Ядерный взрыв

Цепная реакция деления, термоядерный синтез. Явления при ядерном взрыве. Классификация ядерных взрывов по мощности и по нахождению центра взрыва. Военное и мирное применение ядерных взрывов. Природные ядерные взрывы. Разрушительные последствия от взрыва.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 03.12.2015
Размер файла 29,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

Введение

Глава 1. Ядерный взрыв

Пункт 1.1 Цепная реакция деления

Пункт 1.2.Термоядерный синтез

Пункт 1.3 Явления при ядерном взрыве

Глава 2. Классификация ядерных взрывов

Пункт 2.1 Классификация по мощности

Пункт 2.2 Классификация по нахождению центра взрыва

Глава 3. Применение ядерных взрывов

Пункт 3.1 Военное

Пункт 3.2 Мирное

Пункт 3.3 Природные ядерные взрывы

Заключение

Введение

Ядерный взрыв. Какие ассоциации вызывает у вас это выражение. Ядерный взрыв имеет очень мощную силу взрыва, и довольно разрушительные последствия от взрыва. Ядерные взрывы можно использовать как в военных, так и мирных целях. Мощность ядерного взрыва очень просто регулируется, можно делать взрыва на «заказ». В зависимости от количества термоядерного вещества можно регулировать параметры ядерного взрыва, размера «облака», диаметр «облака», силу и область свечения, уровень радиационного излучения. Как же это всё просчитывается? Для чего используются ядерные взрывы? Какие виды взрывов бывают? На эти и другие вопросы, связанные с данной темой, Вы можете найти прочитав данную работу.

Глава 1. Ядерный взрыв

Ядерный взрыв -- неуправляемый процесс высвобождения большого количества тепловой и лучистой энергии в результате цепной ядерной реакции деления или реакции термоядерного синтеза за очень малый промежуток времени. По своему происхождению ядерные взрывы являются либо продуктом деятельности человека на Земле и в околоземном космическом пространстве, либо природными процессами на некоторых видах звёзд. Искусственные ядерные взрывы -- мощное оружие, предназначенное для уничтожения крупных наземных и защищённых подземных военных объектов, скоплений войск и техники противника (в основном тактическое ядерное оружие), а также полное подавление и уничтожение противоборствующей стороны: разрушение больших и малых населённых пунктов с мирным населением, стратегической промышленности, крупных транспортных узлов, деловых центров (стратегическое ядерное оружие).

Пункт 1.1 Цепная реакция деления

Атомные ядра некоторых изотопов химических элементов с большой атомной массой (например, урана или плутония) при их облучении нейтронами определённой энергии теряют свою устойчивость и распадаются с выделением энергии на два меньших и приблизительно равных по массе осколка -- происходит реакция деления атомного ядра. При этом наряду с осколками, обладающими большой кинетической энергией, выделяются ещё несколько нейтронов, которые способны вызвать аналогичный процесс в соседних таких же атомах. В свою очередь, нейтроны, образовавшиеся при их делении, могут привести к делению новых порций атомов -- реакция становится цепной, приобретает каскадный характер. В зависимости от внешних условий, количества и чистоты расщепляющегося материала её течение может происходить по-разному. Вылет нейтронов из зоны деления или их поглощение без последующего деления сокращает число делений в новых стадиях цепной реакции, что приводит к её затуханию. При равном числе расщеплённых ядер в обеих стадиях цепная реакция становится самоподдерживающейся, а в случае превышения количества расщеплённых ядер в каждой последующей стадии в реакцию вовлекаются всё новые атомы расщепляющегося вещества. Если такое превышение является многократным, то в ограниченном объёме за очень короткий промежуток времени образуется большое количество атомных ядер-осколков деления, электронов, нейтронов и квантов электромагнитного излучения с очень высокой энергией. Единственно возможной формой их существования является агрегатное состояние высокотемпературной плазмы, в сгусток которой превращается весь расщепляющийся материал и любое другое вещество в его окрестности. Этот сгусток не может быть сдержан в своём первоначальном объёме и стремится перейти в равновесное состояние путём расширения в окружающую среду и теплообмена с ней. Поскольку скорость упорядоченного движения составляющих сгусток частиц намного выше скорости звука как в нём, так и в окружающей его среде (если это не вакуум), расширение не может иметь плавного характера и сопровождается образованием ударной волны -- то есть носит характер взрыва.

