Ферромагнитные жидкости

Основные процессы намагничивания агрегативно-устойчивых полидисперсных магнитных жидкостей. Особенности процессов намагничивания магнитных коллоидов с различными структурными образованиями. Магниточувствительные эмульсии и основные способы их получения.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 16.02.2010
Размер файла 6,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

(1)

По утверждению авторов работы [?], в общем случае начальная восприимчивость системы сферических диполей определяется двумя независимыми безразмерными параметрами: объемной долей частиц и параметром агрегирования (- диаметр коллоидной частицы вместе с защитной оболочкой). При этом, ими представляется в виде: , на основании чего делается ошибочный вывод, что параметр и ланжевеновская восприимчивость имеют одинаковый смысл отношения энергии диполь-дипольных взаимодействий к тепловой. По их мнению, разность лишь заключается в том, что в первом случае энергия взаимодействий вычисляется при минимальном расстоянии между центрами частиц, равном их диаметру, во втором - по среднему расстоянию, т.е. через числовую плотность . Далее утверждается, что при малых значениях количество агрегатов в магнитной жидкости невелико, и они не влияют на намагниченность системы. В этом случае ланжевеновская восприимчивость оказывается единственным безразмерным параметром, определяющим степень влияния магнитодипольных взаимодействий на равновесную намагниченность системы, что и отражает формула (). Второе и третье слагаемые в этой формуле, по мнению авторов в этой формуле учитывают относительный вклад межчастичных взаимодействий в равновесную восприимчивость. Вместе с тем, следует заметить, что выражение для ланжевеновской магнитной восприимчивости получено в случае пренебрежения межчастичными взаимодействиями и на самом деле она может иметь только один смысл - отношения собственной (магнитостатической) энергии ансамбля однодоменных частиц к тепловой энергии. Действительно, магнитостатическая энергия сферической, однородно намагниченной частицы равна произведению ее магнитного момента на собственное размагничивающее поле, равное - , где - размагничивающий фактор сферической частицы. Таким образом, по абсолютной величине магнитостатическая энергия сферической частицы равна . Так как =, то , и с учетом этого нетрудно получить

,

где - объемная концентрация магнитной фазы.

Следует отметить, что, тем не менее, в современных аналитических моделях, описывающих свойства дипольных систем с учетом магнитодипольных и стерических взаимодействий в качестве определяющих параметров достаточно часто используют и . Представляя коллоидные частицы твердыми или “мягкими” сферическими диполями энергию их магнитодипольного взаимодействия определяют выражением

,

где - единичный вектор вдоль магнитного момента частицы, - радиус-вектор, соединяющий центры частиц, отнесенный к диаметру частицы, определяется выражением, аналогичным использованному в [], т.е. , за исключением того, что в последнем выражении является диаметром равномерно намагниченной сферы, а не диаметром сферической частицы вместе с защитной оболочкой. Выражение для восприимчивости ищут в виде ряда по степеням и или и , используя различные приемы для отыскания коэффициентов при соответствующих членах разложения. В работах Хуке и Люке [21,22] представлено разложение намагниченности по параметру . Выражение для магнитной восприимчивости, согласно полученным ими результатов может быть представлено в виде

. (2)

Проведенные расчеты коэффициента , учитывающего парные взаимодействия и образование агрегатов из двух частиц дали следующее выражение:

Сравнение (1) и (2) показывает их различие, по крайней мере в пределе малых концентраций выражение (2) не переходит в уравнение (1).

В работах Каликманова [24,25] была предпринята попытка уточнения коэффициента перед третьим слагаемым в правой части (1) в случае магнитной жидкости с высокой концентрацией магнитной фазы. В работе [], результат, полученный Каликмановым с целью сравнения с (1) был представлен в виде

(3)

,

В пределе малых концентраций множитель стремится к единице, и уравнение (3) переходит в (1). Поправка на высокую плотность оказывается существенной для высококонцентрированных жидкостей, например для предельно концентрированных коллоидов коэффициент увеличивается почти на порядок.

Ивановым А.О. и Кузнецовой О.Б. получено уточненное выражение для восприимчивости [], сходное с формулой (1), но содержащее в правой части слагаемые порядка и :

.

Пшеничниковым А.Ф. и Лебедевым А.В. введены поправки в разложение (1) (исскуственным образом) на агрегирование частиц и высокую плотность коллоидных частиц . В результате ими предложено выражение для магнитной восприимчивости в виде:

Сравнение формул, отражающих рассмотренные модели с экспериментальными данными проводилось в []. Анализ результатов этой работы позволяет сделать вывод о необходимости осторожности использования предложенных разложений, так как каждое из них удовлетворительно согласуется с результатами экспериментов только в определенных интервалах температур и концентраций дисперсной фазы. Следует также заметить, что все обсужденные модели разработаны для монодисперсной системы, в случае же полидисперсной среды, их применение становится затруднительным. Это связано с тем, что в этом случае определение параметра становится некорректным, кроме того, представление ланжевеновской восприимчивости в виде , являющееся формальным даже в случае монодисперсной среды (квадрат момента частицы заменяется произведением равных моментов двух разных частиц) становится невозможным, так как моменты этих частиц начинают различаться. Очевидно, что все эти затруднения могут быть преодолены в случае отыскания разложения для равновесной намагниченности в виде ряда по параметрам, определяющим магнитостатическую энергию частицы и объемную концентрацию магнитной фазы. Учет взаимодействия частиц в этом случае может быть охарактеризован изменением магнитостатической энергии частицы за счет полей соседних частиц, а при полидисперсности системы никаких сложностей с введением средней магнитостатической энергии частицы не возникает.

Глава 2. Структурная организация магнитных жидкостей и обусловленные ею электро- и магнитооптические эффекты

§1. Структурные образования в магнитных жидкостях

Наличие вокруг дисперсных частиц защитных оболочек, препятствующих необратимой коагуляции не исключает возможности объединения частиц в агрегаты, когда расстояние между ними соответствует второму минимуму энергии взаимодействия при сохранении барьера отталкивания, а также в случае малой глубины первого минимума. Действительно, микроскопические наблюдения показывают наличие даже в наиболее устойчивых к агрегированию МЖ типа магнетит в керосине с олеиновой кислотой структурных образований из исперсных частиц.

