Определение коэффициента теплоотдачи при свободном движении воздуха

Описание процесса передачи тепла от нагретого твердого тела к газообразному теплоносителю. Определение конвективного коэффициента теплоотдачи экспериментальным методом и с помощью теории подобия. Определение чисел подобия Нуссельта, Грасгофа и Прандтля.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 02.02.2012
Размер файла 87,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Определение коэффициента теплоотдачи при свободном движении воздуха

Передача тепла от нагретого твёрдого тела к газообразному теплоносителю или наоборот, является одним из наиболее распространённым случаев сложного теплообмена.

Коэффициент теплоотдачи может быть различным в разных точках поверхности теплообмена. Для упрощённых расчётов пользуются средним по поверхности значением б. В случае теплоотдачи поверхности металлической трубы (внутри которой находится электрический нагреватель) в неограниченную среду, наблюдаемый сложный теплообмен включает все три вида теплообмена - теплопроводность, конвекцию и лучеиспускание. При этом имеет место конвективный теплообмен между поверхностью и омывающим её газом, и, кроме того, та же самая поверхность излучает и поглощает энергию, обмениваясь потоками излучения с газом и окружающими предметами. В целом интенсивность сложного теплообмена в этом случае характеризуют суммарным коэффициентом теплоотдачи.

б = бк+ бл. (1)

При этом считается, что конвекция и излучение независимы друг от друга.

За полный тепловой поток, передаваемый поверхностью нагретого тела окружающей среде (воздуху) можно принять мощность нагревателя

Ц = Н = Й · U (2)

Действительно, при прохождении электрического тока по проводнику, в нём выделяется тепло Q = Н = Й·U·ф и тепловой поток Ц = Q/ф = Й·U.

Рассмотрим два способа определения конвективного коэффициента теплоотдачи бк в случае естественной конвекции.

1) Экспериментальное определение конвективного коэффициента теплоотдачи.

Конвективный коэффициент теплоотдачи можно рассчитать, используя формулу

бк = Фк /[ (t'ст - t)·F] (3).

Конвективный тепловой поток находим

Фк = Ф - Фл (4)

Фл = е ·С0· [(Тст/100)4 - (Тг/100)4] · F (5)

теплоотдача конвективный число подобие

Предварительно необходимо рассчитать значения лучистого теплового потока и полного теплового потока, используя формулы (2) и (5). В формуле (5) температуру нагретой поверхности t'ст находят с помощью термопар, подключённых к автоматическому потенциометру (см.рис.1) и берут среднее значение(складываются показания всех термопар и делятся на число термопар). Температуру воздуха вдали от нагревателя (температура среды-газа) tнаходим с помощью стеклянного жидкостного термометра.

Рис.1. Схема установки. В горизонтальной расположенной стальной трубе 1 находится электрический нагреватель, подключенный к источнику тока 5 . Амперметр 3 и вольтметр 4 позволяют найти мощность нагревателя N. Термопары 6 , подключенные с помощью компенсационных проводов 8 к автоматическому потенциометру 7, измеряют температуру поверхности трубы.

Для перевода температуры в 0С в 0К необходимо использовать их связь:

Тст0 К= t'ст0С +273,15; Тг0К= t0С+273,15. (6)

Степень черноты е имеет следующие значения: сталь с шероховатой поверхностью - 0.95 - 0.98; Сталь окисленная - 0.8; Сталь сильно окисленная - 0.98 (выбрать, исходя из степени окисления металла нагревателя).

Коэффициент лучеиспускания абсолютно чёрного тела С0 = 5,67 вт/(м2 град4).

Значения силы тока Й, проходящего по нагревателю, и напряжения U, подаваемого на его концы, находят по амперметру и вольтметру.

За площадь нагретой поверхности принимается площадь поверхности цилиндра длиной l и диаметром

d: F= р · d · l (7).

Аналогично ф-ле 3 можно рассчитать и лучистый коэффициент теплоотдачи:

бл = Фл /[ (t'ст - t)·F] (8)

2) Определение конвективного коэффициента теплоотдачи с помощью теории подобия.

Конвективный коэффициент теплоотдачи можно также определить, используя теорию подобия. Теплоотдача в неограниченном пространстве для тел любой формы и размера определяется уравнением подобия:

Nuж = 0,5·(Grж ·Pr ж)0,25 (Pr ж/Prст)0,25.

Для газа (Pr ж/Prст)0,25 =1.

Индексы ж заменим на г, т.е. значения физических величин, входящих в числа Грасгофа и Прандтля необходимо брать при температуре окружающего воздуха (табл.1).

Табл.1. Физические свойства сухого воздуха

Т

°К

с

кг/м3

ср

кдж/(кг ·град)

л ,

вт/(м·град)

н

м2/сек

273

1,252

1,011

2,374 · 10-2

13,7 · 10 -6

283

1,206

1,012

2,456 ---

14,70 ---

293

1,164

1,013

2,522 ---

15,70 --- 16,61 --

303

1,127

1,014

2,580 ---

16,61 ---

313

1,092

1,015

2,654 ---

313

Nu = 0,5·(Grг ·Prг)0,25 (9)

Nu = бк L / л (10)

Здесь Nu - число подобия Нуссельта; отсюда конвективный коэффициент теплоотдачи

бк = Nu ·л/ d (11)

L - определяющий размер нагретого тела в данном случае ( L= d) равен диаметру цилиндра, л - коэффициент теплопроводности теплоносителя, в данном случае воздуха.