Пункт 1.2 Термоядерный синтез

Реакции термоядерного синтеза с выделением энергии возможны только среди элементов с небольшой атомной массой, не превышающих приблизительно атомную массу железа. Они не носят цепного характера и возможны только при высоких давлениях и температурах, когда кинетической энергии сталкивающихся атомных ядер достаточно для преодоления кулоновского барьера отталкивания между ними, либо для заметной вероятности их слияния за счёт действия туннельного эффекта квантовой механики. Для возможности этого процесса необходимо совершить работу для разгона исходных атомных ядер до высоких скоростей, но если они сольются в новое ядро, то выделившаяся при этом энергия будет больше, чем затраченная. Появление нового ядра в результате термоядерного синтеза как правило сопровождается образованием различного рода элементарных частиц и высокоэнергетичных квантов электромагнитного излучения. Наряду со вновь образовавшимся ядром все они имеют большую кинетическую энергию, то есть в реакции термоядерного синтеза происходит преобразование внутриядерной энергии сильного взаимодействия в тепловую. Как следствие, в итоге результат оказывается тот же, что и в случае цепной реакции деления -- в ограниченном объёме образуется сгусток высокотемпературной плазмы, расширение которого в окружающей плотной среде имеет характер взрыва.

Пункт 1.3 Явления при ядерном взрыве

ядерный взрыв мощность последствие

Сопутствующие ядерному взрыву явления варьируют от местонахождения его центра. Ниже рассматривается случай атмосферного ядерного взрыва в приземном слое, который был наиболее частым до запрета ядерных испытаний на земле, под водой, в атмосфере и в космосе. После инициирования реакции деления или синтеза за очень короткое время порядка долей микросекунд в ограниченном объёме выделяется огромное количество лучистой и тепловой энергии. Реакция обычно заканчивается после испарения и разлёта конструкции взрывного устройства вследствие огромной температуры (до 107 К) и давления (до 109 атм.) в точке взрыва. Визуально с большого расстояния эта фаза воспринимается как очень яркая светящаяся точка.

Световое давление от электромагнитного излучения при реакции нагревает и вытесняет окружающий воздух от точки взрыва -- образуется огненный шар и начинает формироваться скачок давления между воздухом, сжатым излучением, и невозмущённым, поскольку скорость перемещения фронта нагрева изначально многократно превосходит скорость звука в среде. После затухания ядерной реакции энерговыделение прекращается и дальнейшее расширение происходит за счёт разницы температур и давлений в области огненного шара и окружающего воздуха.

Происходящие в заряде ядерные реакции служат источником разнообразных излучений: электромагнитного в широком спектре от радиоволн до высокоэнергичных гамма-квантов, быстрых электронов, нейтронов, атомных ядер. Это излучение, называемое проникающей радиацией, порождает ряд характерных только для ядерного взрыва последствий. Нейтроны и высокоэнергичные гамма-кванты, взаимодействуя с атомами окружающего вещества, преобразуют их стабильные формы в нестабильные радиоактивные изотопы с различными путями и периодами полураспада -- создают так называемую наведённую радиацию. Наряду с осколками атомных ядер расщепляющегося вещества или продуктами термоядерного синтеза, оставшимися от взрывного устройства, вновь получившиеся радиоактивные вещества поднимаются высоко в атмосферу и способны рассеяться на большой территории, формируя радиоактивное заражение местности после ядерного взрыва. Спектр образующихся при ядерном взрыве нестабильных изотопов таков, что радиоактивное заражение местности способно длиться тысячелетиями, хотя интенсивность излучения падает со временем.

Высокоэнергичные гамма-кванты от ядерного взрыва, проходя через окружающую среду, ионизуют её атомы, выбивая из них электроны и сообщая им достаточно большую энергию для каскадной ионизации других атомов, вплоть до 30000 ионизаций на один гамма-квант. В результате под эпицентром ядерного взрыва остаётся «пятно» положительно заряженных ионов, которые окружены гигантским количеством электронного газа; такая переменная во времени конфигурация носителей электрических зарядов создаёт очень сильное электромагнитное поле, которое исчезает после взрыва вместе с рекомбинацией ионизированных атомов. В процессе рекомбинации порождаются сильные электрические токи, служащие дополнительным источником электромагнитного излучения. Весь этот комплекс явлений называется электромагнитным импульсом, и хотя в него уходит менее трети десятимиллиардной доли энергии взрыва, происходит он за очень короткое время и выделяющаяся при этом мощность может достигать 100 ГВт.

