Общая энергетика

Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 19.04.2012
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Наибольшую мощность позволяют получить современные реактивные турбины радиально-осевого типа. Например, такие турбины на Саяно-Шушенской ГЭС имеют мощность 640 МВт.

Для реактивных турбин особое значение имеет обеспечение бескавитационных условий работы. Кавитация возникает при быстром течении жидкости и попадании ее на препятствие, на лопатки турбины. При этом в силу определенных процессов могут возникать гидравлические микро удары с давлением до нескольких сотен МПа, что способно разрушить металл и бетон. Снижение кавитации достигается правильным выбором типа турбины в соответствии с напором, её быстроходности, расположением турбины относительно нижнего бьефа, а также применением особо стойких материалов (хромоникелевая сталь) и их тщательной обработкой.

Учитывая, что вал турбины связан с валом генератора, а частота переменного тока неизменна, частота вращения вала турбины зависит от параметров, входящих в выражение (1.11), и числа пар полюсов генератора. Обычно при больших напорах используются турбины с малым значением коэффициента быстроходности и наоборот. Реально частота вращения вала гидротурбин составляет от 16,66 до 1500 1/мин.

Рис.1.10 Конструкции гидротурбин:

а - активная (ковшовая); б - реактивная (поворотно-лопастная)

Синхронные генераторы ГЭС. Различия в принципе действия генераторов ГЭС и ТЭС нет. Конструктивные отличия гидрогенераторов в основном следующие: во-первых, вертикальное расположение вала, что обусловлено компоновкой ГЭС, во-вторых, ротор гидрогенератора обычно выполняется явнополюсным. Это становится возможным из-за небольшой частоты вращения вала гидрогенератора и, следовательно, сравнительно небольших центробежных сил, действующих на ротор. Явнополюсная конструкция позволяет уменьшить расход металла и массу ротора.

Комплексное использование гидроресурсов. Гидроузел - это сложный инженерно-технический объект. Помимо собственно ГЭС и водохранилища в его состав входят системы безвозвратной подачи воды потребителям (промышленным, сельскохозяйственным, бытовым и другим объектам) и системы водопользователей, возвращающих воду или вообще не изымающих ее из оборота водотока (водный транспорт, рыбоводческие и рыболовные хозяйства и т.д.). Обычно в состав гидроузла входят шлюзовые системы прохода судов и системы проводки нерестовой рыбы. Весь этот комплекс предъявляет свои требования к объему и качеству потребляемой воды, к временнoму режиму водопотребления. При этом важнейшей задачей является регулирование речного стока водохранилищами ГЭС. Естественный сток рек очень неравномерен. Например, в половодье за 1…3 месяца проходит 60...70% годового стока. Интенсивность стока изменяется также из года в год (дожди, засуха). На эти изменения накладывается неравномерная потребность в электрической энергии, а значит, и в запасах воды. Потребление электроэнергии зависит от времени суток, дня недели, погодных условий, времени года и ещё целого ряда факторов, многие из которых являются случайными. Всё это приводит к необходимости регулирования стока с помощью водохранилищ, где задерживается избыточный естественный приток, когда он превышает спрос потребителей, и расходуется, когда этот спрос больше притока. Для учета изложенных факторов на практике применяют различные циклы регулирования: суточный, недельный, годичный, многолетний.

Разумное планирование всей системы гидроузла в целом, учёт каскадности гидросооружений (например, Волжский каскад ГЭС) и режима гидропотока способны обеспечить экономический, хозяйственный, социальный эффект значительно выше, чем отдельно взятая ГЭС.

Гидроаккумулирующие ГЭС. Принцип действия ГАЭС (рис.1.11) основан на использовании потенциальной энергии воды верхнего естественного или искусственного бассейна 1 в периоды, когда необходима выработка электроэнергии (обычно в часы утреннего и вечернего пика нагрузки). В это время вода по водоводу 2 поступает в здание ГАЭС 3 на гидротурбину и затем сбрасывается в нижний бассейн 4, также естественный или искусственный. В ночные часы, когда в энергосистеме имеется избыток мощности, вода из нижнего бассейна закачивается насосами в верхний бассейн. Запасается энергия для нового цикла работы.

Различают ГАЭС чистого аккумулирования и смешанного типа. У ГАЭС чистого или простого аккумулирования верхний бассейн не имеет притока воды. Работа происходит на одном и том же объеме воды, перекачиваемом из нижнего бассейна и срабатываемом в турбинном режиме из верхнего в нижний бассейн. Лишь небольшие потери воды происходят в результате испарения и инфильтрации. У ГАЭС смешанного типа в верхний бассейн имеется приток воды, и станция может работать в турбинном режиме не только за счёт насосной подачи, но и на естественном стоке.

По количеству машин различают четырех-, трех- и двухмашинные схемы агрегатов ГАЭС (рис.1.11.). В их состав входят турбина 5, генератор 6, насос 7, двигатель 8. Двухмашинную схему, при которой на ГАЭС устанавливаются агрегаты, способные выполнять функции, как турбины, так и насоса, и состоящие каждый из обратимой гидромашины и реверсивной электромашины, следует считать наиболее совершенной и экономичной. Преимущества этой системы: относительно малая металлоемкость, простота эксплуатации, малые габариты машинных залов.

ГАЭС выполняют в современных энергосистемах роль маневренной мощности, мобильного резерва, способствуют повышению надёжности электроснабжения и экономии органического топлива. Они используются для покрытия пиковой части графиков электрической нагрузки, для участия в регулировании частоты и мощности, для улучшения режимов работы ТЭС и АЭС. В частности, ГАЭС очень хорошо сочетаются по режиму своей работы с ГРЭС и АЭС, которые неэкономично, технически невозможно и бессмысленно останавливать ночью в период значительного спада электрической нагрузки. Избыточная ночная мощность ГРЭС и АЭС как раз и может быть использована для закачивания воды в верхние бассейны ГАЭС.

Рис.1.11. Схемы ГАЭС:

а - принцип работы ГАЭС; б - компоновка агрегатов станции четырехмашинная; в - компоновка трехмашинная; г - компоновка двухмашинная

В настоящее время построены и проектируется достаточно мощные ГАЭС: 2400 МВт в ФРГ, 2000 МВт в США, 1200 МВт в России (Загорская ГАЭС) и др.

По этому же принципу работают газоаккумулирующие электростанции. В них рабочим телом является инертный газ, закачиваемый (аккумулируемый) под большим давлением в емкость (обычно, подземные естественные полости). Запасенный таким образом газ работает в газовых турбинах. Наиболее мощная электростанция такого типа в США - 220 МВт.

