Вихревые теплогенераторы
Сущность и принцип работы вихревого теплогенератора. Уникальность новых генераторов энергии. Вихревые теплогенераторы седьмого поколения. Схема подключения вихревого теплогенератора и экономика его внедрения. Сравнительная таблица отопительных установок.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 30.10.2011 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
- МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
- ФЕДЕРАЛЬНОЕ АГЕНСТВО
- по образованию
- Федеральное государственное образовательное учреждение
- среднего профессионального образования
- Реферат
- «Вихревые теплогенераторы»
- Ижевск,2009
- Содержание
- Ведение
- 1. Как работает вихревой теплогенератор
- 2. Чем уникальны новые генераторы энергии
- 3. Вихревые теплогенераторы седьмого поколения
- 4. Схема подключения вихревого теплогенератора
- 5. Сравнительная таблица отопительных установок
- 6. Экономика внедрения вихревого теплогенератора
- Источники данных
- Ведение
- Выхлопные газы автомобилей и ТЭЦ до предела загрязняют окружающую нас природу. Автомобиль, например, выбрасывает из двигателя более 200 наименований отравляющих и канцерогенных веществ, как правило, без цвета и запаха, а для сжигания одного килограмма бензина (чуть больше одного литра) расходует 300 литров воздуха. Это до 60 литров чистого кислорода. В среднем каждый автомобиль всего за один час своего движения превращает 3000 литров воздуха в канцерогенные и отравляющие вещества, которыми нам приходится дышать.
- Только в Москве ежедневно на активное уничтожение кислорода работают около трех миллионов автомобилей. Они превращают 54 миллиарда литров воздуха в отравляющие нас вещества. Наше «голубое топливо» - газ, на котором работают большинство ТЭЦ и многие автомобили, на каждый сжигаемый килограмм дает пять килограмм отравляющих и канцерогенных соединений, что на килограммов больше, чем при сжигании угля.
- Техническая политика большинства развитых стран на сегодняшний день включает в себя возможность максимального использования гелиотехнологий, работающих на энергии солнца и на использовании водорода в качестве топлива для автомобилей и ТЭЦ. Но уже давно известно, что солнечная энергия, хотя и достается бесплатно, при существующих дорогостоящих технологиях имеет низкую эффективность. Она не способна полноценно заменить традиционные виды топлива. А сжигание водорода вновь приводит к уничтожению атмосферы земли в тех же объемах, что и бензин. Выделение большого количества пара и воды при сгорании водорода вызывает парниковый эффект, опять-таки нарушающий хрупкое равновесие нашей природы. Не говоря уже о трудоемкости производства водорода и сомнительной его экологичности.
- Что же нам остается? Энергия воздуха и воды, но без изменения их природного состояния. Поэтому я предлагаю широко использовать проверенные на практике новые способы и устройства для производства тепловой и электрической энергии. Это вихревой теплогенератор, работающий на воде, и вихревой двигатель, работающий на воздухе.
- В вихревом теплогенераторе вода при работе очищается от вредных микробов и бактерий. Эффективность вихревого теплогенератора выше, чем у любого известного электрического или ядерного источника тепловой энергии. А эффективность вихревого двигателя достигает 97% против 40% эффективности Д. В. С., 34% - атомных станций, 12% - солнечных батарей.
- 1. Как работает вихревой теплогенератор
- Вихревой теплогенератор (ВТГ), работающий на воде и предназначенный для преобразования электрической энергии в тепловую, был разработан в начале 90-х годов. ВТГ используются для обогрева жилых, производственных и иных помещений горячего водоснабжения. ВТГ возможно использовать для получения электрической или механической энергии. В 1995 г. был получен российский патент на изобретение: № 2045715 «Теплогенератор и устройство для нагрева жидкостей», а также сертификат на промышленный образец.
- Вихревой теплогенератор по этому патенту представляет собой цилиндрический корпус, оснащенный циклоном (улиткой с тангенциальным входом) и гидравлическим тормозным устройством. Рабочая жидкость под давлением подается на вход циклона, после чего по сложной траектории проходит через него и тормозится в тормозном устройстве. Дополнительного давления в трубах тепловой сети не создается. Система работает в импульсном режиме, обеспечивая заданный режим температур.