Наземный ядерный взрыв в отличие от обычного также имеет свои особенности. При химическом взрыве температура грунта, примыкавшего к заряду и вовлечённого в движение относительно невелика. При ядерном взрыве температура грунта возрастает до десятков миллионов градусов и большая часть энергии нагрева в первые же мгновения излучается в воздух и дополнительно идёт в образование теплового излучения и ударной волны, чего при обычном взрыве не происходит. Отсюда резкое различие в воздействии на поверхность и грунтовый массив: наземный взрыв химического взрывчатого вещества передаёт в грунт до половины своей энергии, а ядерный -- считанные проценты. Соответственно размеры воронки и энергия сейсмических колебаний от ядерного взрыва в разы меньше оных от одинакового по мощности взрыва ВВ. Однако при заглублении зарядов это соотношение сглаживается, так как энергия перегретой плазмы меньше уходит в воздух и идёт на совершение работы над грунтом.

Начиная с определённого момента скорость перемещения скачка давления (фронта ударной волны) становится больше скорости расширения огненного шара, ударная волна полностью сформировалась и отрывается от огненного шара, унося значительную долю энергии ядерного взрыва. Каверна, образовавшаяся в результате светового давления, схлопывается, огненный шар превращается в облако начинает подниматься вверх, увлекая с собой с поверхности пыль, грунт, предметы. Начинается процесс конвективного выравнивания температур и давлений в месте взрыва с окружающей средой. Вихрь поднятой пыли и частиц грунта с земли стремится к огненному шару, образуя ножку «ядерного гриба». Развивается грибовидное облако, продолжающее расти в высоту и в диаметре. После выравнивания температур и давлений подъём пыли и частиц с земли прекращается, ножка «гриба» останавливается и оседает на землю, «шляпка» превращается в тёмное облако, выпадающее осадками и размываемое ветрами.

При высотном ядерном взрыве «гриб» не образуется, а при экзоатмосферном нет и облака -- в отсутствие атмосферы ему не из чего образовываться. Эффекты при наземном ядерном взрыве схожи с эффектами атмосферного ядерного взрыва в приземном слое, но светящаяся область будет иметь форму полусферы, а не шара, даже при незначительном заглублении подрывного устройства в землю возможно образование кратера значительных размеров. Эффекты при подземном ядерном взрыве зависят от мощности заряда, глубины его залегания и характера горных пород в месте взрыва. После взрыва может образоваться как полость без видимых наземных изменений ландшафта, так и курган, кратер или кальдера. Наземный и подземный ядерные взрывы сопровождаются существенным землетрясением.

Описанные выше эффекты характерны для любого взрыва большой мощности, например яркая вспышка и высокое грибовидное облако появились после взрыва гружёного взрывчаткой (до 3--4 килотонн тротила и пикратов в сумме) военного транспорта «Монблан» в канадском Галифаксе в 1917 году.

Глава 2. Классификация ядерных взрывов

Ядерные взрывы обычно классифицируют по двум признакам: мощности заряда, производящего взрыв, и местоположению точки нахождения заряда в момент подрыва (центр ядерного взрыва). Проекция этой точки на поверхность земли называется эпицентром ядерного взрыва. Мощность ядерного взрыва измеряется в так называемом тротиловом эквиваленте -- массе тринитротолуола, при взрыве которого выделяется столько же энергии, сколько при оцениваемом ядерном. Наиболее часто используемыми единицами измерения мощности ядерного взрыва служат 1 килотонна (кт) или 1 мегатонна (Мт) тротилового эквивалента.

Пункт 2.1 Классификация по мощности

Взрыв мощностью 20 кт даёт зону полных разрушений радиусом около 1 км, 20 Мт -- уже 10 км. По расчётам, при взрыве мощностью 100 Мт зона полного разрушения будет иметь радиус около 35 км, сильных разрушений -- около 50 км, на расстоянии около 80 км незащищённые люди получат ожоги третьей степени. Практически одним таким взрывом может быть полностью уничтожен любой из самых крупных городов Земли.