1..5. Газотурбинные и парогазовые силовые установки

Основная область применения газотурбинных (ГТУ) и простейших парогазовых силовых установок (ПГУ) - покрытие пиковых и полупиковых нагрузок, но эти установки могут использоваться и в длительном режиме работы.

Газотурбинные установки. В качестве рабочего тела в ГТУ используется смесь продуктов сгорания топлива с воздухом или нагретый воздух при большом давлении и температуре. В газовой турбине происходит преобразование тепловой энергии газов в кинетическую энергию вращения ротора. Конструктивно газовые турбины аналогичны паровым, но они более компактны за счет меньшего объёма рабочего тела. Это позволяет уменьшить по сравнению с паровыми турбинами такой же мощности капитальные затраты на 20…25%, расход металла на 50%, численность обслуживающего персонала в 2...2,5 раза. Диапазон мощностей выпускаемых газовых турбин велик - от десятков киловатт для ГТУ на транспорте до 150 МВт для промышленных энергоблоков, например, турбина совместной разработки фирм "Ленинградский (Санкт-Петербургский) металлический завод" и "Сименс".

Работа ГТУ осуществляется следующим образом. B камеру сгорания 1 (рис.1.12) подается жидкое или газообразное топливо и воздух. Получающиеся в камере сгорания газы 2 с высокой температурой и под большим давлением направляются на рабочие лопатки газовой турбины 3. Турбина вращает вал электрического генератора 4 и компрессора 5. Компрессор необходим для подачи под давлением воздуха 6 в камеру сгорания. Этот воздух подогревается в регенераторе 7 отработавшими в турбине газами 8, что повышает эффективность сжигания, топлива в камере сгорания.

Практическое использование мощных ГТУ связано с увеличением их КПД, который пока составляет 30…35%, и с увеличением ресурса их работы.

Рис.1.12. Схема ГТУ.

Парогазовые установки. Отработанные газы ГТУ имеют высокую температуру, что и снижает КПД термодинамического цикла. Повысить экономичность установки можно, используя парогазовый цикл. ПГУ (рис.1.13) представляют собой технологическое соединение паротурбинной и газотурбинной установок, объединенных общим тепловым циклом.

Рис.1.13. Схема ПГУ.

Газовая турбина 1 обеспечивает работу генератора 2. Рабочее тело подается в турбину компрессором 3 через камеру сгорания 4. Отработавший в ГТУ газ с достаточно высокой температурой поступает в топку парового котла 5, вытесняя соответствующее количество сжигаемого топлива. Котел снабжает паром паровую турбину 6, обеспечивающую работу генератора 7. Из турбины конденсат возвращается в паровой котел. В такой схеме используется низконапорный котел с давлением газа в топке около 0,1 МПа, что лишь немного повышает КПД цикла в целом. Используя схемы ПГУ с высоконапорным котлом (давление до 1,0 МПа), можно получить КПД 42...43%. Такие системы предполагается широко использовать в ближайшие годы: до 2010 года должно быть введено 20…25 МВт мощности.

1.6 Распределение электрических нагрузок между электрическими станциями различных типов

Электростанции связаны друг с другом и отдают электроэнергию в энергосистему региона или страны. Из этой системы получают электроэнергию разнообразные по составу, мощности, режиму работы и другим показателям потребители. Такое объединение в энергосистему позволяет: уменьшить суммарную установленную мощность электростанций; резервировать мощность за счет возможного маневрирования станций разного типа; уменьшить общий расход топлива; увеличить надёжность электроснабжения потребителей за счет дополнительных взаимных связей; повысить экономичность выработки электроэнергии путём оптимального распределения электрических нагрузок между станциями различных типов.

Рис.1.14. Суточный график нагрузки.

Суммарная электрическая нагрузка группы потребителей, подключенных к электроэнергетической системе, зависит от многих факторов: состав потребителей, их мощность, режим работы, используемая технология и оборудование, время суток и года, климатические условия и т.д. Примерный суточный график электрической нагрузки промышленного района представлен на рис.1.14. Для него характерны неизменная за сутки (базисная) нагрузка Р3; слабопеременная (полупиковая) нагрузка от Р3 до Р2; пиковая нагрузка Р1. В каждый момент времени в электроэнергетической системе должен существовать баланс вырабатываемой и потребляемой мощности (с учетом потерь). В противном случае режим работы энергосистемы в целом и отдельных ее элементов может стать аварийным вплоть до "развала", т.е. полного отключения друг от друга всех источников и потребителей электроэнергии. Для поддержания баланса мощности необходимо регулировать, изменять мощность, генерируемую на электростанциях. Разная мощность и инерционность энергоблоков обусловливают определенные закономерности их использования, как с технической, так и с экономической точки зрения. Базисную нагрузку несут наиболее мощные и инерционные электростанции - АЭС и крупные ТЭС, ГРЭС. Полупиковую нагрузку покрывают маневренные агрегаты ГЭС, ГАЭС и ТЭЦ. Пиковую нагрузку обеспечивают гидрогенераторы, ГТУ, ПГУ.

Конкретный состав электростанций в регионе может частично менять рассмотренный вариант распределения нагрузок, но общие принципы остаются неизменными.

1.7 Использование альтернативных источников энергии

Рост народонаселения, промышленное и социальное развитие общества требуют значительного увеличения производства энергии. При этом к середине двадцать первого века станет вполне реальной острая нехватка органических энергоносителей, которые дают сегодня около 80% всей востребованной энергии. Стоимость добычи и транспортировки топлива постоянно растет, и процесс этот будет продолжаться, т.к. новые месторождения зачастую находятся в удалённых, труднодоступных районах, на значительной глубине залегания. Удорожание топлива связано и с тем, что нефть, газ, уголь являются важным сырьем для многих, отраслей промышленности, и утверждение “топить нефтью всё равно, что топить ассигнациями” не теряет своей актуальности.

Все более приходится считаться с влиянием энергетики на окружающую среду и необходимостью существенно уменьшить это влияние.

Поэтому проводятся работы по поиску новых, альтернативных видов источников энергии, в том числе возобновляемых и экологически чистых. Некоторые из этих разработок рассмотрены ниже.

Магнитогидродинамические (МГД) установки. Принцип работы этих установок позволяет непосредственно преобразовывать тепловую энергию в электрическую (рис.1.15). Между металлическими пластинами 1, расположенными в сильном магнитном поле, пропускается струя 2 ионизированного газа. В соответствии с законом электромагнитной индукции наводится ЭДС, вызывающая протекание электрического тока между электродами внутри канала генератора и во внешней цепи. Отсутствие в МГД-генераторе движущихся частей позволяет достичь температуры рабочего тела 2550…2600 0С на входе и обеспечить КПД термического цикла 70...75%.