- В качестве теплоносителя в вихревом теплогенераторе используется вода или иные неагрессивные жидкости (антифриз, тосол) в зависимости от климатической зоны. При этом специальной подготовки воды (химической очистки) не требуется, так как процесс нагревания жидкости происходит за счет ее вращения по определенным физическим законам, а не от воздействия нагревательного элемента.
- Коэффициент преобразования электрической энергии в тепловую у ВТГ первого поколения был не менее 1,2 (то есть КПЕ не менее 120%), что на 40-80% превышало КПЕ существовавших в то время систем отопления. Так, парогазовые турбины фирмы «Сименс» имеют эффективность около 58%. Теплоэлектроцентрали в Московском регионе - 55%, а учитывая потери в теплотрассах, их эффективность снижается еще на 10-15%.
- Принципиальное отличие ВТГ состоит в том, что электроэнергия расходуется только на электронасос, прокачивающий воду, а вода выделяет дополнительную тепловую энергию.
- Теоретическое обоснование вихревые теплогенераторы получили в работах «Вихревая энергетика и холодный ядерный синтез с позиций теории движения» (2000 г.) и «Энергия вращения» (2001 г.).
- Плюсы систем:
- Экономическая выгода по оплате (стоимость установки, оплата электроэнергии, нет затрат на обслуживание).
- Отсутствие необходимости аттестации теплового узла и персонала (тепло, котло, энерго надзор).
- Универсальность по применению (отопление, ГВС, отопление + ГВС) в температурном диапазоне до +80 С., в районах с нестабильным электроснабжением (села, деревни, ПГТ, частный сектор в городах) для исключения случаев замораживания системы и ВТГ приходится использовать тосол для систем отопления - например (DIXIS-30), или диксис с водой в соотношении 50/50.
- Есть в странах Европы (Тепловой насос), но установка сложна, очень тяжело обслуживаема, практически неремонтопригодная, работает по принципу кондиционера с использованием фреонов.
- Предусмотрены следующие варианты применения ВТГ в быту и промышленном производстве:
- 1. Работа в отопительных системах.
- 2. Работа в системе горячего водоснабжения (нагрев воды и дальнейшее автоматическое поддерживание её температуры в накопительной ёмкости установки с дальнейшей подачей потребителю).
- 3. Изменение свойств и характеристик нефти и ГСМ (обезвоживание, обессоливание).
- 4. Приготовление качественных эмульсий:
- 4.1. получение мелкодисперсных эмульсий,
- 4.2. эмульсий для смазки стенок форм при производстве железобетонных изделий (эмульсон)
- Возможности применения вихревых теплогенераторов в народном хозяйстве неограничены. Для районов с холодными климатическими условиями ВТГ позволяет не только отапливать здания и помещения, но и быстро разогреть любую жидкость без применения каких-либо видов топлива.
- Можно применять ВТГ и для обеззараживания жидкостей (возможно использование и в пищевой промышленности): к примеру, позволяет нагревать воду в бассейне и одновременно обеззараживать ее без использования хлора и его производных.
- Применение вихревого теплогенератора в химической и нефтехимической промышленности позволяет не просто нагревать нефть или НСЖ, но и использовать его как специальное технологическое оборудование. Опыт работы (3 года) и значительный объем (более 3 000 тонн) переработанной нефти и НСЖ показали эффективность применения нашего оборудования в таких технологических процессах, как:
- 1. Водо и солеудаление;
- 2. Активация и модификация нефти и НСЖ;
- 3. Изменение реологических характеристик НСЖ;
- 4. Получение на основе НСЖ смесей или эмульсий с заданными характеристиками (к примеру, установка позволяет значительно повысить эффективность и качество сгорания мазутного и дизельного топлива в котлах и агрегатах, а самое главное получить экономию топлива до 30%).