Наиболее мощным искусственным ядерным взрывом был атмосферный взрыв на высоте около 4 км советской 58-мегатонной термоядерной бомбы АН602, прозванной Царь-бомба, на полигоне на Новой Земле. Причём испытана на неполную мощность, в так называемом чистом варианте. Полная проектная мощность с урановой оболочкой-отражателем нейтронов могла бы составить порядка 100 мегатонн тротилового эквивалента.

Мощность:

Сверхмалая

Малая

Средняя

Большая

Сверхбольшая

менее 1 кт

1 - 10 кт

10 - 100 кт

100 - 1000кт

свыше 1 Мт

Диаметр огненного шара

50 - 200 м

200 - 500 м

500 - 1000 м

1000 - 2000 м

свыше 2000 м

Максимум свечения

до 0,03 сек

0,03--0,1 сек

0,1--0,3 сек

0,3--1 сек

1--3 сек и более

Время свечения

0,2 сек

1--2 сек

2--5 сек

5--10 сек

20--40 сек

Высота «гриба»

менее 3,5 км

3,5--7 км

7--12,2 км

12,2--19 км

свыше 19 км

Высота облака

менее 1,3 км

1,3--2 км

2--4,5 км

4,5--8,5 км

свыше 8,5 км

Диаметр облака

менее 2 км

2--4 км

4--10 км

10--22 км

свыше 22 км

Пункт 2.2 Классификация по нахождению центра взрыва

Приведённая высота (глубина) заряда в метрах на тонны тротилового эквивалента в кубическом корне (в скобках пример для взрыва мощностью 1 мегатонна):

1. Космический: свыше 100 км

a) Магнитосферный -- взрыв в пределах магнитосферы: от 400--500 км до магнитопаузы

b) Экзоатмосферный -- взрыв в экзосфере: от 400--800 км (экзобаза) до 100 тыс. км

2. Атмосферные:

a) Высотный: более 10--15 км, но чаще считается на высотах 40--100 км, когда ударная волна почти не образуется

b) Высокий воздушный: свыше 10 м/т1/3, когда форма вспышки близка к сферической (свыше 1 км)

c) Низкий воздушный: от 3,5 до 10 м/т1/3 -- огненная сфера в процессе роста могла бы коснуться земли, но вместо этого отбрасывается вверх отражённой от поверхности ударной волной и принимает усечённую форму (от 350 до 1000 м)

3. Наземный -- от глубины 0,3 м/т1/3 до высоты 3,5 м/т1/3 -- вспышка касается земли и принимает форму полусферы (от глубины 30 м до высоты 350 м):

a) Наземный с образованием вдавленной воронки без значительного выброса грунта: ниже 0,5 м/т1/3 (ниже 50 м)

b) Наземный контактный: от глубины 0,3 до высоты 0,3 м/т1/3 -- когда грунт из воронки выбрасывается и попадает в светящуюся область (от высоты 30 м до глубины 30 м)

4. Подземный -- полусферическая светящаяся область не образуется, и воздушная ударная волна ослабляется с увеличением глубины:

a) На выброс (выброс грунта и кратер в разы больше, чем при наземном взрыве)

b) Малозаглублённый -- на глубине от 0,3 до 3,5 м/т1/3 (глубина 30--350 м)

c) Взрыв рыхления -- в глубине образуется полость или столб обрушения, а на поверхности кольцеобразный вывал грунта (холм вспучивания), в центре которого провальная воронка

d) Камуфлетный: глубже 7--10 м/т1/3 -- в глубине остаётся замкнутая (котловая) полость или столб обрушения; если столб обрушения достигает поверхности, то образуется провальная воронка без холма вспучивания (глубже 700--1000 м)

5. Надводный -- на высоте над водой до 3,5 м/т1/3 (до 350 м)

6. Надводный контактный -- происходит испарение воды и образуется подводная ударная волна

7. Подводный:

a) На малой глубине: менее 0,3 м/т1/3 -- вода испаряется до поверхности и столб воды (взрывной султан) не образуется, 90 % радиоактивных загрязнений уходит с облаком, 10 % остаётся в воде (менее 30 м)

b) С образованием взрывного султана и облака султана: 0,25--2,2 м/т1/3 (25--220 м)

c) Глубоководный: глубже 2,5 м/т1/3 -- когда образующийся пузырь выходит на поверхность с образованем султана, но без облака, 90 % радиоактивных продуктов остаётся в воде в районе взрыва и не более 10 % выходит с брызгами базисной волны (глубже 250 м).

