Исследование методов наблюдения доменов в тонких ферромагнитных пленках

Сущность понятий магнетизма, ферромагнетизма, магнитной анизотропии, доменов. Анализ явления гистерезиса в ферромагнетике, перехода из парамагнетика в ферромагнетик и природа ферромагнетизма. Методы исследования тонких ферромагнитных пленок, их сравнение.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 05.11.2009
Размер файла 6,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

92

СОДЕРЖАНИЕ

Перечень определений, обозначений и сокращений

Введение

1 Теоретическая часть

1.1 Магнетизм

1.2 Элементарные носители магнетизма

1.3 Энергия обменного взаимодействия

1.4 Атомные магнитные структуры

1.5 Опыты по определению носителя ферромагнетизма

1.6 Природа ферромагнетизма

1.7 Магнитные фазовые переходы

1.8 Ферромагнетизм и кристаллическая решетка

1.9 Гистерезисные явления в ферромагнетиках

1.10 Магнитная анизотропия

1.11 История обнаружения доменов

1.12 Возникновение доменов

1.13 Размеры доменов и границ

2 Методы исследования

2.1 Метод порошковых фигур

2.2 Магнитооптический метод

2.3 Метод лоренцевой электронной микроскопии

Заключение

Список литературы

Перечень определений, обозначений и сокращений

h - постоянная Планка, равная 6,625·10-27 эрг·сек (или 6,625·10-34 Дж·с);

|е| = 1,7·10-19 Кл - заряд электрона;

m = 9,1·10-31 кг - масса покоя электрона;

м- магнетон Бора;

c- скорость света в вакууме;

U- энергия обменного взаимодействия;

Т- температурой Кюри;

М- плотность спонтанного магнитного момента;

a - параметр решетки;

Нс- коэрцитивное (задерживающее) поле или коэрцитивная сила;

Js - намагниченность;

ОЛН- ось легкого намагничивания;

L - длина кристалла;

V - коэффициент Верде;

ВКР - выпускная квалификационная работа.

Введение

Целью выпускной квалификационной работы являлось исследование методов наблюдения доменов в тонких ферромагнитных пленках (метод порошковых фигур, магнитооптический метод и метод лоренцевой электронной микроскопии).

Актуальность. В связи с поиском новых элементов памяти для информационно-логических машин в настоящее время исследованию свойств тонких ферромагнитных пленок уделяется большое внимание. Элементы памяти из тонких ферромагнитных пленок, обладающие одноосной анизотропией, прямоугольными петлями гистерезиса, низким значением коэрцитивных сил и малыми потерями на перемагничивание, имеют ряд преимуществ, по сравнению с другими элементами памяти.

Задачами исследования являлись:

1) Изучение явления ферромагнетизма;

2) Изучение ферромагнитных доменов в тонких ферромагнитных пленках;

3) Изучение методов исследования ферромагнитных доменов (метод порошковых фигур, магнитооптический метод и метод лоренцевой электронной микроскопии).

В теоретическом разделе ВКР введены понятия магнетизм, ферромагнетизм, магнитная анизотропия, домены и методы наблюдения ферромагнитных доменов. А так же исследованы явление гистерезиса в ферромагнетике, возникновение доменов, фазовый переход из парамагнетика в ферромагнетик и природа ферромагнетизма.

В разделе методы исследования рассмотрены три метода исследования тонких ферромагнитных пленок.

В заключении приведен сравнительный анализ трех изученных методов наблюдения магнитных доменов в тонких ферромагнитных пленках.

1. Теоретическая часть

1.1 Магнетизм

Окружающий нас мир велик и разнообразен, наполнен самыми различными предметами и явлениями. Многовековая деятельность человека показала, что все предметы и явления существуют не независимо друг от друга, что между ними имеются вполне определенные связи. Роль науки сводится к выявлению этих связей и указанию путей их использования для практических целей. Некоторые связи носят весьма общий характер.

Огромный круг явлений природы определяется магнитными силами. Магнитные силы являются источником многих явлений микромира, т.е. поведения атомов, молекул, атомных ядер и элементарных частиц - электронов, протонов, нейтронов и пр.; магнитные явления характерны и для огромных небесных тел. Солнце и Земля - это огромные магниты. Половина энергии электромагнитных волн (радиоволн, инфракрасного, видимого и ультрафиолетового излучения, рентгеновских и гамма-лучей) являются магнитной.

Немагнитных веществ не существует. Любое вещество всегда магнитно, т.е. изменяет свои свойства в магнитном поле [7,с.3-4]. Магнетизм - это особая форма материальных взаимодействий, возникающих между движущимися электрически заряженными частицами.

Необычайная общность магнитный явлений, их огромная практическая значимость, естественно, приводят к тому, что учение о магнетизме является одним из важнейших разделов современной физики [2, с.4].

По современным представлениям, магнетизм вещества обусловлен тремя причинами:

орбитальным движением электронов вокруг ядер атомов;

собственным, или спиновым, моментом электронов;

собственным, или спиновым, моментом атомных ядер [2, с.4].

Универсальность магнитных свойств движущейся материи, их тесная связь с внутренней структурой вещества и объясняет то большое место, которое магнетизм занял в современном естествознании и в общественной практике человечества. Можно также понять, что универсальность магнитных свойств атомных частиц и магнитного поля позволяет использовать эти свойства как тонкий источник информации о внутреннем строении как самих микрочастиц, так и их коллективов - макроскопических тел. Кроме того, эта универсальность открыла большие возможности и для применения магнетизма в технике путем использования магнитных свойств вещества, во-первых, для создания технических магнитных материалов и, во-вторых, для получения детальной информации о других, более труднодоступных для непосредственного улучшения, физико-химических свойствах веществ, что лежит в основе методов магнитно-структурного анализа, магнитной дефектоскопии и магнитных измерений [4, с.7].

1.2 Элементарные носители магнетизма

Наблюдения за магнитными действиями тока привели еще в первой половине прошлого века французского физика Ампера к мысли о том, что особого магнитного поля, не обусловленного электрическими токами, вообще не существует. Согласно гипотезе Ампера, магнитные свойства вещества обусловлены особыми, текущими внутри молекул вещества молекулярными токами. Эти замкнутые молекулярные точки представляют собой по мысли Ампера, своеобразные элементарные магнитики.

До тех пор, пока наши сведения о строении атомов не стали достаточно полными, гипотеза Ампера не имела под собой твердой опоры. Когда же было установлено, что атом состоит из положительного заряженного ядра и вращающихся вокруг него электронов, то естественно было предположить, что движущиеся вокруг ядра электроны и представляют собой те самые элементарные точки, которые и являются элементарными носителями магнетизма. Вращающийся по орбите вокруг ядра электрон обладает некоторым магнитным моментом и представляет собой элементарный магнитик.