2. Чем уникальны новые генераторы энергии
Дискуссия по поводу «необычайных» технических характеристик новых аппаратов продолжается в прессе уже несколько лет («Самарское обозрение» от 14.07.1997 г.; журнал «Идеи и решения» №10 за 2000 год; украинская газета «Антенна» № 12 от 21.03.2000г.; журнал «Наука и Техника» от 6 марта 2001 года и т.д.). Но при этом в большинстве случаев отмечаются достоинства вихревых теплогенераторов первого поколения (КПЕ не менее 100%). Что это за достоинства?
1. Для получения тепловой энергии не нужно традиционного топлива (газ, нефть, уголь и т.п.), вследствие чего ВТГ являются экологически чистыми (нет выделения продуктов горения) и не требуют затрат на химическую очистку систем циркуляции горячей воды.
2. Условия работы ВТГ по сравнению с другими системами нагрева воды безопасны, так как вода не нагревается выше 95 °С.
3. Теплогенератор устанавливается непосредственно на объекте, потребляющем тепло или горячую воду, и при этом исключается необходимость в теплотрассе со всеми вытекающими отсюда положительными последствиями. Не секрет, что стоимость прокладки теплотрассы в 24 раза дороже прокладки электрического кабеля.
4. При использовании теплогенераторов исключаются перерывы в горячем водоснабжении в летний период.
5. ВТГ и малая энергетика в целом не являются конкурентом большой энергетики (ТЭЦ, ГЭС, АЭС). Эти два направления в технике развиваются в разных жизненных пространствах, взаимно дополняя друг друга. Вследствие этого возможно сотрудничество и дальнейшее развитие энергосберегающих технологий, в целом отвечающее интересам России с ее огромными территориями и все увеличивающимися потребностями в энергии.
6. Практика двух лет эксплуатации ВТГ нового поколения в Москве подтвердила, что вихревой теплогенератор не требует сложного и дорогостоящего обслуживания.
7. Работа вихревого теплогенератора показала, что стоимость отопления 1 м3 за год составляет всего 16,05 руб. В то же время при отоплении электрическим котлом она равна 460,37 руб., а котлом на жидком топливе - 250,80 руб.
В 2002 году на российском форуме «Технологии двойного назначения» наш вихревой теплогенератор пятого поколения награжден золотой медалью и дипломом. А в 2003 году на четвертой выставке «Изделия и технологии двойного назначения» вихревой теплогенератор шестого поколения награжден дипломом первой степени.
В настоящее время творческим коллективом разработчиков продолжаются работы над теплогенератором 7-го и 8-го поколений, КПЕ которых достигает 1000%. Это позволит приблизиться к решению вопроса о создании автономных электростанций.
3. Вихревые теплогенераторы седьмого поколения
Вихревые теплогенераторы седьмого поколения предназначены для обеспечения автономного обогрева и снабжения горячей водой квартир, домов и индустриальных помещений. Они также могут быть использованы техническими специалистами для решения практических и исследовательских задач.
Эксплуатация генераторов производится в ручном, автоматическом и компьютерном режимах исходя из условий внешней окружающей среды. КПД вихревого теплогенератора (эффективность преобразования энергии согласно стандартам ЕЭС) составляет 220%. В процессе эксплуатации вихревого теплогенератора было зафиксировано двукратное снижение потребления электроэнергии. Аппарат окупается не более чем за один отопительный сезон.
Вихревой теплогенератор седьмого поколения состоит из цилиндрического корпуса и ротора. Ротор приводится во вращение электромотором. Генератор оснащен накопителем энергии для эксплуатации в ночное время. Рабочая жидкость (вода) по касательной подается на вход теплогенератора. Затем вода направляется по сложной траектории и нагревается. К моменту нагревания до расчетной температуры внутри теплогенератора происходит более 500000 циклов сжатия и расширения воды. Нагревание происходит вследствие трения молекул воды, процесса кавитации и холодного ядерного синтеза.
Система, оснащенная микропроцессором, работает в импульсном режиме и поддерживает заданный температурный режим.
Различие между теплогенератором первого поколения и новым типом агрегата в том, что последний функционирует без электрического насоса, нагревая воду до 95 °С за один проход воды по системе. Вихревой теплогенератор также позволяет вырабатывать пар.