Глава 3. Применение ядерных взрывов

Ядерные взрывы в настоящее время используют не только для военных действий, но так же и для мирных целей.

Пункт 3.1 Военное

Огромные масштабы разрушений и пожаров при маленьких габаритах и массе ядерного боеприпаса сразу же привлекли внимание военных. Всего лишь одно взрывное устройство оказалось способным уничтожить город-мегаполис с населением, крупные группировки войск противника, важные объекты в его тылу (электростанции и заводы, узлы коммуникаций, военные базы). Нанесение нескольких ядерных ударов способно непоправимо нарушить экономику противника, подорвать волю к сопротивлению и заставить его принять любые условия капитуляции. Однако непредсказуемый характер радиоактивного заражения при ядерном взрыве способен также нанести непоправимый ущерб атакующему, что сдерживает желание применить ядерное оружие в бою. Более серьёзным оказалось ядерное сдерживание, когда противостоящая сторона также имеет возможность нанести ядерный удар по агрессору; этот фактор послужил залогом выживания человечества во второй половине XX века -- страх перед адекватным и неизбежным возмездием за применение ядерного оружия послужил и служит сейчас достаточным основанием для неиспользования его в военных целях.

Ядерное оружие существенным образом изменило культурное восприятие глобальной войны и политическую расстановку сил. Страна, обладающая ядерным оружием и подтвердившая его наличие тестовым ядерным взрывом сильно снижает угрозу внешней агрессии, что является для многих национальной безопасностью. Вместе с тем, возможность случайного возникновения конфликта в результате аварии, недоразумения, ошибки или диверсии пока недостаточно изучена.

В истории человечества ядерное оружие в боевых военных целях применялось дважды -- 6 и 9 августа 1945 года США нанесли последовательно два ядерных удара по японским городам Хиросима и Нагасаки, уничтожив в общей сложности свыше 200 000 человек и инфраструктуру этих городов. В США и СССР впоследствии неоднократно проводились военные учения с производством ядерных взрывов. В результате были выработаны методики и поставлена на вооружение техника, которая позволяет войскам успешно выполнять боевые задачи в условиях применения ядерного оружия. Однако объекты внутренней инфраструктуры стран вследствие своего роста, постоянно растущей зависимости от энергоснабжения и управляющей электроники с тех пор стали только уязвимее для ядерного оружия. Также и психологические последствия обмена ядерными ударами на гражданское население и вооружённые силы не вполне изучены. Так, в печати встречаются мнения, что совершенно нет необходимости уничтожать крупные города мощными, либо многократными ядерными бомбардировками -- возникшая в результате применения даже маломощного ядерного заряда в современном мегаполисе неразбериха и паника по разрушительному воздействию на средства коммуникации, снабжения и управления сравнима с тем, как если бы они были уничтожены физически.

Пункт 3.2 Мирное

Ядерный взрыв имеет несколько ниш мирного применения:

a) Быстрое рытьё крупных котлованов для искусственных водохранилищ. Котлован создаётся с помощью подповерхностного подземного ядерного или термоядерного взрыва «на выброс». Достоинства метода: получившаяся ёмкость имеет большую глубину и небольшую поверхность зеркала водоёма. Всё это минимизирует потери воды на испарение и фильтрацию в грунт. Предполагалось использовать такие искусственные резервуары в засушливых районах для хранения воды для нужд сельского хозяйства.

b) Выемка грунта и разрушение препятствий при строительстве крупномасштабных сооружений на местности (каналы).

a) Создание подземных ёмкостей (в частности, газохранилищ и резервуаров для захоронения опасных отходов). Одним взрывом создаётся полость объёмом в десятки тысяч кубических метров.

b) Обрушение препятствий в горах.

c) Поиск полезных ископаемых сейсмическим зондированием земной коры.

d) Дробление руды.

e) Увеличение нефтеотдачи нефтяных месторождений.

f) Перекрывание аварийных нефтяных и газовых скважин.

g) Научные исследования: сейсмология, внутреннее строение Земли, физика плазмы и многое другое.