Согласно квантовой механики электрон обладает собственным моментом импульса - спином S.

Проекция спина S на некоторое направление выражается в единицах

h = h/2,

где h - постоянная Планка.

Спин есть неотъемлемое свойство электрона (наравне с зарядом и массой). Благодаря существованию у электрона собственного момента импульса он обладает спиновым магнитным моментом МS. Его проекция на направлении Н равна

(м) = - еh / 2m

где |е| = 1,7·10-19 Кл - заряд электрона, m = 9,1·10-31 кг - масса покоя электрона.

По абсолютной величине эта проекция равна атомной единице магнитного момента - магнитному Бора [1, с. 6-7]

м = еh / 2m = 9,27·10-24 А·м2

Как показывают расчеты, величина магнитного момента, обусловленного движением электрона по орбите, кратна некоторой величине, носящей название магнетона Бора. Магнетон Бора м есть наименьшее значение магнитного момента, которое может иметь электрон

м = h/4c·e/m, (1)

где h - постоянная Планка, равная 6,625·10-27 эрг·сек (или 6,625·10-34 Дж·с);

е - заряд электрона;

m - его масса.

Таким образом, орбитальный магнитный момент электрона равен целому числу магнетонов Бора

м = n·м , (2)

где n - целое число (1, 2, 3 и т.д.)

Двигаясь по орбите вокруг ядра, электрон обладает также орбитальным механическим моментом Р, кратным h/2, т.е. орбитальный механический момент Р равен:

Р = n (h/2), (3)

Таким образом отношение магнитного орбитального момента к механическому орбитальному моменту равно:

м / P = e / 2mc (4)

Помимо движения вокруг ядра по орбите, электрон вращается еще вокруг собственной оси. Такое вращение приводит также к образованию магнитного момента (рисунок 1).

Этот магнитный момент, вызванный вращением электрона вокруг своей оси, носит название спинового магнитного момента ( от английского to spin - вращаться).

Рисунок 1 - Орбитальный и спиновый моменты электронов.

Величина спинового магнитного момента, или просто спина, равна в точности магнетону Бора, а величина спинового механического момента равна 1/2 h/2.

Атомы различных веществ имеют разное количество электронов. У изолированного атома в нормальном состоянии число электронов, вращающихся вокруг ядра, равно его порядковому номеру в периодической системе элементов Менделеева. Так, у атома водорода вокруг ядра вращается один электрон, у атома гелия - два, у натрия стоящего в периодической системе под номером 11, вокруг ядра вращаются одиннадцать электронов.

Ядро атома тоже представляет собой сложную систему, состоящую из частиц двух типов: протонов и нейтронов. Протон - положительно заряженная частица с массой, превышающей массу электрона в 1836,5 раз.

Протон, так же как и электрон, обладает некоторым магнитным моментом, т.е. представляет собой маленький магнитик. Магнитный момент протона меньше, чем магнитный момент электрона в 658 раз, а магнитный момент нейтрона - в 960 раз.

Атом в целом представляет сложную магнитную систему. В самом деле, ядро атома состоит из протонов и нейтронов, каждый из которых обладает магнитным моментом, причем эти моменты могут быть ориентированы различно; вокруг ядра атома вращаются электроны, каждый из которых обладает как орбитальным, так и спиновым магнитными моментами. Магнитный момент атома будет суммой этих моментов, причем сумма эта будет не арифметическая, а более сложная, учитывающая не только численные значения магнитных моментов отдельных частиц, но и их направления. Магнитные моменты протонов и нейтронов значительно меньше магнитных моментов электронов, поэтому можно считать, что магнитные свойства атома определяются в основном магнитными свойствами его электронной оболочки.

Так обстоит дело в случае изолированного атома. В случае же твердого тела, представляющего собой коллектив огромного количества атомов, магнитный момент каждого из них определяется не только частицами, принадлежащими данному атому, но и их взаимодействием с частицами соседних атомов.

Из всего этого следует, что атомов, на которых бы не действовало магнитное поле, не существует. Все атомы в той или иной степени подвергаются действию магнитного поля, т.е. все они в той или иной степени магниты. Следовательно, немагнитных веществ также не существует; все тела в той или иной степени магнитны, поскольку магнитны атомы, из которых они состоят.

По магнитным свойствам все тела можно отнести к одному из пяти видов: диамагнетикам, парамагнетикам, ферромагнетикам, антиферромагнетикам и ферримагнетикам [7, с.20-23].

Диамагнитные и парамагнитные вещества относятся к числу слабомагнитных. Ферромагнетики - тела сильно магнитные. Они сильно намагничиваются даже в слабых магнитных полях и их намагниченность можно обнаружить с помощью простых средств [7, с. 30].

Магнетизм сильных магнетиков был обнаружен еще на заре развития физической науки. Однако объяснение сильного магнетизма было сделано гораздо позже, чем слабого. Сначала физики поняли природу диа - и парамагнетизма (правда, чисто квазиклассически) и только значительно позже - ферро - и антиферромагнетизма. Объяснить же эти, казалось, чисто магнитные явления удалось только с помощью квантовой механики, квазиклассические аналоги оказались бессильными [4, с. 60].

1.3 Энергия обменного взаимодействия

Для того, чтобы легче перейти к сложным системам, рассмотрим сначала простой случай двух атомов водорода. Каждый из которых состоит из протона и электрона, которые обладают электрическими зарядами +е и -е и магнитными моментами м и м (здесь мы не будем обращать внимания, что у электрона и особенно у протона фактические магнитные моменты отличаются от магнетонов Бора). Магнитный момент электрона почти в две тысячи раз больше магнитного момента протона. Пока атомы далеки друг от друга, их взаимодействием можно пренебречь. При их сближении кулоновские силы притяжения и отталкивания между электронами и протонами обоих атомов будут расти обратно пропорционально квадрату расстояния. Но кроме квазиклассической части этих взаимодействий возникнут еще специфические квантовые добавки тоже электростатического происхождения, неизвестные в классической физике.

Дело в том, что электрон в одном атоме физически полностью тождествен с электроном в другом атоме, т.е. мы имеем дело с системой двух тождественных частиц, которые принципиально нельзя пронумеровать.

Когда атомы настолько сближены, что образуется молекула водорода Н2 (рисунок 2), то электроны как бы обобществляются на молекулярной орбите и проследить за каждым из них индивидуально нельзя. Они непрерывно обмениваются местами около обоих протонов. С этим обменом тождественных электронов и связано добавочное к обычному квазиклассическому кулоновскому взаимодействию электрическое взаимодействие, называемое обменным. По величине оно близко к квазиклассическому электростатическому взаимодействию, т.е. к 10-13 эрг в расчете на один электрон. Вот это взаимодействие и играет первостепенную роль как в формировании ковалентной химической связи двухатомных - более сложных молекул (в которых мы имеем долю не с простой электростатической связью противоположно заряженных ионов), так и в энергии связи в построенных из нейтральных атомов конденсированных телах (жидкостях и кристаллах). Этот же тип взаимодействия определяет также и атомную упорядоченную магнитную структуру в твердых телах.