Де Жен и Пинкус [33 МД] рассмотрели коллоид, состоящий из идентичных ферромагнитных частиц, взвешенных в пассивной по отношению к магнитному полю жидкости. Для характеристики дипольного взаимодействия, приводящего к агрегированию использован параметр, называемый константой спаривания . Было предположено, что при условии происходит агрегирование с образованием для верхнего предела плотности решетки антиферромагнитного типа. Теоретические разработки условия появления агрегатов в магнитных коллоидах также проводились в ряде других работ (например, в [21,34,35]), экспериментальное исследование этого явления предпринималось в работах [37,33, 38, 39,40,41,42,43,44,45] и др. Развитие экспериментальных работ в области физики магнитных коллоидов привело к появлению представления об агрегировании в МЖ как возникновении гетерофазных включений. По-видимому, впервые оно было сформулировано В.В.Чекановым [75] , где образование агрегатов рассматривалось им как появление новой фазы из раствора, близкого к насыщению. В [76] возникновение агрегатов, интерпретированное как фазовый переход в магнитных коллоидах, рассмотрено на основе общих представлений гетерогенных систем. Из условия равновесия свободных частиц с агрегатами получен аналог уравнения Клапейрона-Клаузиса - зависимость напряженности магнитного поля, при которой начинается фазовый переход, от температуры при постоянных давлении и концентрации:

, ( )

где - теплота растворения, отнесенная к одной частице, -магнитный момент частицы.

Термодинамическая модель магнитной жидкости, показывающая, что при определенных значениях концентрации, температуры и напряженности магнитного поля появляется возможность расслоения МЖ на высоко- и слабоконцентрированные фазы, построена в работах А.О. Цеберса [77,78].

При этом, как, по-видимому, было впервые указано в [65], агрегаты могут быть разделены на два типа микрокапельные, имеющие упругую оболочку, и квазитвердые, иногда хлопьевидные, реже - напоминающие кристаллические образования.

§2. Магнитная жидкость с микрокапельной структурой

Наиболее распространенными в жидкостях на основе керосина являются микрокапельные агрегаты. По-видимому, образование микрокапельной структуры является уникальным процессом, характерным только для дисперсных систем с магни-тодипольными частицами. Попытка теоретического обоснования физического механизма этого процесса неоднократно предпринималась в ряде работ [38,76,82,138,139], среди которых следует отметить работу А.О. Цеберса [138], где в основу положено явление вытеснительной флокуляции. Вытеснительная флокуляция может иметь место, если дисперсные частицы находятся в растворе достаточно крупных молекул [140]. В этом случае, при сближении дисперсных частиц до расстояний, меньших диаметра растворенных клубков, последние не в состоянии заполнить зазор между частицами, который играет роль своеобразной мембраны, и осмотическое давление раствора создает силу, приводящую к притяжению частиц. При этом, при наличии магнитных межчастичных взаимодействий значение критической концентрации растворенных клубков, соответствующее началу агрегирования уменьшается. Действительно, возникновение микрокпельных агрегатов наблюдается в магнитных жидкостях при разбавлении их чистым ПАВ или его раствором в дисперсионной среде [134] . Вместе с тем, является установленным фактом и возможность возникновения микрокапельной структуры при разбавлении МЖ чистым растворителем. По-видимому, причиной этого являются процессы мицелообразования ПАВ в результате добавления керосина в магнитную жидкость. Как было указано в Гл. 1, именно с возникновением микрокапельной структуры при изменении концентрации магнитной жидкости на основе керосина путем ее последовательного разбавления связаны особенности концентрационной зависимости ее магнитной восприимчивости. В этом случае возникновение микрокапель было рассмотрено в рамках фазового перехода, так как налицо возникновение новой, более концентрированной фазы с наличием межфазной поверхности. Следует отметить, что концентрация частиц в микрокаплях может быть значительно выше, чем в омывающей их среде, а магнитная проницаемость микрокапель достигает нескольких десятков единиц.

Для исследования особенностей физических свойств магнитных жидкостей, обусловленных наличием микрокапельных агрегатов в [141] была разработана методика получения в МЖ на основе керосина хорошо развитой микрокапельной структуры. Это достигалось путем смешивания МЖ с минеральным маслом при различном соотношении их объемов. Смесь подогревалась до температуры 315 - 320 К и перемешивалась в течении 15-20 минут с помощью электромеханической мешалки. В результате этого была получена жидкость, содержащая множество мелких (2-7 мкм) капельных агрегатов, имеющих более высокое содержание магнетита, чем омывающая их среда. Такая магнитная жидкость может быть идентифицирована как магнитная эмульсия, уникальность которой состоит в том, что и эмульгированные капли и омывающая их среда одинаковы по природе и отличаются лишь плотностью. С другой стороны, достаточно высокое объемное содержание микрокапельных агрегатов в полученной таким способом среде приводит к особенностям оптических и магнитных свойств, обусловленных поведением микрокапель в магнитных и электрических полях. Подобные эффекты в той или иной мере могут наблюдаться и в магнитных жидкостях, в которых возможно самопроизвольное возникновение микрокапель под воздействием различных факторов.

2.1 Оптические эффекты в магнитной жидкости с микрокапельной структурой в сдвиговом течении

Деформация микрокапельных агрегатов в магнитном и электрическом полях, а также под действием сдвиговых напряжений приводит к структурной анизотропии в магнитной жидкости. Вследствие соизмеримости поперечных размеров вытянутых агрегатов с длиной световой волны, они становятся причиной дифракционного рассеяния света. Наблюдающееся в этом случае рассеяние света является анизотропным и может быть использовано для изучения характера структуры МЖ и динамики ее изменения [69]. Наличие распределения микрокапель по размерам и отсутствие трансляционного упорядочения вытянутых агрегатов определяет вид индикатрисы рассеяния, характерный для нерегулярной структуры [142]. Анализ экспериментально полученных индикатрис светорассеяния позволяет определить наиболее вероятную толщину агрегатов и ее зависимость от внешних воздействий.