MГД-yстановки могут работать по различиям схемам. Один из вариантов - с ядерным реактором по замкнутому циклу (рис.1.15.б.). Рабочее тело (аргон или гелий с добавлением цезия) нагревается в ядерном реакторе или в высокотемпературном теплообменнике 3 и поступает в МГД-канал 4, где тепловая энергия движущейся плазмы превращается в электрическую. Отработавшие в МГД-канале газы, имеющие температуру около 1500 0С, поступают в парогенератор 5, который обеспечивает работу паротурбинной установки 6. МГД-цикл замыкается через компрессор 7, который возвращает газ в реактор или в теплообменник 3.

Рис.1.15. МГД- установка.

а - принцип работы МГД- генератора; б - МГД- установка с ядерным реактором.

Мощность опытно-промышленной МГД-установки составляет 25 МВт. В стадии технического освоения находится установка мощностью 500 МВт. В этом процессе есть ряд трудностей, сдерживающих темпы внедрения МГД-генераторов: создание магнитных полей с высокой индукцией; достижение высокой проводимости плазмы при температурах до 2400…2500 0С; создание термо-жаростойких материалов; получение переменного тока, который приходится инвертировать из постоянного, вырабатываемого МГД-установкой. Тем не менее, разработка и внедрение МГД-генераторов имеет достаточно хорошие перспективы.

Термоядерные установки. Создание промышленных установок такого типа способно практически полностью решить проблему получения необходимого количества энергии. Запас изотопов дейтерия и трития, исходного топлива для термоядерных реакторов, на Земле практически неограничен. В процессе термоядерной реакции выделяется колоссальная энергия. Это происходит на Солнце, а также при взрыве водородной бомбы. Чтобы управлять таким процессом, следует обеспечить ряд условий: плотность топлива не менее 1015 ядер в 1 см3; температура 100…500?106 градусов. Данное состояние топлива должно удерживаться, доли секунды.

Работы по созданию термоядерного реактора интенсивно проводились в СССР, США, Японии. Были получены определённые положительные результаты, например, установка "ТОКОМАК" в институте атомной энергии им. И.В.Курчатова. Однако технические и научные проблемы пока не позволили создать реальную промышленную термоядерную установку.

Солнечные электростанции. Земля получает ежегодно от Солнца 1017 Вт энергии, что в 20000 раз больше современного уровня потребления. Естественным является преобразование солнечной энергии в тепловую. Такие установки используются человеком издревле. Известен и достаточно простой способ преобразования солнечной энергии в электрическую - с помощью фотоэлементов. Поэтому работы по созданию солнечных электростанций (СЭлС) проводятся во многих странах. Особое значение при этом имеет экологическая чистота и возобновляемость такого энергоресурса. В результате за последние 50 лет сооружены десятки СЭлС в США, Австралии, Италии, Океании и других, климатически пригодных регионах. В СССР была построена Крымская СЭС мощностью 5 МВт, проектировалась станция в Средней Азии общей мощностью 200 МВт.

Однако существуют значительные трудности по созданию и использованию СЭлС, которые не позволяют пока солнечным электрическим станциям в полном объеме конкурировать с ТЭС и ГЭС. Это непостоянство солнечного излучения по времени суток, года и в зависимости от погодных условий; низкая плотность излучения у поверхности Земли; недостаточные технические характеристики существующих фотоэлементов и сложность их утилизации. КПД установок СЭлС составляет в настоящее время около I5%, а получение значительных мощностей связано с размещением оборудования на больших территориях в десятки квадратных километров и соответствующим расходом материалов. Тем не менее, работы по совершенствованию СЭлС продолжается.

Геотермальные станции (ГеоТЭС). Такие станции в качестве источника энергии используют тепло земных недр. Основные типы ГеоТЭС работают на горячей воде под давлением, на воде с паром, на сухом паре или газе (петротермальная энергия).

В среднем на каждые 30...40 м в глубь Земли температура возрастает на 1 0С и на глубине 10…15 километров она достигает 1000-- 1200 0С. В некоторых же частях планеты температура достаточно высока в непосредственной близости от поверхности. В этих местах бьют мощные горячие подземные воды, пар, газ. Здесь могут быть размещены ГеоТЭС. Например, в долине Гейзеров в США общая мощность ГеоТЭС составляет 900 МВт, ГеоТЭС Ларделло в Италии мощностью 420 МВт, станция Вайракет в Новой Зеландии - 290 МВт. Работают достаточно мощные ГеоТЭС в Мексике, Японии, Исландии и в других странах. Российская ГеоТЭС на Камчатке имеет мощность 5 МВт.

Экологическая чистота, возобновляемость тепловой энергии Земли, достаточная простота конструкции являются несомненными достоинствами ГеоТЭС.

Недостатки геотермальных станций - жесткая привязка к месту выхода тепла на поверхность Земли и ограниченные параметры рабочего тела по давлению и температуре.

Приливные электростанции (ПЭС). Современные ПЭС используют фазу прилива и отлива, их агрегаты (турбины) обратимы и работают при движении воды из моря в залив и наоборот (рис.1.16). Такие установки способны работать в турбинном и насосном режиме.

ПЭС работают в России (Кислогубская, 400 кВт), Японии, Франции и других странах. Наиболее мощная ПЭС расположена в устье реки Ранс во Франции - 240 МВт.

Рис.1.16. Схема однобассейновой ПЭС

а - вид сверху; б - разрез

ВГП - высший горизонт прилива; ВГО - высший горизонт отлива

Приливная энергия экологически чиста, возобновляема, неизменна в годовом и многолетнем периодах, однако, значительно меняется в течение лунного месяца и может быть использована только в конкретных географических точках на побережьях морей и океанов при наличии необходимого рельефа.

Электростанции, использующие морскую энергию. Энергия волн, течений, градиентов температур и солености морей и океанов может быть преобразована в электрическую. Спроектированы и испытаны несколько типов преобразовательных установок. Например, турбина "Кориолис" мощностью 80 МВт предназначена для станций, использующих океанические течения.

Ветровые электростанции (ВЭС). Человек всегда использовал энергию ветра. Преобразование этой энергии в электрическую принципиально весьма просто. В СССР уже в 20-е годы была сооружена Курская ВЭС мощностью 8 кВт. Крупнейшая в мире установка мощностью 1050 кВт в одном агрегате работала в США с 1941 г.