Рисунок 2 - Образованная валентными электронами двух атомов коллективная электронная оболочка молекулы, свойства которой и определяют магнетизм молекулы, качественно отличающиеся от магнетизма исходных атомов.

Как показали квантовомеханические расчеты энергий стационарных состояний двухэлектронных оболочек молекулы водорода или также двухэлектронной оболочки атома гелия, добавочная энергия - энергия обменного взаимодействия U электрического происхождения равна произведению постоянной А1 (которую принято называть обменным интегралом) на скалярное произведение векторов спинов или связанных с ними магнитных моментов м 1 и м 2:

U = А1 (м 1 м 2) (5)

В частном случае двухэлектронных оболочек молекулы водорода или атома гелия м 1 и м 2 - это единые векторы, направленные вдоль спиновых магнитных моментов электронов оболочек, которые могут быть только либо параллельны, либо антипараллельны. В первом случае их скалярное произведение

(м 1 м 2) = м 1 м 2 соs 00 = 1 (6)

а во втором

(м 1 м 2) = м 1 м 2 соs 1800 = -1 (7)

Поэтому если обменный интеграл положителен (А>0), то энергия обменного взаимодействия U минимальна и ей соответствует параллельная ориентация спиновых моментов. Действительно из формулы (5) мы получаем тогда:

U = -А (8)

При антипараллельных спинах и при А>0 из формулы (5) находим:

U = А (9)

Т.е. максимальное значение обменной энергии, соответствует неустойчивому состоянию электронной системы молекулы или атома.

Напротив, если обменный интеграл отрицательный (А<0), то минимуму обменной энергии отвечает антипараллельность спиновых моментов:

U = -(-А) * (-1) = -А (10)

а максимуму - их параллельная ориентация::

U =-(-А) * (1) = А (11)

В случае молекулы водорода или атома гелия спиновые моменты антипараллельны (А<0), суммарный магнитный момент равен нулю, поэтому электронные оболочки здесь магнитно-нейтральны. Напротив, в случае, например, молекулы кислорода О2 спины электронов в основном состоянии с минимальной энергией параллельны (А>0) и мы имеем дело в с парамагнитной атомной системой. Обменное взаимодействие быстро убывает с расстоянием. Поэтому когда от двух атомов переходим ко многим (например, в кристалле), основной вклад в обменную связь вносят обменные силы между ближайшими соседними электронами. Тем не менее нельзя пренебрегать и влиянием всех остальных атомов данного тела, поэтому вычисление энергии обменного взаимодействия в твердых телах вызывает затруднение.

1.4 Атомные магнитные структуры

Итак, в случае твердых тел - кристаллов обменные силы в зависимости от их знака могут благоприятствовать как параллельной ориентации атомных магнитных моментов - в этом случае мы будем иметь дело с ферромагнетиком (рисунок 3), так и антипараллельной ориентации - тогда получаем антиферромагнетик. Если при антипараллельной ориентации происходит полная компенсация магнитных моментов и суммарный магнитный момент (а следовательно и намагниченность) равен нулю, мы имеем дело с так называемым скомпенсированным антиферромагнетизмом или просто с антиферромагнетизмом (рисунок 4).

Рисунок 3 - Типичная картина атомной магнитной структуры ферромагнетика. Все атомные магнитные моменты параллельны и направлены в одну сторону (коллинеарная магнитная структура)

Рисунок 4 - Типичная картина атомной магнитной структуры антиферромагнетика. Атомные магнитные моменты образуют две одинаковые магнитные подрешётки (штриховая и не штриховая линии) с равными, но противоположно направленными намагниченностями (коллинеарная магнитная структура, случай скомпенсированного антиферромагнетизма).

В этом случае, когда нет такой компенсации (это может быть из-за неравного числа атомов с правыми и левыми спинами или с неравными антипарралельными моментами соседних атомов в сплаве или соединении), мы имеем дело с нескомпенсированным антиферромагнетизмом или с ферромагнетизмом (произошло от слова ферриты) (рисунок5).

Рисунок 5 - Типичная картина атомной магнитной структуры антиферромагнетика. Атомные магнитные моменты образуют две различные магнитные подрешётки (штриховая и не штриховая линии) с неравными и противоположно направленными намагниченностями (стрелки, направленные вниз, длиннее стрелок направленных вверх; коллинеарная магнитная структура, случай не скомпенсированного антиферромагнетизма).

Приведенные рисунки дают примеры простейших коллинеарных ферро-, антиферромагнитной (скомпенсированной) и ферромагнитной структур [3, с. 60-63].

Были открыты ферро-, ферри- и антиферромагнетики, атомные магнитные структуры которые существенно отличаются от простейших коллинеарных структур, наблюдаемых только в железе, кобальте, никеле, гадолинии и их многочисленных сплавах и соединениях. Оказалось также, что атомный магнитный порядок характерен не только для кристаллических твердых тел, он был обнаружен и в так называемых аморфных телах, наиболее типичными из которых являются металлические стекла (metglasses), например соединение железа с бором, фосфором и др. Могут быть и такие случаи, когда мы имеем кристаллическое вещество, то спины и соответствующие им атомные магнитные моменты по упорядочению расположенных в пространстве атомов кристаллической решетки по своим направлениям распределены совершенно беспорядочно (как в парамагнитном газе). Такие твердые тела называют, по аналогии с аморфными твердыми телами, спиновыми или магнитными стеклами. Это тоже один из примеров сильномагнитных веществ.

Опыт показал, что могут быть ферро- и антиферромагнетики, у которых очень много магнитных подрешеток (это совокупность узлов решетки, в которых находятся атомы или ионы с параллельными магнитными моментами) и магнитные моменты которых образуют не простую коллинеарную ферро- и антиферромагнитную (или ферромагнитную структуру). Коллинеарной называется такая структура, при которой магнитные моменты в различных магнитных подрешетках направлены вдоль или против одной и той же оси, как это изображено на рисунках 3-5.

При неколлинеарных структурах возможны антиферромагнитное треугольное распределение намагниченностей подрешеток, антиферромагнитное винтовое или ферромагнитное винтовое по конической поверхности (рисунок 6). Возможны еще более сложные неколлинеарные структуры.

Обменные силы, ответственные за ориентацию спинов в кристалле, могут давать только строго параллельную или антипараллельную структуру.

