Тепловые потери

Изучение возможных мер по повышению температуры внутренней поверхности ограждения. Определение формулы по расчету сопротивления теплопередаче. Расчетная температура наружного воздуха и теплопередача через ограждение. Координаты "температура-толщина".

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 24.01.2012
Размер файла 193,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

6

Контрольная работа

по теплофизике № 10

Тема: Тепловые потери

Содержание

1. Меры по повышению температуры внутренней поверхности ограждения

2. Вывести формулу для определения требуемого сопротивления теплопередаче

3. Почему в качестве расчетной температуры наружного воздуха в расчете теплопередачи через ограждение принимают температуру наиболее холодной пятидневки

4. Доказать, что линия снижения температуры в толще многослойного ограждения в координатах «температура-толщина» является ломаной

температура ограждение сопротивление теплопередача

1. Меры по повышению температуры внутренней поверхности ограждения

Иногда в зданиях возникают дополнительные тепловые потери за счет избыточного отопления, под которым подразумевается подача большего количества теплоты, чем необходимо для обеспечения теплового режима. При избыточном отоплении повышается температура внутреннего воздуха, и растут, соответственно, теплопотери. Для предупреждения избыточного отопления необходимо:

- очень внимательно определять тепловые потери помещений и на этой основе правильно проектировать отопительную систему;

- отрегулировать отопительную систему после монтажа;

- регулировать расход энергии, чтобы в каждое помещение подавалось теплоты не больше, чем требуется.

Иногда для экономии энергоресурсов прибегают к снижению температуры внутреннего воздуха ниже требуемого значения.

Тепловые потери при этом уменьшаются, но возникающий тепловой дискомфорт заставляет использовать электрические нагреватели, что приводит лишь к дополнительным нерациональным затратам, т.к. КПД в этом случае (с учетом преобразования тепловой энергии на электростанции в электрическую) составляет не более 30%.

2. Вывести формулу для определения требуемого сопротивления теплопередаче

При проектировании наружных ограждений зданий необходимо задаваться минимально допустимыми значениями сопротивлений теплопередаче Rо, обеспечивающими теплозащитные качества ограждения.

Нормирование Rо основано на принципах обеспечения санитарно-гигиенических требований внутри помещения и ограничения теплопотерь в отопительный период.

Поэтому при проектировании наружных ограждений необходимо определять два значения требуемых сопротивлений теплопередаче (одно - исходя из санитарно-гигиенических условий, другое - исходя из условий энергосбережения), из которых для дальнейших расчетов нужно выбрать наибольшее.

Нормирование сопротивления теплопередаче ограждающих конструкций (за исключением светопрозрачных) по санитарно-гигиеническим условиям построено на принципе поддержания на внутренней поверхности ограждения температуры, при которой на ней не образовывался бы конденсат, то есть температура внутренней поверхности должна быть не ниже точки росы, а для большей надежности - несколько выше ее.

Как отмечалось ранее, температуры поверхностей не нормируются, но зато нормами ограничивается температурный перепад между температурой внутреннего воздуха и температурой на внутренней поверхности ограждения: max.

Тогда, при стационарном режиме теплопередачи и . Значит , а , где tв - расчетная температура внутреннего воздуха помещения, °С; tн - расчетная зимняя температура наружного воздуха, равная средней температуре наиболее холодной пятидневки, °С; бв - коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2°С).

Требуемое сопротивление теплопередаче по условиям энергосбережения (которое в большинстве случаев является определяющим в теплотехническом расчете) определяется исходя из величины градуса - суток отопительного периода (то есть когда среднесуточные температуры наружного воздуха опускаются ниже +8 оС) района строительства, которая зависит от расчетной температуры внутреннего воздуха, средней температуры отопительного периода и продолжительности этого периода: .

То есть чем ниже температура tоп или чем больше продолжительность периода отопления zоп, тем и сопротивление теплопередаче конструкции должно быть больше. Значения самих сопротивлений определяются либо по формуле , где R - минимальное сопротивление теплопередачи ограждения в регионах без отопительного периода, в - связующий коэффициент.

Значения R и в приведены в справочнике (там они обозначены как b и a соответственно). Кроме этого, значения можно определить по той же таблице в зависимости от ГСОП интерполяцией.