Однако при определённых достоинствах (экологическая чистота, возобновляемость, простота и дешевизна использования), энергия ветра имеет и существенные недостатки, ограничивающие строительство ВЭС. Это большая неравномерность плотности ветровой энергии, зависимость от географических, климатических, метеорологических факторов и др. Поэтому в настоящее время экономически оправданными являются ВЭС ограниченной мощности локального использования.

1.8 Перспективы динамики развития электрических станций

Динамика развития мировой и отечественной энергетики указывает на то, что в ближайшее время примерно сохранится существующий баланс между ТЭС, АЭС и ГЭС. Приоритет при этом будет отдан газоугольной стратегии, а использование мазута на ТЭС будет снижаться. Мировые цены на энергоносители, подверженные влиянию многочисленных факторов, способны в различной степени и на различных временньiх интервалах скорректировать указанную стратегию.

Дальнейшее развитие получат ПГУ и ГТУ. Из сравнительно новых направлений приоритетными являются МГД-установки.

Будет развиваться нетрадиционная энергетика (солнечная, приливная, геотермальная), использующая экологически чистые возобновляемые природные ресурсы. Продолжатся научно-исследовательские и опытно-конструкторские работы по созданию и освоению термоядерных установок, термоэлектрических, радиоизотопных, термоэмиссионных, электрохимических генераторов и других агрегатов. Отдельное и очень важное направления работ - энергосбережение всех видов ТЭР, тепловой и электрической энергии.

2. Передача электрической и тепловой энергии

Произведенная на электрических станциях энергия должна быть передана потребителям с минимальными потерями, часто на значительные расстояния.

2.1 Передача электрической энергии

электрический тепловой энергия

Общие положения. Основным звеном системы передачи электроэнергии является ЛЭП, а также элементы РУ электрических станций и подстанций. Производство, распределение и потребление электроэнергии осуществляется при разном напряжении. Шкала номинальных напряжений переменного тока определена ГОСТом: 0,22-0,38-0,66-6,0-10-21-35-110-150-220-330-500-750-1150 кВ. Бытовые и промышленные потребители в целях электробезопасности работают при напряжении 220-380 В. Выработка электроэнергии генераторами на станциях осуществляется на напряжении 6-10-21 кВ, что продиктовано технико-экономическими соображениям. Передача электроэнергии на большие расстояния происходит при напряжениях 35...1150 кВ. Таким образом, при передаче и распределении электрической энергии необходимо изменять (трансформировать) величину напряжения. Эту функцию выполняют силовые трансформаторы - повышающие и понижающие.

Конструктивно трансформатор содержит первичную обмотку, к которой подводится электрическая энергия, и вторичную обмотку, к которой подключается нагрузка (рис.2.1). Обмотки имеют разное число витков w1 и w2 и размещаются на магнитопроводе, собранном из листов электротехнической стали. Принцип работы трансформатора основан на том, что переменный электрический ток I1, протекающий в первичной обмотке, вызывает в магнитопроводе переменный магнитный поток Ф, который наводит во вторичной обмотке переменную ЭДС. В соответствии с законом электромагнитной индукции мгновенное значение этой ЭДС

.

При замкнутой вторичной цепи в ней протекает ток I2, величина которого определяется значением Е2 (U2 ) и сопротивлением нагрузки zНГ.

Для трансформатора, работающего без перегрузки, справедливы соотношения:

Е2 / Е1 ? U2 / U1 ? I1 / I2 = w2 / w1 .

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рис.2.1. Силовой трансформатор

а - схема устройства трансформатора; б - конструкция трансформатора

1 - магнитопровод, 2 - обмотки, 3 - бак, 4 - крышка бака, 5 - основание бака, 6 - трансформаторное масло, 7 - высоковольтный проходной изолятор, 8 - низковольтный проходной изолятор, 9 - расширитель, 10 - предохранительный клапан, 11 - радиаторы

Отношение числа витков первичной обмотки к числу витков вторичной обмотки называется коэффициентом трансформации:

n = w1 / w2 .

У повышающих трансформаторов U2 > U1 и коэффициент трансформации меньше единицы. Для понижающих трансформаторов U2 < U1 и n > 1.

По аналогичному принципу, но с определёнными конструктивными особенностями, выполняются автотрансформаторы, которые также используются при передаче электрической энергии для повышения и понижения напряжения.

Современные трансформаторы и автотрансформаторы разнообразны по конструкции: однофазные и трёхфазные; сухие, масляные и с негорючим заполнителем бака; трёх- и пяти-стержневые; с герметичным баком и с расширителем для масла и т.п. Конструкции трансформаторов, их характеристики, режимы работы подробно рассматриваются в специальных дисциплинах.

Промышленная система переменного тока является трёхфазной, трёх- или четырёхпровoдной. Нейтральная точка (нейтраль) источника питания и потребителя нагрузки может быть соединена с землей (заземленная нейтраль) или изолирована от земли (изолированная нейтраль), а отдельные фазы соединяются друг с другом по схеме "звезда" или "треугольник" (рис.2.2). При одинаковой (симметричной) нагрузке zA=zB=zC в соответствии с выражениями (1.8, 1.9) iA +iB +iC =0. Поэтому четвертый проводник, соединяющий нейтральные точки источника и нагрузки, не требуется. Он используется только в распределительных электрических сетях потребителей, работающих при напряжении 380/220 В. Назначение нулевого проводника - получение фазного напряжения 220 В и обеспечение безопасности работы обслуживающего персонала при наличии заземленной нейтрали. В электрических сетях некоторых типов, например, в бытовых электроустановках напряжением 380/220 В, выполняются два нулевых проводника - защитный и рабочий. Это значительно повышает безопасность пользователей. Требования к выполнению защитных и рабочих проводников изложены в [1] и рассматриваются в специальных дисциплинах.

Известны соотношения фазных и междуфазных (линейных) значений электрических величин для разных схем:

схема "звезда":

схема “треугольник”:

На рис.2.2.б приборы А1, V1, V2 регистрируют фазные величины, а А2, V3- линейные. На рис.2.2.в приборы А1, V1 регистрируют фазные величины, а А2, V2- линейные.