Оказалось, что это заключение справедливо только в тех случаях, когда нет резкого различия в энергиях обменного взаимодействия для соседних магнитно-активных ионов в кристаллических решетках с существенно отличающимися взаимными расстояниями по различным осям кристалла, т.е. когда нет резкой анизотропии этих расстояний [3, с. 64-67].

Рисунок 6 - Типичные примеры не коллинеарных атомных магнитных структур: а) антиферромагнитная треугольная; б) антиферромагнитная винтовая плоская; в) ферромагнитная винтовая по конической поверхности.

1.5 Опыты по определению носителя ферромагнетизма

Из чистых химических элементов ферромагнитными свойствами обладают железо, никель, кобальт, гадолиний. При очень низких температурах ферромагнитны эрбий, диспрозий, тулий, гольмий и тербий.

Самым распространенным ферромагнитным элементом является железо (от латинского ferrum - железо), отсюда и название - ферромагнитные тела, ферромагнетизм.

Ферромагнитными могут быть сплавы как из самих ферромагнитных элементов, так и их сплавы с неферромагнитными элементами. Кроме того, известны ферромагнитные сплавы из не ферромагнитных элементов. Такие сплавы носят название «гейслеровых».

Элементарными носителями магнетизма являются орбитальные и спиновые моменты электронов. Которые же из них, или те и другие, приводят к ферромагнетизму?

Ответ на этот вопрос был получен с помощью магнитно-механических опытов, основанных на следующем. Электрон вследствие вращения его вокруг ядра и вокруг своей оси, кроме магнитного момента, обладает также некоторым механическим моментом вращения. Под механическим моментом тела понимают величину, равную произведению его массы на скорость и на радиус вращения, т.е. механический момент

М = m·V·r (12)

где m - масса вращающегося тела,

V - его скорость,

r - расстояние этого тела от оси вращения.

Величина орбитального механического момента выражается формулой (3):

Р = n (h/2)

где n - целое число (n = 1, 2, 3 …)

Свойство принимать не любые, а только некоторые определенные значения, распространяются и на другие характеристики атома. Так например, радиус орбиты электрона не может быть любым, а может принимать только некоторые значения. Вполне определенные значения могут принимать также энергия и скорость электрона и т.д. Вообще параметры, характеризующие свойства атома, изменяются не непрерывно, а «ступенчато».

Поэтому говорят, что одно из основных свойств атома - это дискретность его свойств, т.е. способность принимать не любые, а только некоторые избранные значения характеризующих его физических величин.

Что касается величины механического момента электрона, обусловленного вращением его вокруг своей оси (механический момент спина), то она всегда оказывается равной 1/2·h/2, т.е. половине наименьшего орбитального механического момента.

Первый опыт определения носителя ферромагнетизма был осуществлен в 1916 г. Эйнштейном и Де-Гаазом, а затем многократно повторялся многими исследователями. Чтобы понять сущность этого опыта, рассмотрим некоторые примеры из механики. В механике известен закон, называемый законом сохранения момента количества движения. Этот закон гласит, что если на тело извне не действуют никакие вращательные силы, то момент количества движения или механический момент его остается величиной неизменной.

Вспомним, как акробат делает сальто (рисунок 7). Подпрыгнув и придав вращательное движение своему телу, он затем подбирает тело, поджимая руки и ноги. Этим самым уменьшается расстояние некоторых частей тела от оси, вокруг которой получил вращательное движение акробат. Так как извне при этом на него никакие вращательные силы не действуют, то механический момент его сохраняется, т.е. произведение массы тела на скорость и на радиус от оси вращения не меняется. Но радиус вращения уменьшился, поэтому при постоянной массе должна увеличиться скорость вращательного движения. И действительно, поджимая руки и ноги, акробат быстро переворачивается в воздухе и затем, выпрямляя корпус, замедляет вращательное движение и становятся на ноги (рисунок 7).

Рисунок 7 - Сальто.

Интересный и очень поучительный опыт можно провести на так называемой скамье Жуковского с велосипедным колесом. Скамья Жуковского представляет собой небольшую площадку, которая легко вращается около вертикальной оси. Если на такую площадку поставить человека, дав ему в руки быстро вращающееся на вертикальной оси велосипедное колесо, то такая система будет обладать некоторым механическим моментом.

Если теперь человек, стоя на скамейке, повернет ось велосипедного колеса на 1800, то по закону сохранения механического момента сам человек на скамье начнет вращаться в ту сторону, в которую ранее вращалось велосипедное колесо (рисунок 8).

Рисунок 8 - Опыт со скамьёй Жуковского

Опыт Эйнштейна и Де-Гааза подобен описанному выше опыту со скамьей Жуковского и велосипедным колесом.

В самом деле, если ферромагнетизм обусловлен орбитальными магнитными моментами электронов, то в сильно намагниченном железе они должны быть сориентированы одинаково. Плоскости орбит должны быть параллельны друг другу, и все электроны должны вращаться по орбитам в одну и ту же сторону. Дело обстоит так, как если бы в куске намагниченного железа большое количество маленьких велосипедных колес вращалось в одну и ту же сторону. Если теперь этот кусок железа перемагнитить, то, очевидно, все электроны по орбитам должны начать вращаться в противоположную сторону, что соответствует в опыте со скамьей Жуковского повороту оси велосипедного колеса на 1800. Мы уже видели, что в этом случае сама скамья вместе с человеком начинает вращаться в ту сторону куда раньше вращалось колесо. То же, очевидно, произойдет и с куском железа при перемагничивании. Перемагнитив кусок железа, мы заставляем электроны по орбитам вращаться в сторону, противоположную их первоначальному вращению. При этом сам кусок перемагниченного железа должен начать вращаться в ту сторону, куда прежде, до перемагничивания, вращались электроны по своим орбитам.

Перемагничивание образца (например, из железа) можно осуществить легко, если вспомнить, что электрический ток, протекая по проводнику, создает магнитное поле. Практически это делается так. Образец помещают в соленоид, через который пропускают достаточно сильный ток. Тогда внутри соленоида создается сильное магнитное поле и помещенный внутри него образец намагничивается. Для перемагничивания следует, очевидно, переменить направление тока в катушке.

Если внутри соленоида подвесить на нити железный цилиндр и его намагнитить пропусканием тока в соленоиде, то при изменении направления тока в соленоиде железный цилиндр перемагнитится и начнет, закручивая нить, поворачиваться в сторону, куда раньше вращались электроны. Следует отметить, что угол закручивая нити будет очень небольшой; чтобы его обнаружить, к нити прикрепляют очень легкое зеркальце и на сравнительно большом расстоянии наблюдают отклонение от него светового зайчика (рисунок 9).

Рисунок 9 - Схема опыта Эйнштейна и Де-Гааза.