Числа подобия Грасгофа Gr и Прандтля Рг, входящие в уравнение подобия (9), определяются следующим образом:

Grг =в·g·(d)3·ДT/v2; (12)

Prг =с·сp·v/л (13)

Здесь v - кинематическая вязкость (динамическая вязкость теплоносителя, деленная на его плотность ), cр - изобарная теплоёмкость теплоносителя; зависимость удельной изобарной теплоёмкости для воздуха дана в табл.3. ( приближённо для воздуха -идеального двухатомного газа- её можно найти по формуле сp= (7/2)·R/м = 1,003 кдж / кг град, что всего на 0,8% меньше теплоёмкости реального воздуха при 200С; это и позволяет считать воздух идеальным газом при невысоких температурах и давлениях), л - коэффициент теплопроводности воздуха.

Значения коэффициентов В и n зависят от величины произведения Gr · Рr и берутся из таблицы 2.

Табл.2. Зависимость коэффициентов В и n от произведения чисел подобия Грасгофа и Прандтля.

Gr · Pr

В

n

<103

1.18

1/8

103 ? 108

0.50

1/4

> 109

0.13

1/3

Литература
1. Теплотехника - Баскаков А.П. 1991г.
2. Теплотехника - Крутов В.И. 1986г.
3. Теплотехника, теплогазоснабжение и вентиляция - Тихомиров К.В. 1981г.57.
4. Теплотехнические измерения и приборы - Преображенский В.П.1978г.
Размещено на Allbest.ru

Подобные документы

  • Условия подобия процессов конвективного теплообмена. Безразмерное дифференциальное уравнение теплоотдачи. Приведение к безразмерному виду уравнения движения. Числа подобия Рейнольдса, Грасгофа, Эйлера. Общий вид решений конвективной теплоотдачи.

    презентация [155,3 K], добавлен 18.10.2013

  • Изучение понятия теплоотдачи, теплообмена между потоками жидкости или газа и поверхностью твердого тела. Конвективный перенос теплоты. Анализ основного закона конвективного теплообмена. Уравнение Ньютона-Рихмана. Получение критериев теплового подобия.

    презентация [189,7 K], добавлен 09.11.2014

  • Понятие конвективного теплообмена (теплоотдачи). Схема изменения температуры среды при конвективном теплообмене. Система уравнений, которая описывает конвективный перенос. Основной закон теплоотдачи, расчет ее коэффициента. Критерии теплового подобия.

    презентация [207,9 K], добавлен 28.09.2013

  • Моделирование процессов конвективного теплообмена. "Вырождение" критериев подобия. Определение средней скорости жидкости в трубе. Теплоотдача при продольном обтекании горизонтальной поверхности. Изменение коэффициента теплоотдачи вдоль пластины.

    презентация [175,2 K], добавлен 18.10.2013

  • Сущность метода определения местного коэффициента теплоотдачи при течении теплоносителя в трубе. Измерение коэффициента теплоотдачи для различных сечений трубы при различных скоростях движения воздуха. Определение длины начального термического участка.

    лабораторная работа [545,9 K], добавлен 19.06.2014

  • Сущность и дифференциальные уравнения конвективного теплообмена. Критерии теплового подобия. Определение коэффициента теплоотдачи. Теплопередача при изменении агрегатного состояния теплоносителей (кипении и конденсации). Расчет ленточного конвейера.

    курсовая работа [267,9 K], добавлен 31.10.2013

  • Определение коэффициента теплоотдачи при сложном теплообмене. Обмен теплотой поверхности твёрдого тела и текучей среды. Использование уравнения Ньютона–Рихмана при решении практических задач конвективного теплообмена. Стационарный тепловой режим.

    лабораторная работа [67,0 K], добавлен 29.04.2015

  • Определение массовой, объемной и мольной теплоемкость газовой смеси. Расчет конвективного коэффициента теплоотдачи и конвективного теплового потока от трубы к воздуху в гараже. Расчет по формуле Д.И. Менделеева низшей и высшей теплоты сгорания топлива.

    контрольная работа [117,3 K], добавлен 11.01.2015

  • Основной закон конвективного теплообмена. Уравнение Ньютона-Рихмана. Коэффициент теплоотдачи. Критерий Нуссельта. Уравнение Фурье-Кирхгофа. Получение критериев подобия. Характеристика температурного поля и гидродинамические характеристики потока.

    презентация [209,4 K], добавлен 24.06.2014

  • Определение конвективного удельного теплового потока. Нахождение значения коэффициента теплоотдачи от газа к стенке. Определение и расчет степени черноты продуктов сгорания, подогрева охладителя и средней температуры охладителя на каждом участке.

    курсовая работа [381,4 K], добавлен 05.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.