Режим нейтрали электрических сетей (рис.2.3.) определяется двумя факторами: безопасностью обслуживания и экономичностью. При изолированной нейтрали замыкание одного провода ЛЭП на землю в точке «К» не приводит к большому увеличению тока, т.к. отсутствует замкнутый электрический контур от начала фазной обмотки через точку замыкания к окончанию этой обмотки в точку N. Такие повреждения (на воздушных ЛЭП они составляют до 70%) не требуют немедленного отключения линии, что дает возможность отыскать замыкание в процессе эксплуатации, а затем устранить его. При этом не происходит отключения потребителя и перерыва в его электроснабжении. Такое же замыкание в сети с заземленной нейтралью приводит к резкому возрастанию тока, т.к. контур C-K-N оказывается замкнутым накоротко через землю. В этом случае специальные устройства релейной защиты и автоматики мгновенно отключают ЛЭП во избежание повреждения. Потребитель перестает получать по этой линии электроэнергию. Но при этом обеспечивается бoльшая, чем в предыдущем случае, безопасность работников. Действительно, в схеме рис.2.3.а при не отключенном замыкании в точке К возможно случайное касание человеком другого провода. Через тело человека начнет протекать значительный ток, величина которого определяется значением междуфазного напряжения ВС и электрическим сопротивлением тела человека. Поражение электрическим током чрезвычайно опасно. В схеме рис.2.3.б подобный режим невозможен, т.к. ЛЭП мгновенно отключается от источника.

Каждая из рассмотренных схем имеет свою область применения. Электрические сети напряжением 6-10-35 кВ работают с изолированной нейтралью, остальные - с заземленной. Заземление нейтрали в сетях напряжением до 1000 В выполняется в целях обеспечения электробезопасности, а в сетях 110 кВ и выше - по экономическим соображениям, связанным со стоимостью изоляции. Подробнее этот вопрос рассматривается в специальных дисциплинах.

Рис.2.2. Схемы передачи электроэнергии:

а - общая блок-схема; б - четырёхпровoдная система с заземленной нейтралью;

в - трёхпровoдная система с изолированной нейтралью.

1 - источник электроэнергии; 2 - потребитель; 3 - провода ЛЭП

Рис.2.3. Режимы нейтрали

а - изолированная нейтраль; б - заземленная нейтраль

Конструкция ЛЭП. Различают два основных типа ЛЭП по конструкции: воздушные и кабельные (КЛЭП). Подробно эти вопросы рассматриваются в специальных дисциплинах, поэтому ограничимся краткими сведениями.

Основные элементы конструкции воздушных ЛЭП представлены на рис.2.4. Это провода, опоры, изоляторы, арматура. Используются неизолированные, в основном многопроволочные провода марки А (алюминиевые) и АС (сталеалюминевые). Провода АС имеют стальной сердечник 1, несущий механическую нагрузку, поверх которого навит алюминиевый провод. Провода имеют стандартное сечение. Каждому сечению соответствует длительно допустимый ток, а также удельное активное и реактивное сопротивление. Площадь сечения провода ЛЭП напряжением выше 1000 В предварительно выбирается по формуле

, мм2 (2.1)

где jэ -экономическая плотность тока, справочная величина, А/мм2; Iл - сила тока, протекающего в ЛЭП, А.

Полученное значение F округляется до ближайшего стандартного, при этом для воздушных ЛЭП напряжением 110 кВ сечение принимается не менее 70 мм2, а для линий напряжением 220 кВ - не менее 240 мм2, что связано с необходимостью снижения активных потерь мощности при коронном разряде.

В электрических сетях напряжением до 1000 В при реконструкции и новом строительстве применяются самонесущие изолированные провода - СИП. Такие провода значительно повышают надёжность ЛЭП и упрощают её конструкцию.

Опоры воздушных ЛЭП предназначены для крепления на них проводов при помощи изоляторов и арматуры (зажимы, скобы, штыри, крюки и др.). Опоры различают по материалу (деревянные, стальные, железобетонные), по назначению (промежуточные, анкерные, поворотные, угловые, концевые, ответвительные, переходные, специальные и др.), по конструкции (одностоечные, П-образные, Т-образные, А-образные, Y-образные, др.). Пример одностоечной деревянной промежуточной опоры приведен на рис.2.4.б. В грунте крепится пасынок 2 (деревянный или железобетонный), к которому бандажом 3 (стальная лента или проволока) жестко крепится непосредственно стойка 4. В верхней части стойки деревянными или металлическими отколами 5 крепится траверза 6, на которой размещаются изоляторы, необходимые для поддержания проводов ЛЭП. Изоляторы выполняются из фарфора, полимеров или закаленного стекла и разделяются на штыревые Ш (на напряжение до 35 кВ) и подвесные П (на напряжение выше 35 кВ). ЛЭП характеризуется рядом геометрических параметров: длина пролёта, стрела провеса, габарит линии и т.д.

Кабельные ЛЭП имеют проводники 7, изолированные друг от друга и от внешней среды (рис.2.4.д,е), которые выполняются медными или алюминиевыми проволоками. Применяют и однопрoволочную (монолитную) конструкцию проводников КЛЭП. В маркировке кабелей с алюминиевыми проводниками (жилами) на первом месте указывается буква А. На проводник накладывается изоляция 8: резина Р, винилхлорид В, полиэтилен П, негорючая резина Н, бумага с масляной пропиткой. Многожильные кабели имеют кроме изоляции отдельных жил еще и общую (поясную) изоляцию 9 из тех же материалов. Изоляция защищается от внешних воздействий оболочкой 10: резина Р, винилхлорид В, полиэтилен П, алюминий А, свинец С. Бронированные кабели имеют наружную защиту в виде стальной брони 11. В настоящее время всё более широко применяются кабели с изоляцией из сшитого полиэтилена, которые обладают улучшенными технико-экономическими характеристиками.

Например, кабель ААБ - 3x120 имеет три проводящих алюминиевых жилы сечением по 120 мм2 каждая, бумажную изоляцию, алюминиевую оболочку и стальную броню, покрытую пряжей.

г

д е

Рис.2.4. Элементы конструкции ЛЭП:

а - провода; б - опора; в - изолятор штыревой; г - изолятор подвесной;

д - кабель одножильный; е - кабель трехжильный

Воздушные и кабельные ЛЭП имеют свои достоинства и недостатки. В соответствии с этим определяется область их применения. Воздушные ЛЭП напряжением 0,38...1150 кВ используются для открытой прокладки при соответствующем рельефе местности и допустимых условиях городской застройки. КЛЭП напряжением 0,38…110 кВ применяются для скрытой прокладки в городах, на промышленных объектах, внутри помещений и т.д.

Выбор напряжения ЛЭП. Этот вопрос решается на основании технико-экономических расчетов, основу которых составляет сравнение стоимости ЛЭП разных классов напряжения (затраты на сооружение, обслуживание, эксплуатацию, ремонт) и стоимости потерь мощности, неизбежных при передаче электроэнергии. Известно, что эти потери равны

, кВт, (2.2)

где IЛ - сила тока в ЛЭП, А; rЛ -активное сопротивление проводов ЛЭП, Ом; r0 -удельное активное сопротивление, Ом/км; l -длина ЛЭП, км.