Так будет, если ферромагнетизм обусловлен только орбитальными магнитными моментами электронов. Если же ферромагнетизм связан только со спиновыми магнитными моментами, то в намагниченном куске железа все электроны будут вращаться в одном и том же направлении вокруг своей оси. При перемагничивании железа они начнут вращаться в сторону, противоположную их первоначальному вращению, заставляя тем самым весь кусок железа вращаться в ту сторону, в которую вращались электроны до перемагничивания. Очевидно, световой зайчик, отброшенный прикрепленным к нити зеркальцем, и в этом случае изменит свое положение. Независимо от того, обусловлен ли ферромагнетизм только орбитальными или только спиновыми магнитными моментами, или теми и другими, в рассмотренных случаях при перемагничивании кусок железа начнет поворачиваться и закручивать нить, на который он подвешен.

Однако сила закручивания будет различной и вот почему. Как уже указывалось выше (смотри формулу (2)), магнитный момент электронной орбиты равен числу магнетонов Бора, т.е. = n·. Механический же момент Р, связанный с орбитальным вращением электрона, равен целому числу h/2 (согласно формуле 3):

Р = n(h/2)

Таким образом, отношение орбитального магнитного момента к орбитальному механическому моменту равно

(/Р)= 2/h (13)

Что касается отношения магнитного момента спина, равного магнетону Бора, , к его механическому моменту, равному (1/2) (h/2), то оно составляет

(/Р) = 4/h (14)

т.е. оказывается вдвое большим, нежели для электронной орбиты.

В указанном опыте Эйнштейна и Де-Гааза при перемагничивании можно измерить изменение как механического момента количества движения, так и магнитного момента, и взять их отношение. Многократно проведенные тщательные исследования показывают, что это отношение равно 4/h. Таким образом, из эксперимента следует, что ферромагнетизм обусловлен не орбитальными а спиновыми магнитными моментами, именно они при определенных условиях устанавливаются в веществе так что возникает ферромагнетизм. Об этих условиях будет сказано ниже.

1.6 Природа ферромагнетизма

Из предыдущего параграфа следует, что элементарными носителями ферромагнетизма являются электронные спины. Однако возникает вполне законный вопрос почему же электронные спины создают ферромагнетизм не во всех веществах, а только в некоторых, причем очень немногих? Почему ферромагнитны железо, никель, почему не ферромагнитны медь и серебро? Ведь и в атомах меди электроны вращаются вокруг ядра, обладая орбитальными магнитными моментами, и в атомах меди электроны вращаются вокруг своей оси и, таким образом, обладают спиновыми магнитными моментами.

Ответ следует, очевидно, искать в специфике атомного строения ферромагнитных веществ.

В атоме с достаточно большим порядковым номером вокруг ядра вращается значительное количество электронов. При вращении вокруг ядра электроны располагаются некоторыми слоями. Максимальное число электронов в слое (оболочке) равно 2n2, где n - порядковый номер слоя. Так, например, в первом слое электронов может быть всего 2, во втором слое 2·22, или 8, а в третьем 2·32, или 18, а в четвертом 32 электрона и т.п.

При переходе от одного атома к другому в порядке увеличения его атомного номера с меньшими порядковыми номерами и лишь потом начинают заполняться более отдаленные слои. Так, в атоме водорода всего один электрон, и он будет находиться в первом электронном слое. Атом гелия (его порядковый номер два) имеет два электрона, и они оба находятся в первом слое. У химического элемента лития, имеющего порядковый номер три, - три электрона. Эти электроны не могут быть размещены в первом слое, поскольку, как указывалось выше, максимальное количество электронов, которое может быть в первом слое, равно двум. Следовательно, третий электрон в атоме лития расположен во втором слое. У следующих по порядку элементов - бериллия, бора, углерода и т.д. - будет все больше и больше заполняться второй слой. У неона, имеющего порядковый номер десять, этот слой окажется полностью заполненным. Очевидно, у следующего элемента - натрия - начинает заполняться третий слой.

В слоях следует различать подслои. Первый подслой носит название s-подслоя и находящиеся в нем электроны называются s-электронами. Второй подслой называется p-подслоем, третий - d-подслоем, четвертый - f-подслоем. Соответственно этому имеем s, p, d, или f-электроны. Согласно квантовой теории, число электронов в каждом подслое должно быть ограничено. Так, в s-подслое их будет не более двух, в p-подслое - не более 6, в d-подслое - не более 10, в f-подслое число их не может превышать 14. Максимальное число электронов в слое равно 2n2, поэтому можно подсчитать также, какое число подслоев имеет каждый слой.

Первый слой, содержит всего 2 электрона, не имеет подслоев. Второй слой, который может иметь 8 электронов, имеет два подслоя: s-подслой (с двумя электронами) и p-подслой (с шестью электронами). Для обозначения того, в каком подслое какого слоя находится электрон, обозначают номер слоя числом, за которым ставят букву, обозначающую подслой. Например, запись 2s означает, что электрон принадлежит к первому подслою второго слоя, а запись 4d означает, что электрон принадлежит к третьему подслою четвертого слоя (таблица 1).

Таблица 1 - Максимальное число электронов в подслое каждого слоя

Первый слой

Второй слой

Третий слой

Четвертый слой

1

2s 2p

3s 3p 3d

4s 4p 4d 4f

2

2 6

2 6 10

2 6 10 14

Последовательный характер заполнения слоев при переходе к химическим элементам с большими порядковыми номерами нарушается в третьем слое. Это значит, что наблюдаются случаи, когда третий слой еще не совсем заполнен, а уже начинает заполняться четвертый слой. Заметим, что у заполненных слоев и подслоев как орбитальные, так и спиновые магнитные моменты оказываются взаимно скомпенсированными, т.е. если направленные в одну сторону спины условно считать положительными, а в противоположную сторону - отрицательными, то число плюс и минус спинов окажется равным.

Рисунок 10 - Электронные слои и подслои в атоме железа.

На рисунке 10 схематически представлены электронные слои и подслои в атоме железа. Видно, что в атоме железа целиком заполнены первый и второй слои с одинаковым количеством + и - спинов в каждом. Одинаковое число + и - спинов находится также во внешнем, четвертом слое. Что же касается третьего слоя, то в нем целиком, с одинаковым числом + и - спинов, заполнены подслои 3s и 3p, а подслой 3d не заполнен и содержит 5 положительных спинов и 1 отрицательный.

Для других ферромагнетиков также характерно наличие внутренних незаполненных электронных слоев. Для железа, никеля и кобальта незаполненными являются 3d-подслой, для лантанидов подслой 4f.

Наличие внутренних незаполненных слоев в атоме является необходимым, но еще недостаточным условием для возникновения ферромагнетизма. В самом деле, внутренние незаполненные слои мы встречаем не только у ферромагнитных элементов. Например, незаполненные слои имеют атомы марганца, хрома, ванадия, все лантаниды, а между тем марганец, хром и ванадий не ферромагнитны, так же как и лантаниды (за исключением гадолиния, эрбия, диспрозия, тербия, тулия и гольмия).

