощностью 2500 кВА
КТП с трансформаторами мощностью 2500 кВА необходимо питать по радиальной схеме так как при магистральной схеме с двумя трансформаторами трудно выполнить селективную защиту на питающей линии.
Размещение внутрицеховых КТП
Внутрицеховые комплектные трансформаторные подстанции, как правило, размещают на первом этаже в основных и вспомогательных помещениях производств.
Техническое обслуживание комплектных трансформаторных подстанций
При техническом обслуживании комплектных трансформаторных подстанций (КТП) основным оборудованием, за которым нужно вести регулярное наблюдение и уход, являются силовые трансформаторы и коммутационная аппаратура распределительных щитов.
Завод изготовитель несет ответственность за работу КТП в течении 12 месяцев со дня ввода их в эксплуатацию, но не более 24 месяцев со дня отгрузки при условии соблюдения правил хранения, транспортировки и обслуживания.
Токи нагрузок при нормальной эксплуатации не должны превышать значений, указанных в заводских инструкциях. В подстанциях с двумя резервирующих друг друга трансформаторами, эксплуатационная нагрузка не должна превышать 80% номинальной. При аварийном режиме допускается перегрузка линий, отходящих от распределительных щитов, КТП, при защите их автоматами с комбинированными расцепителями.
Кроме показаний приборов, о нагрузке герметизированных трансформаторов типов ТНЗ и ТМЗ судят по давлению внутри бака, которое при нормальной нагрузке не должно превышать 50 кПа по показанию мановакумметра. При давлении 60 кПа срабатывает реле давления, выдавливая стеклянную диафрагму, давление при этом понижается до нуля. Резкое снижение внутреннего давления происходит и при потере герметичности трансформатора.
Если давление упало до нуля, проверяют целостность диафрагмы. Если она разбита, трансформатор отключают, и выясняют причину, приведшую к срабатыванию реле давления, и при отсутствии повреждения (т.е. реле сработало от перегрузки) устанавливают новую диафрагму и включают трансформатор под пониженную нагрузку. На герметизированных трансформаторах для контроля температуры в верхних слоях масла установлены термометрические сигнализаторы с действием на световой или звуковой сигнал при перегреве.
У трансформаторов, снабженных термосифонными фильтрами, во время эксплуатации контролируют нормальную циркуляцию масла через фильтр по нагреву верхней части кожуха. Если в пробе масла обнаруживают загрязненность, фильтр перезаряжают. Для этого фильтр разбирают, очищают внутреннюю поверхность от грязи, шлама и промывают чистым сухим маслом. При необходимости заменяют сорбент. Сорбент, полученный в герметической таре, можно применять без сушки.
Контроль за осушителем сводится к наблюдению за цветом индикаторного силикагеля. Если большая часть его окрашивается в розовый цвет, весь силикагель осушителя заменяют или восстанавливают нагревом его при 450 - 500 гр С в течение 2 ч, а индикаторный силикагель - нагревом при 120 гр С до тех пор, пока вся масса не окрасится в голубой цвет (приблизительно через 15 ч).
Удаление шлама и оксидной пленки с контактной системы переключателя ступеней, рекомендуется производить не реже 1 раза в год прокручиванием переключателя до 15 - 20 раз по часовой и против часовой стрелки.
Периодичность осмотров КТП устанавливается службой главного энергетика. Осмотр КТП производится при полном снятии напряжении на вводе и отходящих линиях.
Выбираем мощность трансформатора по следующей формуле:
Sт=Рр/в*N=267,62/0,9*1=297,35кВА. (3.1)
где Рр - расчетная мощность цеха, равная 267,62 кВт; в - коэффициент загрузки трансформатора, в=0,9; N - число трансформаторов, N=1.
Подобные документы
Характеристика проектируемого цеха и потребителей электроэнергии. Выбор электродвигателей, их коммутационных и защитных аппаратов. Определение электрических нагрузок. Выбор схемы и расчет внутрицеховой электрической сети. Релейная защита и автоматика.
дипломная работа [1,0 M], добавлен 16.04.2012Разработка система электроснабжения отдельных установок цеха. Расчеты по выбору электродвигателей и их коммутационных и защитных аппаратов. Расчет и выбор внутрицеховой электрической сети. Определение электрических нагрузок цеха и потерь напряжения.
курсовая работа [465,6 K], добавлен 16.04.2012Характеристика потребителей электроэнергии и определение категории электроснабжения. Выбор величины питающего напряжения, схема электроснабжения цеха. Расчет электрических нагрузок, силовой сети и трансформаторов. Выбор аппаратов защиты и автоматики.
курсовая работа [71,4 K], добавлен 24.04.2014Характеристика потребителей электроэнергии. Расчет распределительной сети, силовых и осветительных нагрузок. Выбор элементов схемы распределения электрической энергии. Назначение релейной защиты и автоматики. Методика расчета защитного заземления.
дипломная работа [1,1 M], добавлен 15.02.2017Проведение расчета электрических нагрузок цеха металлоконструкций. Разработка проекта внешней сети электропитания цеха, обоснование выбора силовых трансформаторов. Расчет распределительной силовой сети объекта: сечение кабелей, автоматическая защита.
курсовая работа [461,0 K], добавлен 27.01.2016Определение расчетных электрических нагрузок. Выбор и расчет низковольтной электрической сети, защитных коммутационных аппаратов. Выбор числа и мощности силовых трансформаторов для цеховых подстанций. Устройства автоматического включения резерва.
курсовая работа [432,5 K], добавлен 22.08.2009Определение расчетных силовых электрических нагрузок. Выбор схемы электроснабжения предприятия, мощности силовых трансформаторов. Разработка схемы электроснабжения и сетевых элементов на примере ремонтно-механического цеха. Проверка защитных аппаратов.
курсовая работа [579,4 K], добавлен 26.01.2015Расчет электрических нагрузок силовой и осветительной сети цеха. Выбор количества и мощности силовых трансформаторов понижающей подстанции. Расчет нагрузок по допустимому нагреву по трансформаторам. Выбор питающего кабеля и выключателей на РП 10 кВ.
дипломная работа [124,9 K], добавлен 03.09.2010Определение электрических нагрузок цеха методом упорядоченных диаграмм. Расчет и выбор компенсирующего устройства. Расчет внутрицеховых электрических сетей. Выбор аппаратов защиты. Расчет тока короткого замыкания. Проверка элементов цеховой сети.
курсовая работа [717,4 K], добавлен 01.07.2014Выбор электродвигателей, их коммутационных и защитных аппаратов, его обоснование и расчет параметров. Определение электрических нагрузок. Выбор и расчет внутрицеховой электрической сети промышленного предприятия. Вычисление токов короткого замыкания.
курсовая работа [180,2 K], добавлен 20.09.2015