Подобный эффект был обнаружен и при наличии в магнитной жидкости с микрокапельной структурой сдвигового течения [143]. При этом, при дополнительном воздействии магнитного поля, возможно возникновение более упорядоченной структурной решетки, дающей в проходящем свете четкую дифракционную картину. Изучение формирования структурной решетки при таких условиях проводилось с помощью исследования дифракционного светорассеяния, для чего использовалась установка, приведенная на рисунке 19).

Рисунок 19. Схема вибрационного магнетометра для исследования магнитных свойств магнитных жидкостей в сильных магнитных полях (H = 10ч800 кА/м); 1 -контейнер с магнитной жидкостью, 2 - измерительные катушки, 3 - электромагнит ФЛ-1, 4 - вибратор (остальные пояснения в тексте).

Сдвиговое течение создавалось между двумя прозрачными дисками с тонким слоем (30-40 мкм) МЖ между ними. Луч гелий-неонового лазера направлен перпендикулярно дискам с смещением от их центров на расстояние 0,5 см. При вращении одного из дисков в областях, эксцентрично расположенных относительно оси вращения, в плоскости, перпендикулярной оси, течение является куэтовским, а в плоскости, проходящей через нее, близким к куэтовскому (при малых толщинах образцов). Этим составляющим скорости соответствуют две компоненты градиента скорости с преобладанием второй. Результирующий градиент, направленный под непрямым углом к плоскости диска, обеспечивает деформацию сдвига, имеющую вязкостную природу [144]. Под действием сдвигового напряжения происходит деформация капель, величина которой определяется значением скорости сдвига, межфазного натяжения и вязкости среды [144,145]. Как показано в работе [144] в этом случае капля принимает форму вытянутого сфероида, соотношение осей которого удовлетворяет уравнению:

(4.1)

где а - длина главной оси, b - длина короткой оси, ф - вязкость дисперсной фазы, с - вязкость дисперсионной среды, G -скорость сдвига, 0- коэффициент межфазного натяжения.

В результате деформации капель структура образца становится анизотропной в любой небольшой области, смещенной относительно оси вращения. Это приводит к изменению характера рассеяния света. При отсутствии вращения на экране, перпендикулярном лучу, наблюдается свечение, имеющее вид ореола, обусловленное дифракционным рассеянием света на полидисперсных каплях, хаотически разбросанных по образцу. При наличии сдвига ореол преобразуется в размытую полосу, простирающуюся в стороны от луча, перпендикулярно большим полуосям деформированных капель. В этом случае система деформированных потоком агрегатов аналогична нерегулярной дифракционной решетке, параметры которой определяет индикатриса рассеяния, т.е. зависимость интенсивности рассеянного света I от угла рассеяния . На рисунке 20 представлены индикатрисы рассеяния, полученные при различных скоростях сдвига, анализ которых позволяет сделать вывод о характере процесса формирования анизотропной структуры в сдвиговом течении.

Рисунок 20. Индикатрисы рассеяния, полученные при различных значениях скорости сдвига; 1 - 66, 2 -53, 3 - 43, 4 - 36, 5 - 31, 6-27 с-1.

Следуя [69] где, как уже указывалось, изучались процессы деформации микрокапельных агрегатов в магнитном поле, предположим, что в нашем случае толщина агрегатов также может удовлетворять статистическому распределению Лоренца:

(4.2)

а индикатриса рассеяния имеет вид:

(4.3)

где в0 - наиболее вероятная толщина агрегатов, *- полуширина кривой распределения на половине высоты, n - показатель преломления жидкости, , - длина волны света в вакууме. Использование формулы (4.3) позволяет рассчитать структурные параметры деформированных агрегатов по экспериментально найденной зависимости I (), а анализ семейства таких кривых, соответствуюших различным скоростям сдвига, позволяет установить зависимость наиболее вероятной толщины агрегата от величины скорости сдвига.

Интерес представляют также прямые исследования зависимости интенсивности анизотропного светорассеяния от скорости сдвига в области, соответствующей фиксированному углу рассеяния. На рисунке 21 показана зависимость относительной величины I/I0 интенсивности светорассеяния от градиента скорости при угле рассеяния = 10°.

Рисунок 21. Зависимость относительной величины интенсивности светорассеяния (I) от скорости сдвига при угле рассеяния 9 = 10°.

Первоначальный рост интенсивности анизотропного светорассеяния связан с возрастанием вытянутости капель, а наличие максимума и последующих экстремумов с разрывом вытянутых капель при некоторых критических значениях скорости сдвига. Этот вывод качественно подтверждается результатами расчета зависимости толщины агрегата от скорости сдвига с помощью (4.3) по экспериментально полученным индикатрисам рассеяния. Деформация капельного агрегата в некоторых случаях может быть частично компенсирована действием магнитного поля, когда его направление перпендикулярно большой оси слабо деформированного агрегата. В этом случае, характер рассеяния света изменяется: светлая полоса, наблюдаемая на экране трансформируется в дифракционный круг, характерный для рассеяния на сферических включениях. Однако, возможна реализация случая, когда совместное действие магнитного поля и сдвигового течения приводит к большей упорядоченности структурной сетки [143]. На рисунке 22а схематично показана дифракционная картина, характерная для регулярных структур, полученная, когда вектор напряженности магнитного поля сонаправлен с лучом света и перпендикулярен линии скорости потока. При этом обнаруживается зависимость дифракционной картины от напряженности магнитного поля и скорости сдвига. На рисунке 22б показана зависимость интенсивности света от угла дифракции для этого случая при различных значениях напряженности магнитного поля.

Рисунок 22. Дифракционная картина, возникающая при одновременном воздействии магнитного поля и сдвигового течения (а); зависимость интенсивности рассеянного света от угла дифракции при различных значениях напряженности магнитного поля (б).