Движущая сила для ядерных и термоядерных импульсных космических аппаратов, например нереализованный проект корабля «Орион» и проект межзвёздного автоматического зонда «Дедал»;

В последнее время рассматривается возможность разрушения или изменения орбиты одного из астероидов, угрожающих столкновением с Землёй, путём ядерного взрыва в его окрестности;

Контроль за землетрясениями: до появления запрета на проведение ядерных взрывов наблюдалось резкое снижение количества и силы подземных колебаний; учёные-ядерщики из города Снежинска объяснили это явление тем, что сейсмическая волна, распространяясь на большие расстояния, слегка встряхивает глубинные породы и снимает нарастающие напряжения в земной коре.

Принято считать, что в общей сложности в США было проведено 27, а в СССР, в период с 1965 по 1988 годы -- 135 ядерных взрывов невоенной направленности (из них 124 -- непосредственно по программе ядерных взрывов в мирных целях, остальные -- испытательные) с целью изучения возможностей по такому применению. В специальной литературе можно встретить и другие количества. В частности, в США 33, в СССР 169 мирных ядерных взрывов (возможно, в публикациях имеется путаница с терминами «количество взрывов» и «количество экспериментов» -- часть экспериментов не сопровождалась ядерными взрывами).

На первоначальном этапе (в 1950-е -- 1960-е годы) с промышленным использованием ядерных взрывов связывали большие надежды, существовали проекты, где предполагалось использование сотен таких взрывов: проекты соединения Мёртвого моря с Красным или Средиземным, канала через Панамский перешеек, канала через полуостров Малакка в Юго-Восточной Азии, обводнение впадины Каттара (Египет), проекты соединения реки Лены с Охотским морем и поворот северных рек в СССР. Реализация таких проектов потребовала создания так называемых «чистых» ядерных зарядов, при взрыве которых выделяется минимум радиоактивности. В данной области были достигнуты определённые успехи, хотя полной «чистоты» добиться не удалось. На практике использование ядерных взрывов в народном хозяйстве имело место только в СССР.

Результаты советской серии экспериментов ещё не оценены во всей полноте. Полные официальные данные о результатах испытаний не опубликованы, сведения о радиоактивном заражении местности неполны и нередко противоречивы. В случаях глубоких взрывов, после которых вся радиоактивность осталась под землёй, высказываются опасения о возможности последующего попадания радионуклидов на поверхность с грунтовыми водами и добываемыми полезными ископаемыми. Кроме того, в радиологии крайне слабо изучено воздействие радиоактивности, превышающей естественный фон в десятки раз, в некоторых случаях сохраняющаяся в местах взрывов. Таким образом, вопрос об экологической опасности и оправданности промышленных ядерных взрывов остаётся открытым. Под вопросом остаётся и экономический эффект -- хотя изначально промышленные ядерные взрывы рассматривались именно как средство удешевления крупномасштабных работ, в действительности неясно, окупает ли достигнутая экономия все непрямые издержки, в том числе расходы на постоянный мониторинг радиологической обстановки и ликвидацию последствий возможного распространения радионуклидов.

В последнее время нагнетаемый прессой страх перед последствиями столкновения астероида с Землёй (что само по себе эквивалентно сверхмощному ядерному взрыву без радиоактивного заражения) привёл к появлению проектов использования ядерного взрыва для ликвидации или отклонения опасных астероидов.

Пункт 3.3 Природные ядерные взрывы

В природе существуют объекты, происходящие на которых процессы можно охарактеризовать как ядерный взрыв. В первую очередь к ним относятся новые, новоподобные и переменные эруптивного типа звёзды, которые резко увеличивают свою светимость в десятки тысяч раз за очень малый промежуток времени. В характерном случае новая звезда является тесной двойной системой, в которой главный компонент является звездой с сильным звёздным ветром, а второй -- карликом низкой светимости. Вещество (в основном водород) с первой звезды перетекает на вторую, пока не образуется критическая масса перенесённого вещества, в которой на поверхности звезды зажигается термоядерная реакция синтеза водорода в гелий. В отличие от спокойного течения этой реакции в звёздном ядре, на поверхности она приобретает взрывной характер и резко увеличивает светимость звезды и сбрасывая запас накопленного перенесённого с более массивного компаньона вещества. Через определённое время этот процесс способен повториться вновь. Мощность подобных взрывов, как правило, во много миллиардов раз превосходит мощность любой атомной бомбы, созданной людьми.