Лантаниды - химические элементы, очень сходные по своим химическим свойствам с лантаном и имеющие в таблице Менделеева порядковые номера от 57 до 70.

Кроме того, сами атомы ферромагнитного вещества, будучи изолированными друг от друга, не проявляют никаких ферромагнитных свойств.

Ферромагнитные свойства проявляются только ниже некоторой определенной температуры, в кристаллическом состоянии. Как было показано советским физиком Я.И. Френкелем, ферромагнетизм возникает благодаря особому взаимодействию электронов незаполненных слоев между соседними атомами. Такое взаимодействие называется «обменным», ибо взаимодействующие электроны перестают быть связанными с определенными атомами, «коллективизируются». Электрон, принадлежащий первому атому, оказывается принадлежащим также и второму атому, и наоборот. Атомы как бы обмениваются электронами. Поэтому такое взаимодействие называется обменным.

Обменное воздействие характеризуется так называемым интегралом обмена, который очень сильно зависит от расстояния между атомами в кристаллической решетке. При значительных расстояниях между атомами это взаимодействие равно нулю. С уменьшением расстояния взаимодействие растет, интеграл обмена положителен. При положительном значении интеграла обмена взаимодействие приводит к параллельной ориентации спинов, что в свою очередь ведет к самопроизвольной или спонтанной намагниченности вещества - основного свойства ферромагнетизма. При дальнейшем уменьшении расстояния интеграл обмена, пройдя максимальное значение, начинает убывать и становиться отрицательным. При отрицательном значении интеграла обмена спины электронов самопроизвольно устанавливаются антипараллельно друг другу, что приводит к особому явлению, называемому антиферромагнетизмом. Как показали исследования, интеграл обмена положителен, т.е. вещество обладает ферромагнитными свойствами, если отношение диаметра атома к диаметру незаполненной оболочки больше 1,5.

Зависимость интеграла обмена от отношения диаметра атома к диаметру незаполненной оболочки представлена на рисунке 11 и таблице 2.

Таблица 2 - Зависимость магнитных свойств от отношения диаметра атома к диаметру незаполненной его оболочки

Элемент

Диаметр атома a, А

Диаметр незаполненного слоя d, А

Отношение а/d

Примечание

Марганец

2,52

1,71

1,47

Не ферромагнитен

Железо

2,50

1,53

1,63

Ферромагнитен

Кобальт

2,51

1,38

1,82

Ферромагнитен

Никель

2,50

1,27

1,97

Ферромагнитен

Платина

2,77

2,25

1,23

Не ферромагнитна

Гадолиний

3,35

1,08

3,10

Ферромагнитен

Рисунок 11 - Зависимость интеграла обмена от отношения диаметра атома к диаметру незаполненной оболочки.

Итак, можно сделать следующие выводы:

Элементарными носителями ферромагнетизма являются электронные спины.

Ферромагнетизм присущ тем элементам, в которых:

а) имеются внутренние незаполненные слои;

б) отношение диаметра атома в кристаллической решетке к диаметру незаполненного слоя больше 1,5 (интеграл обмена положителен)

Следует также отметить, что ферромагнетизм возможен лишь в кристаллическом состоянии ниже некоторой температуры, характерной для каждого ферромагнетика [7, с. 32-41].

1.7 Магнитные фазовые переходы

Ферромагнетизм существует не при всех температурах. При повышении температуры собственный спонтанный магнитный момент тела уменьшается, а при некоторой температуре Т, называемой температурой Кюри, обращается в нуль (конечно, если отсутсвует магнитное поле, т.е. Н=0). Выше температуры Кюри все ферромагнетики - парамагнетики, но не все парамагнетики при низкой температуре - ферромагнетики. Значение температуры Кюри Т и плотности спонтанного магнитного момента М (при Т > 0) у разных материалов различны (таблица 3).

Таблица 3 - Значение Т и М для разных материалов

Вещество

Fe

Co

Ni

М, (эрг/Тс)

1735

1445

509

Т, (К)

1043

1403

631

Температурная зависимость плотности спонтанного магнитного момента М (Т) никеля показана на рисунке 12 [5, с. 99].

Рисунок 12 - Зависимость спонтанного магнитного момента Ni от температуры.

В учении о магнитоупорядоченных веществах важную роль играют представления о магнитных фазовых переходах. Различают магнитные переходы 1-го и 2-го рода. Переходы 1-го рода характеризуются непрерывным изменением термодинамических функций, например свободной энергии, или термодинамического потенциала системы Ф (Т, Р, Н), где Т, Р, и Н - внешние термодинамические параметры, но испытывают скачок первые производные Фґ (Т, Р, Н). Поскольку

(Ф/Т)Р, Н = Q

и

(Ф/Н)Т, Р = I,

то при переходе первого рода существуют скачки скрытой теплоты Q и намагниченности I.

Переходы 2-го рода характеризуются непрерывным изменением функций Ф (Т, Р, Н) и Фґ (Т, Р, Н), однако скачки испытывают вторые производные Фґґ (Т, Р, Н); это означает, что существуют скачки в точке перехода 2-го рода теплоемкости (Q/T)Р, Н = CР, Н и температурного коэффициента намагниченности (I/h)Т, Р. Рассматриваемые переходы являются магнитными переходами типа порядок - беспорядок (например, ферромагнетизм - парамагнетизм). На рисунке 13, б показано схематическое изменение самопроизвольной намагниченности I, при магнитных переходах 2-го рода типа порядок - беспорядок. В большинстве магнитоупорядоченных веществ в точках Кюри и Нееля возникают именно такие переходы.

Рисунок 13 - Магнитные фазовые переходы 1-го (а) и 2-го (б) рода.

Согласно Ландау магнитный переход 2-го рода можно приближенно описать с помощью разложения энергии ферромагнетика в ряд по четным степеням параметра магнитного упорядочения, за который можно принять намагниченность I.Для случая ферромагнетика имеем

W = W0 + aI2 + bI4 - IH (15)

где W0 - аддитивная постоянная,

а и b - некоторые коэффициенты (знак минус перед энергией поля IH означает, что магнитная система находится в стабильном состоянии). Из условия равновесия магнитной системы W/I = 0 получаем уравнение состояния ферромагнетика вблизи точки Кюри Тс.