Теоретический анализ поведения микрокапельного агрегата при одновременном воздействии поля и сдвигового течения может быть проведен с энергетических позиций. Полная энергия деформированного капельного агрегата складывается из магнитной компоненты Wm и энергии поверхностного натяжения W: W=Wm+W. Магнитная компонента энергии согласно [129] равна:

(4.4)

, ,

б - угол между вектором напряженности и ориентацией капельного агрегата.

С учетом размагничивающего фактора, для проекций магнитного момента получим:

где а, b, с - полуоси эллипсоида вращения, N - размагничивающий фактор.

Угол б характеризует поворот деформированного агрегата сдвиговым течением и может быть найден из условия равенства моментов магнитных и вязких сил: . При этом , а , где щ- угловая скорость вращения, L - коэффициент сопротивления, равный для эллипсоида вращения, согласно [146]:

(4.5)

где - коэффициент вязкости жидкости.

С учетом этого для магнитной компоненты энергии найдем:

, где (4.6)

Энергия поверхностного натяжения равна:

(4.7)

где e - эксцентриситет вытянутой капли, r0 - радиус невозмущенной капли, о - коэффициент межфазного натяжения.

Условие устойчивого положения вытянутого эллипсоида может быть найдено путем минимизации его полной энергии W:

,

или, на основе анализа графической зависимости W(e) полной энергии от эксцентриситета капли. Наличие минимума на этих зависимостях [?] при относительно небольших значениях напряженности поля может свидетельствовать о возможности такой устойчивости, что и приводит к формированию структурной решетки, дающей характерную для нее дифракционную картину. Существование такой структурной решетки, по-видимому, становится возможным благодаря обеспечению параллельности с помощью сдвигового течения агрегатов, вытянутых вдоль направления поля и обладающих, вследствие его действия, магнитными моментами.

Энергетический подход позволяет также выявить возможность компенсации деформации капель, вызванной сдвиговым течением, с помощью воздействия магнитного поля на начальном этапе деформирования.

При относительно больших скоростях сдвига в магнитной жидкости с микрокапельной структурой, когда происходит разрушение микрокапель до достаточно малых размеров, возможно возникновение двойного лучепреломления и дихроизма. В результате этого, световой луч, прошедший через слой такой анизотропной жидкости перпендикулярно оптической оси является эллиптически поляризованным [147]. Для наблюдения этого эффекта в качестве источника света использовался осветитель, дающий параллельный пучок света, а кювета с образцом помещалась между двумя скрещенными поляроидами. При создании сдвигового течения путем вращения одного из дисков распределение интенсивности света в поле зрения за анализатором изменяется: оно заметно просветляется, кроме двух темных полос, образующих прямоугольный крест, при этом, направления полос совпадают с направлениями плоскостей поляризации поляроидов (рис.23а). Действие магнитного поля, вектор напряженности которого направлен параллельно плоскости слоя МЖ, приводит к изменению характера картины за анализатором. На рис.236 представлена ее фотография для случая, когда направление напряженности поля совпадает с плоскостью поляризации. Необходимо отметить зависимость картины, наблюдаемой за анализатором от взаимной ориентации вектора напряженности поля и плоскости поляризации - так в случае, когда вектор напряженности магнитного поля образует угол с направлением плоскости поляризации, близкий к 45° происходит поворот составляющих креста, так что он становится косоугольным. При достаточно большом значении напряженности магнитного поля происходит исчезновение креста и наблюдается эффект, характерный для явления двойного лучепреломления в магнитных жидкостях в магнитном поле [23].

Рисунок 23. Эффект двойного лучепреломления, возникающий в структурированной МЖ под действием сдвигового движения; а - при отсутствии магнитного поля, б - при дополнительном действии постоянного магнитного поля, направленного параллельно плоскости сдвига (плоскость сдвига совпадает с плоскостью рисунка).

Исследование зависимости эффекта от скорости сдвига проводилось при использовании в качестве осветителя луча гелий-неонового лазера, направленного параллельно оси вращения на расстоянии 0,5 см от нее. Для такого случая была исследована зависимость интенсивности света, прошедшего через анализатор от скорости сдвига при ортогональном расположении плоскостей поляризации лазерного луча и анализатора. При этом, угол между вектором скорости и направлением плоскости поляризации составлял 45°. Как видно из представленного рисунка 4.6, с ростом скорости сдвига первоначально происходит небольшое уменьшение интенсивности света с последующим ее ростом до достижения насыщения. В этом же интервале скоростей сдвига наблюдается гистерезисный эффект, величина которого зависит от скорости изменения частоты вращения. Проведенные эллипсометрические измерения по стандартным методикам [148,149] дали для разности показателей преломления между обыкновенным и необыкновенным лучами величину порядка ?n ~ 10-3 , а для дихроизма ~5•10-3м. При этом, ?n с увеличением скорости сдвига возрастает с относительно быстрым достижением насыщения, величина же дихроизма после первоначального роста падает. Одним из возможных объяснений полученных результатов может быть появление оптической анизотропии из-за деформации под действием напряжений сдвига достаточно мелких микрокапельных агрегатов, содержащихся в исследуемой магнитной жидкости. Заметим, что для однородных МЖ на основе керосина явление двойного лучепреломления в сдвиговом течении обнаружено не было.

Для объяснения двойного лучепреломления в структурированной магнитной жидкости в сдвиговом течении можно воспользоваться подходом, ранее применявшимся для построения теории двойного лучепреломления в коллоидных растворах с анизотропными дисперсными частицами [146] . Учтем, что в нашем случае, суммарная поляризация может быть обусловлена наличием дипольного момента: а) у коллоидных частиц; б) у молекул растворителя; в) у деформированных микрокапельных агрегатов.

Согласно [146], дипольный момент, создаваемый молекулами растворителя вдоль выбранного направления может быть представлен в виде:

, ( 4.8)

и - поляризуемости молекул вдоль осей параллельной и перпендикулярной выбранному направлению, Q - угол между направлением дипольного момента отдельной молекулы и направлением поля. е0 -электрическая постоянная, P1- вектор поляризации.