Заключение

Как Вы поняли из этой работы, ядерные взрывы используют не только для военных целей, но также и в мирных. Политики, страны, стараются избегать применения ядерного вооружения в военных действиях, так как это очень дорого, а также радиационное повышенное поле после взрыва не даст пользоваться захваченными территориями очень долгое время. Ядерные взрывы бывают и природного происхождения. Только называются они немного по-другому, «ядерный синтез», «взрыв звёзд», но эти взрывы во много миллиардов раз сильнее любых взрывов которые смог создать когда-либо человек. И не дай Господь такое случится!

Использованная литература

Действие атомного оружия. Пер. с англ. -- М.: Изд-во иностр. лит., 1954. -- 439 с. [стр. 256-301]

Физика ядерного взрыва. -- М.: Министерство обороны РФ, ЦФТИ, 1997. -- Т. 2. --ISBN 5-02-015118-1. [стр. 115-120]

Механическое действие ядерного взрыва. -- М.: ФИЗМАЛИТ, 2002. -- 384 с. -- ISBN 5-9221-0261-3. [стр. 256-301]

Орленко Л. П. Физика взрыва и удара: Учебное пособие для вузов. -- М.: ФИЗМАЛИТ, 2006. -- 304 с. --ISBN 5-9221-0638-4. [стр. 153-160]

Ядерный взрыв в космосе, на земле и под землёй. (Электромагнитный импульс ядерного взрыва). Сб. статей / Пер. с англ. Ю. Петренко под ред. С. Давыдова. -- М.: Воениздат, 1974. -- 235 с. [стр. 53-57]

Размещено на Allbest.ru


Подобные документы

  • Рассмотрение понятия, классификации (сверхмалый, малый, средний, большой, сверхбольшой, высотный, воздушный, наземный, надводный, подводный, подземный) ядерного взрыва. Изучение реакций деления атомных ядер каскадного характера и термоядерного синтеза.

    презентация [897,8 K], добавлен 09.04.2010

  • История открытия радиации. Радиоактивное излучение и его виды. Цепная реакция деления. Ядерные реакторы. Термоядерные реакции. Биологическое действие излучения. Действие ядерных излучений на структуру вещества. Естественные источники радиации.

    дипломная работа [180,6 K], добавлен 25.02.2005

  • Физико-химические основы горения, его основные виды. Характеристика взрывов как освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени, его типы и причины. Источники энергии химических, ядерных и тепловых взрывов.

    контрольная работа [17,8 K], добавлен 12.06.2010

  • Строение атома и атомного ядра. Явление радиоактивности. Взаимодействие нейтронов с атомными ядрами. Цепная ядерная реакция. История создания ядерного оружия. Виды ядерных зарядов. Поражающие факторы ядерного взрыва. Ядерный терроризм.

    реферат [85,8 K], добавлен 05.05.2006

  • Первые ядерные реакторы, их принцип работы как устройств, в которых осуществляется управляемая реакция деления ядер. Использование в ядерных реакторах, работающих на естественном уране, замедлителей нейтронов для повышения коэффициентов их деления.

    презентация [627,4 K], добавлен 26.02.2014

  • Особенности осуществления ядерных реакций, их сопровождение энергетическими превращениями. Термоядерные реакции в природных условиях. Строение ядерного реактора. Цепные ядерные реакции, схема их развития. Способы и области применения ядерных реакций.

    презентация [774,1 K], добавлен 12.12.2014

  • Ядерное оружие - совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Конструкция, мощность боеприпасов; последовательность событий при военном и мирном ядерном взрыве. Экологические последствия применения данного оружия.

    презентация [2,4 M], добавлен 17.01.2015

  • Магнитное поле Земли и его характеристики. Понятие геомагнитных возмущений и их краткая характеристика. Механизм возмущения магнитного поля Земли. Влияние ядерных взрывов на магнитное поле. Механизм влияния различных факторов на геомагнитное поле Земли.

    контрольная работа [30,6 K], добавлен 07.12.2011

  • Главные особенности использования замедлителей нейтронов в ядерных реакторах. Общее понятие о критической массе. Принцип действия и основные элементы реакторов построенных на быстрых нейтронах. Первая цепная ядерная реакция деления урана в США и России.

    презентация [94,7 K], добавлен 22.04.2013

  • Использование в ядерных реакторах, работающих на естественном уране, замедлителей нейтронов для повышения коэффициентов размножения нейтронов. Схема процессов в ядерном реакторе, его основные элементы. Построение и запуск первых ядерных реакторов.

    презентация [559,1 K], добавлен 24.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.