бI + вI3 = H (16)

где б = 2а, в = 4b - новые коэффициенты, зависящие от Т и Р; в частности, можно коэффициент б разложить в ряд по разности Т - Т:

б =бТс (Т - Т ) (17)

В отсутствии магнитного поля I = Is. Из (16) и (17) имеем

I = - (бТc / в) (Т -Т) (18)

При достижении температуры Т = Т намагниченность Is = 0 и, следовательно, б = 0. Таким образом, равенство б = 0 может быть использовано для определения температуры Кюри. Последнее уравнение можно записать в виде:

Is = A (Т -Т)1/2 (19)

где

А = (бТс /)1/2

При Т = Т, т.е. = 0, из (16) имеем:

I = ВН 1/3 (20)

где В = (1/)1/3. Присоединяя сюда соотношение

ч = С (Т - Т)-1 (21)

(закон Кюри - Вейсса, который справедлив при Т ? Т), мы получаем три уравнения для описания магнитного перехода в окрестности точки Кюри.

Однако эти уравнения весьма приближенны, особенно в узкой окрестности точки Кюри, т.е. в области |ф| =(Т - Т) / Т ? 10-4. В этой области возникают так называемые флуктуации магнитного порядка - критическое состояние вещества. Влияние этих флуктуаций в самой точке Т приводит к корреляции спинов, что должно быть учтено с помощью введения новых показателей, степеней в систему уравнений (19) - (21), а именно:

I = A (Т -Т), I = ВН 1/, ч =С(Т -Т) (22)

где , и - так называемые критические индексы магнитного перехода. Все термодинамические функции вблизи перехода испытывают резкие изменения (сингулярности), и поэтому эти индексы должны быть более высокими, чем дает термодинамика Ландау.

Априори можно утверждать, что между критическими индексами должна существовать количественная связь, так как все процессы, протекающие в критической области, взаимосвязаны. Оказывается, связь между ними довольно проста (закон подобия):

= ( - 1) (23)

Измерениями для Ni и некоторых ферритов установлено, что = 1,3; = 0,38; = 4,42. Подставляя эти значения в закон подобия, можно убедиться, что этот закон удовлетворяется.

Отметим, что уравнение I = ВН 1/ является аналогом уравнения состояния жидкости:

- кр = а (Р - Ркр)1/

где - плотность, Р - давление; вблизи точки перехода (критической точки) = кр, Р = Ркр. Измерения показали, что вблизи критической точки (Т = Ткр) критический индекс для системы жидкость - газ равен 4,2; т.е. приблизительно такой, как и для системы ферромагнетик - парамагнетик. Из этого следует, что результаты по изучению механизма фазовых переходов в магнитных веществах можно переносить на более сложные переходы, происходящие в твердых и жидких телах. Поэтому физики проявляют такой большой интерес к исследованию магнитных фазовых переходов.

Исследованиями установлено, что в небольшом числе магнитоупорядоченных веществ в точке Кюри происходит переход 1-го рода. В этом случае температурный ход самопроизвольной намагниченности, в отличие от перехода 2-го рода, при приближении к T обрывается скачком (рисунок 13, а). Такой переход был обнаружен в сплаве MnAs и некоторых других.

Помимо переходов типа порядок - беспорядок в магнитоупорядоченных веществах могут быть магнитные переходы типа порядок - порядок (например, ферромагнетизм - антиферромагнетизм). Эти переходы могут возникать самопроизвольно при достижении определенной критической температуры или под действием внешнего магнитного поля при достижении критического поля. В зависимости от «резкости» перехода они могут быть переходами 1-го или 2-го рода.

Для веществ, обладающих такими переходами, строят так называемые магнитные фазовые диаграммы. При достижении определенной температуры и магнитного поля в веществе может проявляться магнитная тройная точка (трикритическая точка) Т., в которой сосуществуют три состояния вещества: антиферромагнитное, метамагнитное (неустойчивое ферромагнитное состояние) и парамагнитное. Выше тройной точки в магнитном поле при повышении Т наблюдаются переходы: антиферромагнетизм - метамагнетизм - парамагнетизм.

В последние годы исследованы так называемые магнитоориентационные переходы, при которых скачком или плавно (переходы 1-го или 2-го рода) изменяется направление вектора самопроизвольной намагниченности Is по отношению к осям кристалла. Эти переходы особенно распространены в редкоземельных магнитоупорядоченных веществах [1, с.52-55].

1.8 Ферромагнетизм и кристаллическая решетка

Измерение магнитных моментов атомов ферромагнитных элементов показало, что они по порядку величины такие же как у атомов парамагнитных элементов, т.е. составляют несколько магнетонов Бора. Но даже в очень сильных магнитных полях намагниченность парамагнетиков проявляется очень слабо, а ферромагнетики приобретают высокую степень намагниченности и в сравнительно слабых внешних магнитных полях. В чем же причина столь необычных свойств ферромагнетиков?

Спиновая природа ферромагнетизма, обнаруженная гиромагнитными опытами, позволяет высказать предположение, что необходимым условия существования ферромагнетизма является наличие в атомах ферромагнетиков нескомпенсированных спиновых магнитных моментов электронов.

Действительно, у всех ферромагнитных элементов в недостроенной оболочке имеются нескомпенсированные спины электронов (у железа, например, 4 нескомпенсированных спина, у кобальта - 3, у никеля - 2).

Но это необходимое условие - наличие нескомпенсированных спинов в недостроенных оболочках атома - еще не достаточно для возникновения ферромагнетизма. У марганца имеются 5 нескомпенсированных спинов, у хрома - 4, но оба они не ферромагнитны.

Заметив, что ферромагнетизм проявляется только у кристаллических тел, будем причину его искать в кристаллическом строении ферромагнетиков.

Оказывается, что возможность ферромагнетизма определяется таким правилом: отношение параметра кристаллической решетки к диаметру электронной орбиты, на которой находится электрон с нескомпенсированным спином, должно быть больше 1,5, т.е.

a/ 2R 1,5 (24)

где a - параметр решетки;

R - радиус орбиты электрона с нескомпенсированным спином.

Для хрома и марганца правило (24) не выполняется, поэтому они не ферромагнитны. Но некоторые сплавы внедрения на основе марганца и хрома являются ферромагнитными. Это относится к сплавам, у которых параметр решетки d увеличен (из-за внедрения в решетку атомов второй компоненты сплава) до величины, соответствующей условию (24). То же самое можно сказать про ферромагнитный сплав Гейслера (Сu2MnAl), состоящий из неферромагнитных металлов. Сплав Гейслера является ферромагнитным вследствие сочетания двух обстоятельств:

в него входит элемент (марганец), имеющий в недостроенной М-оболочке нескомпенсированные спины;

параметр кристаллической решетки сплава и диаметр орбиты электронов с нескомпенсированным спином таковы, что удовлетворяют неравенству (24).

Таким образом, кристаллическое строение вещества является одним из определяющих факторов принадлежности или непринадлежности данного вещества к категории ферромагнетиков [3, с. 202-203].