Для определения дипольного момента, созданного коллоидными частицами воспользуемся выражением, также аналогичным полученному в [146], т.е.:

(4.9)

Q - угол между выбранным направлением и моментом дипольной частицы, - поляризуемость внутри анизотропной частицы вдоль ее длинной оси, N - функция распределения моментов частиц по углам, относительно выбранного направления, s - величина, характеризующая деполяризуемость частицы, определяемая выражением:

(4.10)

где , а и b - длины полуосей коллоидной частицы.

Для определения вклада в поляризацию деформированных микрокапельных агрегатов запишем выражение для дипольного момента агрегата вдоль выбранного направления в виде:

(4.11)

где а1 - поляризуемость внутри агрегата вдоль его длинной оси, е1 - величина, характеризующая деполяризуемость эллипсоидального агрегата. Тогда, вклад в дипольный момент всех находящихся в единице объема микрокапельных агрегатов определится следующим выражением:

(4.12)

Как уже указывалось, анизотропия формы микрокапельного агрегата обусловлена его деформацией в сдвиговом течении, при этом, направления длинных полуосей всех агрегатов совпадают (разориентирующим действием теплового движения можно пренебречь). В этом случае, одну из главных осей удобно направить вдоль больших полуосей эллипсоидальных агрегатов, так что Q = 0.

С учетом этого, а так же считая, что для всех агрегатов поляризуемость одинакова, получим:

(4.13)

,

Где - среднее значение величины, характеризующий деполяризующий фактор микрокапельных агрегатов, распределенных по эксцентриситетам, nа - число агрегатов в единице объема.

Учитывая полученное выше, запишем выражения для проекций суммарного вектора поляризации на главные оси, когда электрическое поле направлено вдоль одной из этих осей:

(4.14)

(4.15)

Из (4.14) и (4.15) с учетом известного уравнения для оптического диапазона частот ео(n2-1)Е = Р и в приближении малых концентраций коллоидных частиц и микрокапель можно получить:

(4.16)

(4.17)

Принимая, что молекулы растворителя потоком не ориентируются (или слабо ориентируются), т.е, , получим:

(4.18)

где , n0-показатель преломления чистого растворителя.

Последнее выражение (4.18) является общим уравнением для оптической анизотропии коллоидного раствора при наличии в нем агрегатов.

Оно учитывает:

а) оптическую анизотропию отдельных коллоидных частиц, характеризуемую разностью ;

б) оптическую анизотропию внутри агрегатов, характеризуемую разностью ;

в) оптическую анизотропию, вызванную продолговатой формой дисперсных частиц, характеризуемую членом с ;

г) оптическую анизотропию, вызванную деформацией в сдвиговом течении микрокапельных агрегатов, характеризуемую членом с Н1-Н2.

Так как нет оснований считать, что вещество внутри капли приобретает вследствие ее деформации какую-либо анизотропию, то и второй член в уравнении (4.18) обращается в нуль. Известно, что в случае создания оптической анизотропии сдвиговым течением за счет продолговатой формы коллоидных частиц, преимущественная ось ориентации будет составлять с вектором скорости некоторый угол, связанный с наличием броуновского движения частиц. В рассматриваемом случае, как показывает эксперимент, оптическая ось анизотропии совпадает с линией скорости течения. На это указывает тот факт, что линии, образующие прямоугольный вихревой крест, совпадают или перпендикулярны направлениям плоскостей поляризации поляроидов. В связи с этим, можно утверждать, что наблюдаемое в эксперименте двойное лучепреломление связано не с ориентацией дисперсных частиц, а с деформацией микрокапельных агрегатов, слабо реагирующих на тепловое движение молекул. (Подтверждением этого может также служит отсутствие для неструктурированных магнитных жидкостей подобных эффектов в сдвиговом течении). Скорректируем с учетом этого уравнение (4.18) (пренебрегая анизотропией, созданной дисперсными частицами):

(4.19)

Так как n1 - n2 мало, то:

(4.20)

Подставив последнее выражение в (4.19) получим:

(4.21)

Или, после подстановки выражений для H1 и Н2:

(4 .22)

где nб - число агрегатов в единице объема, б - поляризуемость среды внутри микрокапельного агрегата. Разность хода между необыкновенным и обыкновенным лучами д = l(n1-n2), а соответственно разность фаз между ними:

(4.23)

где 1 - толщина слоя магнитной жидкости.

Учитывая, что интенсивность света, прошедшего через скрещенные поляроиды и двулучепреломляющее вещество между ними, оптическая ось которого составляет с осями поляризации угол 45°, определяется [148 ] формулой Ф=Фоsin2д/2, получим:

(4.24)

где Фо - интенсивность света, вышедшего из поляризатора. Последнее выражение может быть использовано для оценки характера зависимости интенсивности света после анализатора от скорости сдвига. Действительно, считая деформированные агрегаты близкими по форме к эллипсоидам вращения, примем для деполяризующего фактора агрегата известное выражение [129]. В этом случае можно найти средние значения <е1i> и <е2i>, выбрав один из возможных вариантов распределения деформированных агрегатов по эксцентриситетам (например, логнормальный закон). Учитывая, что степень деформации микрокапельного агрегата в сдвиговом течении определяется выражением (4.1), нетрудно установить, что зависимость Ф(G) является возрастающей на ее начальном участке, тогда как из эксперимента следует первоначальное уменьшение Ф с последующим ее возрастанием вплоть до насыщения (рис. 24).

Рисунок 24. Зависимость интенсивности поляризованного света, прошедшего через слой МЖ, подверженной действию сдвигового течения, и анализатор от скорости сдвига при ее увеличении (1) и последующем уменьшении (2).

По-видимому, это связано с тем, что при деформации достаточно крупных агрегатов усиливается рассеяние света, подтверждением чего может служить полученная ранее зависимость интенсивности рассеянного света от скорости сдвига (рис.4.2).

Рисунок 25. Зависимость относительной величины интенсивности светорассеяния (I) от скорости сдвига при угле рассеяния 0 = 10°.