При известной величине полной мощности нагрузки SНГ и выбираемом напряжении ЛЭП UЛ потери мощности в линии обратно пропорциональны квадрату напряжения:

; (2.3)

С учётом этого и производится выбор напряжения ЛЭП при заданных значениях передаваемой мощности и длине линии.

Пример расчета. Для схемы рис.2.3.а определить предельное расстояние lП передачи электроэнергии от источника потребителю, если максимально допустимая потеря активной мощности в ЛЭП численно равна 10% от SН2 =2,6 МВА; UЛ = 10 кВ; jэ =1,4 А/мм2 .

Решение. В соответствии с (2.1) и (2.3)

А

мм2

Принимаемое сечение F=95 мм2, тогда r0 =0,33 Ом/км [6].

Используя (2.2)

,

откуда lП =12,825 км.

2.2 Передача тепловой энергии

Выработанная на ТЭС или в котельных тепловая энергия передается потребителям по тепловым сетям, основой которых являются трубопроводы. Классификация теплосетей приведена на рис.2.5. Для теплофикации (обогрева зданий и помещений) преимущественное распространение имеют системы горячего водоснабжения. Вода имеет бoльшую, чем пар аккумулирующую способность, чем обеспечивается бoльшая дальность теплоснабжения. Вода безопаснее пара в аварийных ситуациях. Водяные системы позволяют организовать централизованное регулирование отпуска тепла. Системы парового теплоснабжения имеют более высокие параметры теплоносителя, поэтому зачастую они предпочтительней водяных систем для промышленных потребителей.

Рис.2.5. Классификация теплосетей

По количеству труб наиболее просты и дёшевы однотрубные системы. Но они пригодны лишь там, где теплоноситель полностью используется потребителем. Наиболее распространены двухтрубные системы с подающим и обратным трубопроводами.

В многотрубных сетях выполняется несколько подающих труб с разными потенциалами теплоносителя и общая обратная труба.

Наземная прокладка трубопроводов проще и дешевле, но возможна только при наличии свободной территории. Обычно по трассе прокладки есть подземные участки, например, в черте города, и наземные, например, на территории ТЭЦ и промышленного потребителя.

Радиальные схемы прокладки теплосетей просты и дешевы, но уступают кольцевым по надёжности и маневренности.

Участки прокладки теплосетей разделяют следующим образом: магистральные - от источника тепла, например, от ТЭЦ до ввода в микрорайоны, жилые кварталы или на предприятия; распределительные - от магистральных сетей до отдельных зданий или цехов; ответвительные - от распределительных сетей до узлов присоединения к ним систем теплоиспользования отдельных потребителей. Примеры прокладки трубопроводов приведены на рис.2.6.

Рис.2.6. Прокладка трубопроводов:

а - бесканальная; б - в непроходном канале; в - наземная прокладка на мачтах.

При прокладке в земле наиболее прост бесканальный способ. Таким способом выполняется примерно 6% теплосетей. В грунте подготавливают траншею 1, на дне которой устраивают бетонную подготовку 2, например, плиту. На песчаную подсыпку 3 опускается стальная труба 4. Для антикоррозийной и тепловой изоляции труба покрывается эпоксидной смолой, стеклотканью, битумом, пропитанной специальным составом лентой, затем минеральным покрытием, мастикой, волокнистыми материалами. Сверху труба засыпается грунтом 5. Оболочки, выполненные из традиционных материалов (изола, бризола, гидроизола, рубероида и др.) не являются абсолютно герметичным, в них может попадать влага. Теплопотери при увлажнении теплоизоляции значительно возрастают. Поэтому срок их службы невелик: асбестоцемент 4…5 лет; рубероид, изол 2…3 года; стеклорубероид 3…4года. Применение новых изолирующих материалов позволяет решить эту проблему: например, применение пенополиуретановой теплоизоляции в гидроизолирующей оболочке снижает тепловые потери в несколько раз. Долговечность теплоизоляции увеличивается до 30 лет.

Прокладка в железобетонном непроходном канале производится примерно в 80% случаев. Она позволяет улучшить эксплуатационные качества теплосетей за счет вентиляции (естественной или искусственной через специальные колодцы на трассе), отвода влаги, установки контролирующих и регистрирующих аппаратов.

В проходных каналах, по габаритам позволяющих находиться в них человеку, обслуживание и ремонт теплосетей производится без раскопки грунта и без обязательного отключения потребителей. Такая прокладка используется для особо ответственных потребителей тепла (около 4% сетей).

Примерно 10% теплосетей прокладывается наземным способом, например, на мачтах (рис.2.6.в). Отсутствие железобетонных блоков, предохраняющих трубопровод при подземной прокладке от воздействия грунтовых вод и химических активных элементов, компенсируется при этом за счет дополнительного уплотненного покрытия труб, проложенных на открытом воздухе.

Тепловые сети в целом, особенно магистральные, являются сложным и ответственным сооружением. Кроме непосредственно труб они включают в себя колодцы для приборов, арматуры и обслуживания; сальниковые и П-образные компенсаторы температурной и иной деформации; скользящие опоры; дренажные системы и многое другое.

3. Потребление электрической и тепловой энергии

3.1 Потребление электрической энергии

Приёмник электрической энергии - это аппарат, агрегат, механизм, предназначенный для преобразования электроэнергии в другой вид энергии [1]. Электродвигатель преобразует электрическую энергию в механическую, электролампа - в световую, электропечь - в тепловую и т.д. Приёмник электроэнергии характеризуется номинальными параметрами: напряжение - Uном; сила тока - Iном; активная - Pном, реактивная - Qном и полная - Sном мощность; коэффициент мощности - cos?ном; КПД - ?ном. Работа электроприёмников при иных параметрах отрицательно сказывается на их характеристиках. Например, если напряжение в электрической сети на 10% выше номинального, то срок службы ламп накаливания сокращается в три раза. Поэтому электроприёмники предъявляют определенные требования к качеству электрической энергии. Эти требований отражены в [8] и выполняются, за счет специальных мероприятий.