Требуемое сопротивление теплопередаче дверей и ворот, а также светопрозрачных конструкций (окон, балконных дверей, фонарей) следует определять по справочнику в зависимости от величины ГСОП района строительства.

Необходимо отметить, что при проектировании светопрозрачных ограждений жилых и общественных зданий должны соблюдаться условия, ограничивающие максимальную площадь оконных заполнений в соотношении с общей площадью фасадов зданий.

3. Почему в качестве расчетной температуры наружного воздуха в расчете теплопередачи через ограждение принимают температуру наиболее холодной пятидневки

В связи с этим для ограждающих конструкций большой инерционности расчетная температура наружного воздуха принимается равной средней температуре наиболее холодной пятидневки. Период в 5 суток принят потому, что его длительность достаточна для того, чтобы низкая температура наружного воздуха, установившаяся в течение этого периода, вызвала максимальное уменьшение температуры на внутренней поверхности стены.

4. Доказать, что линия снижения температуры в толще многослойного ограждения в координатах «температура-толщина» является ломаной

В случае, когда конструкция состоит из нескольких слоев с разными коэффициентами теплопроводности, распределение температур (в оС) будет выглядеть следующим образом: Угол наклона изотермы к горизонту в каждом слое различен, так как зависит от коэффициента теплопроводности соответствующего материала. Тангенс угла наклона , то есть чем более теплопроводным является материал слоя, тем меньшим будет наклон изотермы к горизонту.

Размещено на Allbest.ru


Подобные документы

  • Передача тепла через воздушную прослойку. Малый коэффициент теплопроводности воздуха в порах строительных материалов. Основные принципы проектирования замкнутых воздушных прослоек. Меры по повышению температуры внутренней поверхности ограждения.

    реферат [196,7 K], добавлен 23.01.2012

  • Изучение основных свойств термического сопротивления воздушной прослойки. Расчет линии снижения температуры в толще многослойного ограждения с координатами "температура-термическое сопротивление". Сопротивление разности давления со сторон ограждения.

    контрольная работа [139,0 K], добавлен 24.01.2012

  • Тепловой поток, проходящий через ограждение. Сопротивления тепловосприятию и теплоотдаче. Плотность теплового потока. Термическое сопротивление ограждения. Распределение температур по сопротивлениям. Нормирование сопротивления теплопередаче ограждений.

    контрольная работа [1,2 M], добавлен 23.01.2012

  • Требуемое сопротивление теплопередаче ограждающих конструкций. Пол над неотапливаемым подвалом. Безчердачное перекрытие. Общие потери теплоты помещением через наружные ограждения. Составление тепловых балансов помещений. Выбор системы отопления.

    курсовая работа [130,6 K], добавлен 28.10.2013

  • Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.

    контрольная работа [397,9 K], добавлен 18.03.2013

  • Определение мощности теплового потока при конвективной теплопередаче через трубу заданного диаметра. Расход пара на обогрев воды в пароводяном теплообменнике, превращение пара в конденсат. Изменение температуры теплоносителей вдоль поверхности нагрева.

    контрольная работа [308,7 K], добавлен 13.05.2015

  • Рассмотрение экспериментальных зависимостей температуры горячего потока от входных параметров. Расчет показателей расхода хладагента и горячего потока и их входной температуры. Определение толщины отложений на внутренней поверхности теплообменника.

    лабораторная работа [52,4 K], добавлен 13.06.2019

  • Основные шкалы измерения температуры. Максимальное и минимальное значение в условиях Земли. Температура среды обитания человека. Температурный фактор на территории Земли. Распределение температуры в различных областях тела в условиях холода и тепла.

    доклад [1,0 M], добавлен 18.03.2014

  • Определение расчетных поверхностей теплообмена и перепадов температур. Расчет суммарного потока теплоты через поверхность бака трансформатора. Определение зависимости изменения температуры воздуха и масла от коэффициента загрузки трансформатора.

    курсовая работа [733,9 K], добавлен 19.05.2014

  • Статистика атмосферы и простейшее приложение. Уравнение состояние сухого воздуха и его использования для расчёта плотности воздуха. Виртуальная температура и запись уравнения влажного воздуха в компактной универсальной форме. Основные const термодинамики.

    краткое изложение [43,8 K], добавлен 19.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.