Двойное лучепреломление начинает проявляться тогда, когда агрегаты разрушаются сдвиговым течением до размеров, меньших длины световой волны. Однако и в этом случае, при теоретическом описании зависимости интенсивности света от скорости сдвига с помощью выражения (4.24) необходимо учитывать не только деформацию микрокапельных агрегатов, но и изменение их числа за счет возможного продолжения процесса дробления. Кроме того, на ход зависимости Ф(G) оказывает также влияние и имеющий место дихроизм. Наложение всех рассмотренных выше процессов и обуславливает характер реальной зависимости Ф(G), полученной экспериментально.

2.2 Концентрационные структурные образования в тонких слоях магнитной жидкости и дифракция света

Капля магнитной жидкости, помещенная в однородное магнитное поле, изменяет свою форму. Деформация капли обусловлена зависимостью силы на межфазных границах от ориентации магнитного поля [150]. В формировании баланса сил на межфазных границах участвуют силы поверхностного натяжения, а также силы, обусловленные пространственной неоднородностью давления, возникающей вследствие локальных искажений внешнего намагничивающего поля вблизи поверхности капли. Все это делает количественное описание условий равновесия весьма сложным.

В [150] дано объяснение поведения магнитной капли в немагнитной окружающей жидкости, когда давление вне капли постоянно. Если считать форму капли эллиптической, то благодаря однородности магнитного поля давление также постоянно и внутри капли. В этом случае изменение формы капли осуществляется только за счет скачка давления на межфазных границах, для оценки которого получено выражение:

(4.25)

где мi и мa- магнитные проницаемости соприкасающихся сред, Hin и Han - нормальные составляющие напряженностей магнитного поля внутри и вне капли соответственно.

В равновесии имеет место баланс между этим скачком и давлением поверхностного натяжения: P=0R (R - средняя кривизна нормального сечения в рассматриваемой точке поверхности, д0 - коэффициент поверхностного натяжения). В областях поверхности, нормальных внешнему полю, пониженное давление внутри капли компенсируется нарастанием кривизны поверхности вдоль намагничивающего поля.

В [150] сделана также попытка математически сформулировать задачу о форме капли магнитной жидкости в поле и получено ее решение в следующем виде:

где отношение полуосей эллипсоида,

- функция монотонно убывающая от 1/3 при m= 1, до нуля при m>?. Расчет равновесной формы капли может быть также осуществлен с помощью энергетического подхода [151]. Равновесное значение отношений осей агрегата определяется из условия минимума полной энергии:

(4.26)

где W и Wm- поверхностная и магнитная энергия соответственно. При условии эллипсоидальной формы поверхностная энергия может быть определена в виде:

(4.27)

где е - эксцентриситет. Магнитная энергия в случае слабых полей имеет вид:

(4.28)

где Ро =(мi- ме)/ме, мi и мe - магнитные проницаемости агрегата и окружающей среды соответственно.

Из (4.26) с учетом (4.27) и (4.28) следует, что отношение магнитной энергии к энергии поверхностного натяжения (магнитное число Бонда) связано с m- соотношением:

(4.29)

Следует отметить, что обсуждаемому вопросу посвящено достаточно большое количество как теоретических [108,152-154], так и экспериментальных [155-156] работ, что позволяет утверждать о хорошей изученности этого явления.

Микрокапельные агрегаты, содержащиеся в магнитной жидкости, вследствие повышенной в них концентрации дисперсных частиц, имеют более высокое значение магниной восприимчивости, чем окружающая их слабо концентрированная фаза. Воздействие на них постоянного магнитного поля приводит к деформационным эффектам, теоретическое описание которых аналогично приведенному выше для капель МЖ, помещенных в немагнитную среду. Интерес в этом случае представляют структурные превращения микрокапельных агрегатов в тонких слоях МЖ, приводящие к дифракционным эффектам при пропускании через них света. Экспериментальное исследование дифракции света позволяет изучить особенности упорядочения и трансформации структурной решетки с ростом магнитного поля. При проведении подобных исследований в качестве источника света использовался луч гелий-неонового лазера, сонаправленный с вектором напряженности поля и перпендикулярный плоскости слоя МЖ. Однородное магнитное поле создавалось четырех секционной кубической катушкой, наблюдение структуры осуществлялось с помощью оптического микроскопа (подробная блок-схема установки приведена на рис.26).

Рисунок 26. Схема установки для визуального наблюдения и фотографирования структуры в тонких слоях магнитных жидкостей; 1 - осветитель, 2 - ячейка с магнитной жидкостью, 3 - термостатирующая рубашка, 4 - катушки Гельмгольца, 5 - микроскоп с фотонасадкой .

Рисунок 27. Зависимость угла рассеяния 0 при первом дифракционном максимуме и параметра гексагональной решетки 1, определенного оптическим микроскопом, от напряженности магнитного поля.

Наблюдения в оптический микроскоп из соотношения , от напряженности поля. На рис.27 показана зависимость угла рассеяния и периода гексагональной решетки от напряженности поля путем обсчета одной из серий экспериментов для образца N1.

Из рисунка видно, что в соответствии с ростом радиуса дифракционного кольца происходит уменьшение параметра гексагональной решетки. Интересные особенности в эксперименте наблюдаются при изменении направления поля относительно лазерного луча, а также при его выключении [159]. При изменении направления магнитного поля происходит трансформация дифракционного кольца в систему светлых пятен, которые, при превышении угла между нормалью к слою и направлением поля 10 -15° сливаются в полуокружность. При этом радиус полуокружности с ростом этого угла увеличивается. При выключении магнитного поля наблюдается несколько пульсаций интенсивности дифракционного кольца, полученного при использовании образца N1 (рис.28), после чего оно расплывается к центру и появляются два-три новых, концентрических с первым и превышающих его по диаметру.

Рисунок 28. Пульсации интенсивности первого дифракционного максимума при выключении поля. Напряженность поля в момент его выключения 2,8 кА/м, толщина слоя 3 0 мкм.