Потребителем электроэнергии называется [1] электроприёмник или группа электроприёмников, объединенных технологическим процессом и размещенных на определенной территории. Потребителями электроэнергии являются промышленные предприятия, строительные площадки, административные и жилые комплексы и т.д. Потребители характеризуются рядом технико-экономических показателей и подробно изучаются в специальных дисциплинах. В соответствии с [1] потребители электроэнергии относятся к разным группам (категориям) по степени обеспечения надёжности их электроснабжения. К первой группе относятся потребители, перерыв в электроснабжении которых недопустим, т.к. связан с угрозой человеческим жизням, возможностью крупных аварий, нарушением обороноспособности страны и т.д. Электроснабжение таких потребителей производится от двух независимых источников энергии с автоматическим включением резерва. Отметим, что есть особые потребители, например, система защиты и управления на АЭС, которые для повышения надёжности снабжаются третьим автономным источником питания. Ко второй группе относятся потребители, перерыв в электроснабжении которых приводит к значительному экономическому ущербу. Такие потребители электроэнергии подключаются к двум независимым источникам питания и допускают перерыв в электроснабжении на время переключения с основного источника на резервный. К этой группе относится большинство промышленных объектов.

Все остальные потребители относятся к третьей категории, подключаются к одному источнику питания и допускают перерыв в электроснабжении на время ремонта или замены этого источника. К этой группе относятся, например, многие коммунальные потребители.

С учетом указанных требований к надёжности электроснабжения выполняются схемы подключения потребителей к источникам электроэнергии [7]. Пример такой схемы приведен на рис.3.1. По воздушной ЛЭП W1 электроэнергия подается от электростанции или из энергосистемы на главную понизительную подстанцию (ГПП) предприятия, где трансформатор Т1 понижает напряжение со 110 кВ до 10 кВ. По кабельным линиям 10 кВ W2…W5 к ГПП подключаются трансформаторы Т2, Т'З, Т4 цеховых подстанций (ТП). На цеховых ТП напряжение понижается до 380/220 В, что обеспечивает возможность подключения непосредственно электроприемников общего назначения. Эти приемники подключается либо к шинам низкого напряжения цеховой TП, например, двигатель М1, либо к магистральному или распределительному шинопроводу W6 (нагрузка S3), либо проводом или кабелем к распределительному пункту РП (нагрузка S4). Высоковольтные двигатели М2, например, компрессорных установок, подключаются на соответствующее напряжение через трансформатор Т5.

Выбор, расчет, проверка всех элементов системы электроснабжения рассматриваются в специальных дисциплинах.

Рис.3.1. Схема электроснабжения промышленного предприятия.

3.2 Потребление тепловой энергии

Определения, аналогичные п.3.1, можно дать приемникам и потребителям тепловой энергии. Различие лишь в том, что большинство приемников тепловой энергии не преобразует ее в другие виды, а использует непосредственно.

Потребители тепловой энергии разделяются на теплофикационные (отопление, горячая вода) и технологические (установки сушки, охлаждения, выпарки, ректификации и др.).

Технологические потребители тепловой энергии изучаются специалистами-теплотехниками и в данном курсе не рассматриваются.

Теплофикационные приемники широко известны: отопительные радиаторы, батареи - чугунные и стальные, ребристые трубы, конвекторы.

Системы и схемы распределения и подачи тепла многообразны: естественные и искусственные циркуляционные; с зависимым и независимым присоединением; с верхним и нижним водоразбором; однотрубные и двухтрубные и т.д. Наиболее распространенные из них приведены на рис.3.2. Система отопления с зависимым присоединением используется в зданиях высотой до 12 этажей. Вода из сети от теплового пункта 1 по подающему трубопроводу Т1 поступает непосредственно потребителю. Тепловой пункт - важное звено в системе централизованного теплоснабжения, связывающее источник тепла (ТЭЦ, котельную) через тепловую сеть с потребителями и представляющее собой узел присоединения потребителей тепловой энергии к тепловой сети. Основное назначение теплового пункта - подготовка теплоносителя определенной температура и давления, регулирование этих параметров, поддержание постоянного расхода, учет потребления тепловой энергии. Из трубопровода Т1 теплоноситель поступает в подающую магистраль 2 здания через элеватор 3, который является смесителем поступающей и уходящей воды для обеспечения оптимальной температуры. Из магистрали 2 теплоноситель подается в отопительные приборы 4. Кран 5 служит для удаления ("стравливания") воздуха из системы. Отработавший теплоноситель через обратную магистраль 6 возвращается в обратный теплопровод Т2. Эта схема проста, экономична, но в ней возможно прекращение циркуляции и замерзание воды при аварийном отключении трубопроводов Т1 или Т2.

В системе отопления с независимым присоединением сетевой теплоноситель в теплообменнике 7 нагревает вторичный теплоноситель, который насосом 8 подается в отопительные приборы. Система имеет расширительный бак 9 для компенсации температурных изменений объема вторичного теплоносителя. Гидросистема здания изолирована от теплосетей, это сложнее, дороже, чем при зависимом присоединении, но для зданий выше 12 этажей в настоящее время является лучшим вариантом.

Система горячего водоснабжении с независимым присоединением имеет водонагреватель 10, в котором холодная вода водопровода 11 нагревается до необходимой температуры, а затем подается в краны 12.

Рис.3.2. Схемы распределения и подачи тепла

а, б- системы отопления с зависимым и независимым присоединением

в- система горячего водоснабжения с независимым присоединением

Системы теплофикации не исчерпываются рассмотренными выше схемами. Существуют системы воздушного отопления, включая тепловые завесы, системы панельно-лучистого отопления и другие.

Расчет теплофикационной системы может быть проведен следующим образом.

Пример расчета. Определить число двухрядных стальных радиаторов типа 2РСВ1-4, необходимых для отопления жилого помещения при следующих условиях: площадь помещения Fп =96 м2, помещение угловое на третьем этаже девятиэтажного дома 1990 года постройки, расчетная температура наружного воздуха минус 25°С.

Решение. Основные расчётные формулы:

(3.1)

(3.2)

, м2 (3.3)

, Вт (3.4)

, Вт/м2 (3.5)

где Nр -число секций чугунных по (3.1) или стальных по (3.2) радиаторов или конвекторов с кожухом; Fр, Fп, f1 -площадь поверхности соответственно отопительного прибора, отапливаемого помещения и поверхности нагрева одной секции, м2; q0 -удельная плотность отапливающего теплового потока, Вт/м2 [3,4]; qпр, qном -расчетная и номинальная плотность теплового потока отопительного прибора, Вт/м2 [3,4]; Gпр -расход теплоносителя через прибор отопления, кг/с [3,4]; ?tср - температурный напор, равный разности полусуммы температур теплоносителя на входе и выходе отопительного прибора и температуры воздуха помещения, 0С; Qп, Qт - теплопотребность помещения и теплоотдача стояков и подводок, к которым подключен отопительный прибор, Вт; ?, ?, n, p, c- вспомогательные коэффициенты, учитывающие условия работы отопительных приборов [3,4].