4. Схема подключения вихревого теплогенератора
1. Вихревой теплогенератор ВТГ-2,2 - 315.
2. Запорная арматура.
3. Трубопровод отопления.
4. Отопительные приборы (радиаторы, конвекторы).
5. Бак аккумулятор.
6. Встроенный термодатчик.
7. Воздухосборник.
8. Шкаф управления.
9. Циркуляционный насос.
Теплоустановка 1 - состоит из кавитатора и электродвигателя. Выделение тепловой энергии происходит за счет сложных процессов циркуляции теплоносителя в корпусе теплогенератора. Теплоноситель подается либо непосредственно к радиаторам, либо в резервуар -аккумулятор теплоносителя, а затем в радиаторы. При подаче теплоносителя в помещения зданий, рекомендуется использование подкачивающего насоса малой мощности (циркуляционный насос).
Схема подключения без теплообменника к системе ГВС
Схема подключения двух вихревых теплогенераторов
Схема подключения на ГВС через теплообменник
Схема подключения через два теплообменника
вихревый теплогенератор отопительный
5. Сравнительная таблица отопительных установок
|
ТЭНовый котел |
Вихревой теплогенератор |
Вихревой индукционный нагреватель (ВИН) |
|
Наличие нагревательных элементов |
Большое количество нагревательных элементов высока вероятность выхода из строя одного или нескольких ТЭНов с частичной или полной потерей работоспособности котла. |
Отсутствие нагревательных элементов. |
Нагреватель - проволочная катушка. Возможно замыкание при износе. |
|
Обслуживание. |
Большое количество уплотнительных соединений (ТЭНы, фланцы), необходимость постоянного контроля. |
Предсезонная смазка подшипников. Есть требования ТУ и ГОСТ. |
Уплотнения присутствуют как на любом электрокотле. |
|
Образование накипи и отложений. |
При недостаточной водоподготовке из-за высокой ваттной нагрузки на поверхности ТЭНа происходит интенсивное отложение накипи и засорение котла и системы шламом, осыпавшимся с ТЭНов. |
На рабочих зонах ВТГ образование накипи не образуется. |
Ввиду низкой ваттной нагрузки в сочетании с воздействием на нагреваемую поверхность переменного электромагнитного поля и высокочастотной вибрации при перемагничивании практически исключено образование каких либо накипей и отложений. |
|
Уровень шума. |
Бесшумный. |
Уровень шума по ТУ. |
Бесшумный. |
|
Надежность. |
Большое количество электрических контактов (выводы ТЭНов), находящихся в зоне действия высокой температуры, требует для поддержания хорошего электрического контакта (подтяжка и т.д.), и усложняет конструкцию. |
При использование ВТГ в жидкостях с большим содержанием солей и щелочи, применяются торцевые уплотнения для агрессивных жидкостей и рабочие органы ВТГ из спец сталей, что приводит к удорожанию изделия. На технологические процессы (гольваника, углеводороды). |
Нельзя использовать на тех. процессы. |
|
Пожаро-безопасность. |
Пожароопасен. Имеются высокотемпературные части. |
Пожаробезопасен. Отсутствие нагревательных элементов. ТУ и ГОСТ. |
Пожароопасен, как и любой электрокател. |
|
Долговечность. |
Определяется сроком службы ТЭНа (1000 часов без принятия мер по смягчению воды, до 5000 - с принятием мер). |
Определяется сроком службы эл.двигателя (не менее 8 лет) и подшипниковых узлов, а также рабочих зон ВТГ и выпускаются уже более 5 лет. |
Отсутствует ТУ и экспертное заключение. |
|
Экономичность. |
Низкая стоимость самих котлов. Но высокая стоимость их эксплуатации, необходимость периодической замены ТЭНов, прокладок, тиристоров. |
Срок окупаемости зависит от цены на энергоноситель в постовляемые регионы. |
При любой поломке требуется замена установки 100%. |
6. Экономика внедрения вихревого теплогенератора
Исходные данные:
1. Обогреваемый объём (V), куб/м.
2. Среднемесячная температура наружного воздуха за отопительный период (t), °С (СНиП).