1.9 Гистерезисные явления в ферромагнетиках

Представим себе, что мы взяли ненамагниченный кусок железа и поместили его в плавно возрастающее магнитное поле. Тогда, очевидно, железо начнет плавно намагничиваться, намагниченность его будет расти, пока при достаточно сильном поле Н, не достигнет своего насыщения.

Процесс намагничивания образца, ранее не помещавшегося в магнитное поле, представлен на рисунке 14 кривой Оа. Если теперь уменьшать напряженность магнитного поля, то будет уменьшаться и намагниченность. Однако при определенных значениях магнитного поля мы уже не получим тех значений намагниченности, которые соответствовали этим полям при нарастании поля. Другими словами, кривые намагничивания образца, соответствующие возрастанию и уменьшению поля, не совпадают.

Рисунок 14 - Петля гистерезиса ферромагнетика.

Как показывает опыт, кривая, соответствующая уменьшению поля, пойдет выше. Это явление отставания спада намагниченности от спада поля носит название магнитного гистерезиса.

В поле, равном нулю на кривой размагничивания, намагниченность не обращается в нуль, а имеет некоторое значение Jr, которое носит название остаточной намагниченности. Чтобы свести эту остаточную намагниченность к нулю, нужно приложить поле Нс, направленное противоположно.

Поле Нс, при котором остаточная намагниченность обращается в нуль, носит название коэрцитивного (задерживающего) поля или коэрцитивной силы.

Если продолжать увеличивать поле противоположного направления (отрицательное поле), то при полях, превышающих значение коэрцитивной силы, образец начнет намагничиваться в направлении, противоположном начальному. Эта отрицательная намагниченность с ростом поля будет расти и достигнет насыщения, численно равного величине насыщения при положительной намагниченности.

Уменьшая отрицательное поле, мы получим такую же картину, как и в случае размагничивания от насыщения при положительном поле, т.е. когда поле обратится в нуль, то отрицательная намагниченность в нуль не обратится, а будет равна -Jr. Чтобы свести эту отрицательную намагниченность к нулю, следует приложить положительное магнитное поле, равное коэрцитивному полю. Увеличивая положительное значение поля, мы получим положительную намагниченность, которая будет расти вместе с полем, пока не достигнет насыщения.

Таким образом, при изменении величины поля от максимального положительного до максимального отрицательного значения и обратно кривая, характеризующая намагниченность, образует петлю, которая называется петлей гистерезиса. Если мы снова повторим цикл, изменяя поле от +Нs до -Нs и обратно, то мы опишем ту же самую петлю. По такой петле мы будем «ходить» при многократном перемагничивании. Что касается кривой Оа, то ее можно получить снова только при условии предварительного полного размагничивания образца. Поэтому эта кривая носит название первообразной или первичной кривой.

Размагнитить образец можно, например, при помощи многократного переключения тока (коммутации) в катушке, при одновременном уменьшении его величины от значений, соответствующих магнитному насыщению образца, до нуля.

Вследствие магнитного гистерезиса при одном и том же значении магнитного поля намагниченность образца может иметь различные значения, которые зависят не только от напряженности магнитного поля, но и от предыстории образца.

Такая петля гистерезиса, при которой намагниченность изменяется от +Js до -Js, носит название предельной.

Она является одной из важных характеристик ферромагнетика. Материалы с большой коэрцитивной силой имеют широкую петлю гистерезиса. Они трудно размагничиваются и называются магнитно-жесткими материалами. Из таких материалов изготавливают постоянные магниты.

Магнитно-мягкие материалы, наоборот, обладают малой коэрцитивной силой и узкой петлей гистерезиса. Такие материалы используются в трансформаторах, статорах и роторах динамомашин и т.д.

В табл. 4 приводятся данные о коэрцитивных силах Нс и максимальной магнитной проницаемости макс некоторых магнитных материалов.


Подобные документы

  • История развития устройств хранения данных на магнитных носителях. Причины появления доменов, а также запоминающие устройства на тонких магнитных пленках. Доменная структура тонких магнитных пленок. Запоминающие устройства на гребенчатых структурах.

    курсовая работа [1,0 M], добавлен 23.12.2012

  • Основные понятия, виды (диамагнетики, ферримагнетики, парамагнетики, антиферромагнетики) и условия проявления магнетизма. Природа ферромагнитного состояния веществ. Сущность явления магнитострикции. Описание доменных структур в тонких магнитных пленках.

    реферат [25,6 K], добавлен 30.08.2010

  • Тонкопленочные слои; назначение тонких пленок, методы их нанесения. Устройство вакуумного оборудования для получения тонких пленок. Основные стадии осаждения пленок и механизмы их роста. Контроль параметров технологических процессов и осажденных слоев.

    курсовая работа [2,2 M], добавлен 11.09.2014

  • Основные модели токопереноса и фоточувствительности поликристаллических пленок сульфида свинца. Технология получения и физические свойства тонких пленок PbS. Вольтамперные характеристики пленок сульфида свинца. Температурные зависимости образцов PbS31.

    дипломная работа [1,6 M], добавлен 19.01.2012

  • Прохождение тока через электролиты. Физическая природа электропроводности. Влияние примесей, дефектов кристаллической структуры на удельное сопротивление металлов. Cопротивление тонких металлических пленок. Контактные явления и термоэлектродвижущая сила.

    реферат [24,0 K], добавлен 29.08.2010

  • Магнитно-силовая микроскопия как инструмент для исследования микро- и наномагнитных структур. Определение рельефа с использованием контактного или прерывисто-контатного методов. Магнитное взаимодействие, явление парамагнетизма и ферромагнетизма.

    реферат [592,7 K], добавлен 18.10.2013

  • Исследование капиллярного подъема магнитной жидкости при воздействии электрического и магнитного полей. Изучение проявления действия пондеромоторных сил на жидкие намагничивающиеся среды и процессы релаксации заряда в тонких слоях магнитных жидкостей.

    лабораторная работа [1,9 M], добавлен 26.08.2009

  • Анализ физических свойств перовскитов, в которых сосуществуют электрическая и магнитная дипольные структуры. Общая характеристика пленок феррита висмута BiFeO3. Особенности взаимодействия электромагнитной волны и спиновой подсистемой магнитного кристалла.

    реферат [512,3 K], добавлен 20.06.2010

  • Сущность полиморфизма, история его открытия. Физические и химические свойства полиморфных модификаций углерода: алмаза и графита, их сравнительный анализ. Полиморфные превращения жидких кристаллов, тонких пленок дийодида олова, металлов и сплавов.

    курсовая работа [493,4 K], добавлен 12.04.2012

  • Физические процессы, лежащие в основе электронной оже-спектроскопии (ЭОС). Механизмы ЭОС, область ее применения. Относительная вероятность проявления оже-эффекта. Глубина выхода оже-электронов. Анализ тонких пленок, преимущества ионного распыления.

    реферат [755,3 K], добавлен 17.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.