Впоследствии дифракционная картина трансформируется в однородное пятно, диаметр которого в течение определенного времени уменьшается до некоторого предельного значения. Для образца N2 такие пульсации как правило отсутствуют, после выключения поля дифракционное кольцо становится ярче и может сохраняться в течение 1-2 минут. И, наконец, в случае наблюдения дифракции при использовании образца N3, после выключения поля происходит уменьшение диаметра дифракционного кольца в течение нескольких секунд, вплоть до его стягивания в светлое пятно.

Как следует из наблюдений в оптический микроскоп, причиной возникновения дифракции света в двух первых образцах является система игольчатых агрегатов, расположенных в узлах гексагональной решетки (Рис.29). В третьем образце дифракционные явления возникают благодаря лабиринтной структуре, аналогичной доменной структуре наблюдающейся в тонких пленках ферромагнетиков (рис.30). Дифракция света в этом случае наблюдается благодаря одинаковой толщине лабиринтных ветвей и расстояний между ними, которые однако хаотически распределены по направлениям.

Рисунок 29. Гексагональная структурная решетка, образующаяся в плоском слое МЖ с микрокапельной структурой в поперечном магнитном поле (образцы №1 и №2).

Рисунок 30. Лабиринтная структурная решетка плоского слоя МЖ с микрокапельной структурой в поперечном магнитном поле (образец №3).

Явление дифракции света на гексагональной структуре рассматривалось ранее в работе [161]. Интенсивность дифрагированного света определяется значениями функций интерференции на сфере Эвальда [162] из построения которых вытекает условие для углового диаметра дифракционного круга =7/2l (l - расстояние между соседними агрегатами). Расчет значений 1 при использовании экспериментальных результатов дал значения, удовлетворительно согласующиеся с данными, полученными с помощью оптического микроскопа. Заметим, что минимум на зависимостях радиуса дифракционного кольца от напряженности поля (рис.30, 27) наблюдаются лишь после предварительной "тренировки" образца в магнитном поле с предельным значением напряженности.

Рисунок 30. Зависимость радиуса первого дифракционного кольца от напряженности магнитного поля (расстояние от слоя МЖ до экрана 37 см).

В этом случае после выключения поля в образце наблюдается множество мелких микрокапель размером меньше равновесного, которые при повторном увеличении поля сначала укрупняются за счет объединения (в большинстве случаев попарного). Дальнейшее увеличение углового диаметра кольца связано с увеличением числа агрегатов, а следовательно, с уменьшением 1. Увеличение числа агрегатов возможно за счет двух процессов: деления агрегатов при определенном значении напряженности поля, или возникновения новых агрегатов из менее концентрированной фазы. Исследование первого процесса при полном отсутствии второго в последующем достаточно подробно проведено в [160], где приведены основные теоретические соотношения, позволяющие описать такое поведение микрокапельных образований. В исследованных нами жидкостях, как правило, наблюдался также рост новых агрегатов из слабо концентрированной фазы. Обсуждение зависимости периода конденсационной структуры от напряженности поля для этого случае проведено нами в работе [163] на основе теоретических представлений А.О. Цеберса, которыми ранее была показана [78,164,165] необходимость учета в подобных ситуациях энергии собственного магнитного поля структурной решетки и поверхностной энергии границы раздела конденсированной и разбавленной фаз. При этом, зависимость периода структуры от магнитного переохлаждения рассмотрена для состояний, далеких от критического фазового расслоения системы. В этом случае толщиной переходного слоя между концентрированной и разбавленными фазами можно пренебречь и поверхностную энергию границы раздела фаз оценивать путем введения коэффициента поверхностного натяжения 0. Рассмотрена полосовая конденсационная структура с периодом 1 и границами раздела фаз, параллельными напряженности поля, расположенная в плоской щели. Доли объема, занятые разбавленной и концентрированной фазами, равны 1г/1 и 12/1 соответственно. Тогда средняя напряженность магнитного поля в щели равна , где - средняя намагниченность структуры, равная , и - намагниченности фаз. Помимо поля вблизи границ щели существует периодическое поле, обусловленное чередованием их участков, смоченных концентрированной и разбавленной фазами, обладающих разными намагниченностями. Вклад в термодинамический потенциал системы , обусловленный отличием истинной напряженности поля от средней - , учтем с точностью до членов второго порядка по дH включительно. Тогда условия непрерывности магнитостатического потенциала и нормальной компоненты магнитной индукции на границах щели для членов разложения термодинамического потенциала , до второго порядка по включительно дают:

(4..30)

Отсюда видно, что вклад в термодинамический потенциал, обусловленный периодическим распределением напряженности поля вблизи торцов полос концентрированной и разбавленной фаз находится как собственная энергия этого поля.

Отметим, что значения магнитной проницаемости, вообще говоря, различны для каждой из фаз.

Явный вид выражения (4.30) находится путем решения магнитостатической задачи для поля, создаваемого периодическим распределением фиктивных магнитных зарядов на границах слоя. Тогда, пренебрегая магнитными восприимчивостями фаз, что, как показали результаты [164,165] по-видимому, не вносит качественных особенностей в рассматриваемое явление, получаем соотношение для магнитостатической энергии (4.30) на единицу объема структуры

(4.31)

где h - толщина слоя. Так как для наблюдаемых в эксперименте ситуаций h>1, то соотношение (4.31) можно упростить и энергию магнитного взаимодействия торцов структуры при h > 1 можно записать в виде (h=2h1)

(4.32)

В результате термодинамический потенциал единицы объема полосовой структуры разбавленной и концентрированной фаз с учетом вклада поверхности энергии границ их раздела определяется соотношением

(4.33)

Объемные доли разбавленной и концентрированной фаз l1 и l2 выражаются через числовую концентрацию ферроколоида n и концентрации фаз n1 и n2 согласно правилу рычага

,

Реализуемая в эксперименте структура вследствие условия постоянства средней магнитной индукции (м\ соответствует минимуму ее свободной энергии относительно переменных n1, n2 и 1 . Дифференцирование дает следующую систему уравнений для определения параметров равновесной структуры:

(4.34)

(4.35)

(4.36)

Соотношения (4.34) и (4.35) показывают, что химические потенциалы фаз одинаковы, т.е. 1=2=e. Отсюда из соотношений (4.34) и (4.35) для разности осмотических давлений фаз p =n-f получаем

(4.37)

Из соотношения (4.37) видно, что в области малых магнитных переохлаждений, когда объемная доля концентрированной фазы l2/l мала, осмотическое давление разбавленной фазы меньше, чем концентрированной .