3. Тариф оплаты электропотребления (Э), р/кВт.
4. Отопительный период (n), дней (СНиП).
5. Мощность генератора (N), кВт.
6. Суточное время работы генератора за отопительный период 6-8 ч. (из практики).
Расчёт оплаты:
1. Оплата потребленной электрической энергии при эксплуатации ВТГ за 1 час работы, руб.: O = N х Э.
2. Суточная оплата, руб.: Осут = 6 х О.
3. Ежемесячная оплата, руб.: Омес = 31 х Осут.
4. Оплата за отопительный период, руб.: Оо.п. = n х Осут.
Пример расчёта оплаты при эксплуатации ВТГ-15 на территории Удмуртской республики:
1. Оплата потребленной электрической энергии при эксплуатации ВТГ за 1 час работы: О = 15 х 160 = 24 руб.
2. Суточная оплата: Осут = 6 х 24 = 144 руб.
3. Ежемесячная оплата: Омес = 31 х 144 = 4464 руб.
4. Оплата за отопительный период: Оо.п. = 222 х 144 = 31968 руб.
Источники данных
1. www.elektroportal.ru
2. www.ooo-vtg.ru
Размещено на Allbest.ru
Подобные документы
История термина "сверхъединичный" теплогенератор. Эксперименты по созданию генераторов такого типа. Гипотезы объяснения получения дополнительной энергии в ходе испытаний. Влияние некоторых факторов "обвязки" теплогенератора на его теплопроизводительность.
статья [135,3 K], добавлен 26.11.2009Технические характеристики котла ДКВР, его устройство и принцип работы, циркуляционная схема и эксплуатационные параметры. Тепловой расчет котельного агрегата. Тепловой баланс теплогенератора. Оборудование котельной. Выбор, расчет схемы водоподготовки.
курсовая работа [713,5 K], добавлен 08.01.2013Использование солнечной энергии в Республике Беларусь, тепловые гелиоустановки. Биомасса как аккумулятор солнечной энергии, получение энергии из когенерационных установок. Описание работы гидроэлектростанций. Принцип действия ветроэлектрических установок.
курсовая работа [2,2 M], добавлен 11.03.2010Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.
презентация [911,5 K], добавлен 20.12.2009Расчет объемов воздуха и продуктов сгорания. Тепловой баланс теплогенератора. Поверочный тепловой расчет конвективных поверхностей нагрева, водяного экономайзера. Выбор дымососа и дутьевого вентилятора. Технико-экономические показатели работы котельной.
курсовая работа [850,2 K], добавлен 17.05.2015Создание генераторов с возбуждением от постоянных магнитов. Характерные особенности и принцип работы генератора Г. Уайльда. Сущность принципа самовозбуждения и появление динамомашины. Объединение принципа самовозбуждения с конструкцией кольцевого якоря.
реферат [498,8 K], добавлен 21.10.2013Принцип действия и разновидности волновых гидроэлектростанций - установок, получающих электричество из кинетической энергии морских волн. Развитие волновой энергетики в России. Схема воздействия волны на поплавковый микромодуль волновой микро ЭС.
реферат [933,0 K], добавлен 24.09.2016Модернизация учебной лабораторной установки для лаборатории гидравлики и теплотехники кафедры 34, МГИУ и разработка соответствующих методических материалов. Сущность вихревого эффекта и конструкции вихревых труб. Гипотеза турбулентного энергообмена.
дипломная работа [3,1 M], добавлен 24.09.2012Цилиндрические и шаровые резервуары. Осевые, роторные и вихревые насосы. Фазоразделители, мерники и напорные баки. Основные параметры, характеризующие работу любого насоса. Тепловая изоляция оборудования. Достоинства и недостатки поршневых насосов.
презентация [413,4 K], добавлен 18.03.2014Фотоэлектрическое преобразование солнечной энергии. Элементы солнечных батарей. Регуляторы зарядки и разрядки аккумуляторов, отбора мощности батареи. Технические характеристики, устройство и принцип работы современных термоэлектрических генераторов.
реферат [642,5 K], добавлен 16.02.2015