Для стальных радиаторов, рассматриваемых в примере, число секций определяется по (3.2). Предварительно по исходным данным, вспомогательным таблицам [3,4] и выражениям (3.3…3.5) находим: Fп=96 м2; q0 =81 Вт/м2; ?=1,5; qном=712 Вт/м2; ?tср =35 0С - соответствует среднему значению данной величины для водяных систем отопления; n=0,25; Gпр=0,2 кг/с; p=0,04; c=0,97; ?1 =1,07; ?2 =1,1; f1 =2,88 м2; Qт =0 - т.к. предполагается, что Qт <<Qп;

, Вт;

, Вт;

, м2 ;

.

Таким образом, принимается 19 секций типа 2РСВ1-4, которые устанавливаются у оконных проемов.

4. Энергетика и биосфера

Энергетика оказывает влияние на биосферу. Добыча топлива приводит к эрозии почвы, изменяет экологию региона. Транспортировка всех видов топлива способна нанести вред природе. Об этом свидетельствуют тяжелые аварии на нефте-газопроводах и хранилищах. Угольная и торфяная пыль покрывает широкие придорожные пространства на пути перевозки твердого топлива. Работа ТЭС приводит к загрязнению воздушного и водного бассейна выбросами двуокиси серы, окиси азота и углерода, радиоактивных элементов, золы. Сброс высокопотенциальной воды, используемой на ТЭС и АЭС для охлаждения конденсата, меняет температурный режим водоемов и биологический баланс в них. Потенциальной возможностью радиоактивного заражения больших территорий опасны АЭС. Кроме того, не решена полностью проблема захоронения отработавшего на АЭС топлива, сохраняющего высокую радиоактивность. Вопрос консервации АЭС после окончания срока их работы остается актуальным. Отрицательное влияние на биосферу оказывают ГЭС. Под их строительство отчуждаются большие территории, затопляются луга, леса, плодородные земли. Переселяются массы людей, что изменяет социальную структуру региона. Искусственные водохранилища резко меняют экосистему огромных районов: в медленно текущей воде изменяется растительный и животный мир, вода заиливается, загрязняется, размножаются бактерии и водоросли, болеет и гибнет рыба и животные. Кроме того, меняется уровень грунтовых вод на прилегающих территориях, происходит их подтопление. Перечень проблем, связанных со строительством ГЭС, можно продолжить.

Передача электроэнергии сопровождается отчуждением территории под строительство ЛЭП, вырубкой просек в лесах. Электромагнитное поле вокруг ЛЭП сверхвысокого напряжения оказывает отрицательное воздействие на живые организмы.

Имеет свои отрицательные экологические последствия нерациональное потребление тепловой и электрической энергии.

Это лишь краткий перечень негативного влияния нерационального использования энергоресурсов. Для предотвращения катастрофических для Земли последствий необходимо широко использовать экологически чистые, возобновляемые источники энергии; проводить глубокую утилизацию всех отходов; использовать более чистые с экологической точки зрения виды топлива; осуществлять всемерную экономию ТЭР; комплексно решать технические, научные, экологические проблемы [9].

5. Энергосбережение

По мнению многих ведущих учёных, большинства независимых исследовательских институтов и аналитических центров постоянное безальтернативное наращивание потребления ТЭР - тупиковый путь развития энергетики. Возрастающие потребности человеческого общества в различных видах энергоносителей в значительной степени должны удовлетворяться за счёт резкого повышения эффективность использования ТЭР. Возможности и пути такого решения проблемы рассмотрены на примере электрической энергии.

Эффективность использования электрической энергии в России далека от оптимальной. Например, по оценкам экспертов расход электроэнергии на один доллар валового продукта на мировом рынке в начале текущего века составлял 0,46 кВт?ч, а в России - 4,7 кВт?ч. Существуют значительные резервы снижения энергоёмкости, в том числе за счёт разработки и внедрения энергосберегающих мероприятий [9,10,11].

Общая структура типовых энергосберегающих мероприятий при использовании электрической энергии представлена на рис.5.1.

Размещено на http://www.allbest.ru/

Рис.5.1. Общая структура типовых энергосберегающих мероприятий

Технические мероприятия. Эти мепроприятия (рис.5.2) включают в себя, прежде всего, поддержание оптимальеных параметров режимов электропотребления и, в частности, оптимизацию электроэнергетических характеристик оборудования.

Размещено на http://www.allbest.ru/

Рис.5.2. Типовые технические энергосберегающие


Подобные документы

  • Потребление тепловой и электрической энергии. Характер изменения потребления энергии. Теплосодержание материальных потоков. Расход теплоты на отопление и на вентиляцию. Потери теплоты с дымовыми газам. Тепловой эквивалент электрической энергии.

    реферат [104,8 K], добавлен 22.09.2010

  • Роль электроэнергии в производственных процессах на современном этапе, метод ее производства. Общая схема электроэнергетики. Особенности главных типов электростанций: атомной, тепловой, гидро- и ветрогенераторы. Преимущества электрической энергии.

    презентация [316,3 K], добавлен 22.12.2011

  • Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.

    презентация [1,2 M], добавлен 15.05.2016

  • Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат [27,7 K], добавлен 16.09.2010

  • Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Полезный отпуск теплоты с коллекторов станции ТЭЦ, эксплуатационные издержки. Выработка и отпуск электрической энергии с шин станции. Расход условного топлива при однотипном оборудовании. Структура затрат и себестоимости электрической и тепловой энергии.

    курсовая работа [35,1 K], добавлен 09.11.2011

  • Расчет потребности в тепловой и электрической энергии предприятия (цеха) на технологический процесс, определение расходов пара, условного и натурального топлива. Выявление экономии энергетических затрат при использовании вторичных тепловых энергоресурсов.

    контрольная работа [294,7 K], добавлен 01.04.2011

  • Описания отрасли энергетики, занимающейся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обзор работы атомной электростанции с двухконтурным водо-водяным реактором. Вклад ядерной энергетики Украины в общую выработку.

    реферат [430,1 K], добавлен 28.10.2013

  • Расчет годовой потребности в электрической энергии и электрических нагрузок потребителей. Расчет годовой потребности района теплоснабжения в тепловой энергии. Выбор турбинного и котельного оборудования. Выработка электроэнергии по теплофикационному циклу.

    курсовая работа [459,3 K], добавлен 04.04.2012

  • Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.

    реферат [253,9 K], добавлен 30.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.