Соотношения (4.36) и (4.37) позволяют связать параметры полосовой структуры с магнитным переохлаждением системы. Так, из условия равновесия фаз вытекает соотношение для изменения осмотического давления насыщенной разбавленной фазы с напряженностью поля [80]:

(4.38)

Поскольку удельная намагниченность разбавленной фазы М1/n1 меньше концентрированной М2 /n2, то из соотношения (4.38) видно, что давление насыщения разбавленной фазы с ростом напряженности поля уменьшается. В начальной области возникновения структуры условие равенства химических потенциалов фаз дает соотношение для избыточных по отношению к равновесному осмотических давлений фаз в виде

p1 -p2p1p2p1 n2 (1/n2-1/n1 ) (4.39)

Так как р1- р2 < 0, то из последнего соотношения видно, что осмотическое давление разбавленной фазы в полосовой структуре больше давления насыщения при данной напряженности поля на величину дp1>0. Подобное переохлаждение соответствует давлению насыщения при некоторой меньшей напряженности поля, т.е.

рн(Н -дH) = pH(H) + дpl .

Отсюда соотношение (4.38) позволяет связать дp1 с магнитным переохлаждением выражением

(4.40)

Наличие магнитного переохлаждения разбавленной фазы связано с затратами энергии для создания периодического распределения поля в торцевой области полос и образованием границ раздела фаз.

В результате, соотношения (4.36) и (4.37) дают следующую систему уравнений для определения зависимости периода структуры и объемной доли концентрированной фазы от напряженности магнитного поля:

(4.41)

(4.42)

Здесь характерный масштаб полосовой структуры, который можно выразить через магнитное число Бонда Вmо21)h1/20 в виде: . При нахождении зависимостей параметров полосовой структуры от напряженности поля необходимо учитывать, что при ее возникновении изменяется среднее размагничивающее поле в щели. Вследствие этого, соответствующее магнитному переохлаждению в щели увеличение напряженности внешнего поля дН в пренебрежении магнитными восприимчивостями фаз равно

l (4.43)

Тогда, учитывая, что намагниченность концентрированной фазы

для из (4.41) получаем

(4.44)

Согласно рассчитанной с помощью соотношений (4.42) и (4.43) (при реальном значении параметра 2h1/l0=40 ) зависимости обратной величины периода полосовой структуры от напряженности внешнего поля угол дифракционного светорассеяния, пропорциональный обратной величине периода структуры, увеличивается с ростом напряженности поля, как это и наблюдается в эксперименте (см. рис. 27). Уменьшение периода структуры с ростом напряженности магнитного поля обусловлено увеличением объемной доли концентрированной фазы. Энергия, необходимая для периодического распределения поля в торцевой области полос и новых границ раздела фаз, выделяется при образовании этой структуры.


Подобные документы

  • Исследование капиллярного подъема магнитной жидкости при воздействии электрического и магнитного полей. Изучение проявления действия пондеромоторных сил на жидкие намагничивающиеся среды и процессы релаксации заряда в тонких слоях магнитных жидкостей.

    лабораторная работа [1,9 M], добавлен 26.08.2009

  • Исследование электропроводности высокодисперсных коллоидов ферромагнетиков. Механизм электропроводности магнитной жидкости и возникновение анизотропии электропроводности её при воздействии магнитных полей.

    доклад [45,9 K], добавлен 14.07.2007

  • Основные понятия, виды (диамагнетики, ферримагнетики, парамагнетики, антиферромагнетики) и условия проявления магнетизма. Природа ферромагнитного состояния веществ. Сущность явления магнитострикции. Описание доменных структур в тонких магнитных пленках.

    реферат [25,6 K], добавлен 30.08.2010

  • Основные критерии классификации магнитных материалов. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Свойства ферритов и магнитодиэлектриков. Магнитные материалы специального назначения. Анализ магнитных цепей постоянного тока.

    курсовая работа [366,4 K], добавлен 05.01.2017

  • Измерения в режиме медленно изменяющегося внешнего магнитного поля. Обоснование и расчет элементов измерительной установки. Перемагничивание в замкнутой магнитной цепи. Требования к системе измерения магнитной индукции. Блок намагничивания и управления.

    курсовая работа [1,6 M], добавлен 29.03.2015

  • Магнитная жидкость как коллоидная система магнитных частиц и ее физико-химические свойства. Статистические магнитные свойства МЖ. Физические основы метода светорассеяния. Методика проведения экспериментов по светорассеянию. Коэффициент деполяризации.

    дипломная работа [740,7 K], добавлен 20.03.2007

  • Трансформатор - одно из самых распространённых изделий электротехнической промышленности. Они настолько просты по своей конструкции, что улучшить их невероятно трудно. Назначение, схема и устройство трансформатора, работающего на явлении намагничивания.

    статья [14,9 K], добавлен 31.07.2010

  • Магнитные жидкости представляют собой взвесь однодоменных микрочастиц ферро- и ферримагнетиков в жидкой среде. Магнитная жидкость как однородная намагничивающаяся среда. Структурно-динамические образования в магнитных жидкостях.

    реферат [48,6 K], добавлен 20.03.2007

  • Методика измерения магнитных свойств веществ в переменном и постоянном магнитном поле на примере магнитной жидкости. Исследование изменения магнитного потока, пронизывающего витки измерительной катушки при быстром извлечении из нее контейнера с образцом.

    лабораторная работа [952,5 K], добавлен 26.08.2009

  • Понятие и функциональные особенности магнитных пускателей переменного тока, их цели и значение. Конструкция и принцип работы пускателей, их разновидности: реверсивные и нереверсивные. Основные серии магнитных пускателей, характеристики: ПМЕ, ПМА, ПМ12.

    реферат [907,9 K], добавлен 27.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.