Теплоснабжение жилого района города Орск

Характеристика основных объектов теплоснабжения. Определение тепловых потоков потребителей, расчет и построение графиков теплопотребления. Гидравлический расчет тепловой сети и подбор насосного оборудования. Техника безопасности при выполнении ремонта.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 29.07.2009
Размер файла 4,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3. Постоянство механических свойств;

4. Устойчивость против внешней и внутренней коррозии;

5. Малая шероховатость внутренних поверхностей труб.

В тепловых сетях применяются в основном бесшовные горячекатонные и электросварные трубы, из стали по ГОСТу 8731-14.

Напряжение в стенке трубы, вызванная внутренним давлением у, МПа определяется по формуле:

у = (3.30)

где: Р - внутреннее давление в трубе, Р = 1,6 МПа

dВН - внутренний диаметр, м

г - коэффициент сварного шва, г = 0,8

д - толщина стенки трубы, м

=30 МПа

= 29 МПа

Порядок расчета для всех участков одинаковый, результаты сведены в табл. 7

Схематическое изображение напряжений , действующих в трубе .

у2 у1 у2

у1 - осевые напряжения

у2 -меридиальные напряжения

у3 - радиальные напряжения

у1

у3

Таблица 7 - Расчет и подбор труб

№ Участка

Диаметр трубопроводов

d*д

Расчет напряжения

У, МПа

Марка стали

Допустимое напряжение

[у], МПа

1

273Ч7

32,2

Ст2

115

2, 3,4,5

219Ч6

30

Ст2

115

6

194Ч5

32

Ст2

115

7,8

159Ч4,5

29

Ст2

115

9

133Ч4,5

24

Ст2

115

10

108Ч4

21,7

Ст2

115

11,19,20,22,23,25,26

89Ч3,5

20,3

Ст2

115

12,13,15,16,17,18

76Ч3,5

17,1

Ст2

115

14,21

57Ч3,5

12,4

Ст2

115

3.7.2 Расчет и подбор опор

При сооружении теплопроводов применяются опоры двух типов :

1) подвижные

2) неподвижные

Неподвижные опоры предназначены для фиксации положения теплопровода в определенных точках, а также восприятия усилий, возникающих в местах фиксации под действием температурных деформаций и внутренних давлений.

Неподвижное закрепление трубопроводов выполняют различным конструкциями в зависимости от способа прокладки сетей.

Разделяют: лобовые, щитовые, хомутовые опоры.

Подвижные опоры предназначены для восприятия веса участка теплопровода и обеспечивает свободное перемещение этих участков под действием температурных деформаций

Схема нагрузок на опоры.

Fг Fг

2

1

Fv Fv

1 - труба ; 2 - подвижная опора трубы ; Fv - вертикальная нагрузка, Н;

Fг - горизонтальная нагрузка, Н.

Напряжение, действующие на подвижные опоры Fv, H определяется:

Fv = G x Lф (3.31)

где: G - вес 1 метра трубы (справочные данные), Н/м

Lф - длина участка трубопровода (таблица8) , м

Fv = 1,217 * 10 = 12,17 кН

Определяем горизонтальную нагрузку:

Fг = Fv* м (3.32)

где: м - коэффициент трения м =0.3;

Fг =12,170 * 0.3 = 3,651кН

Все расчеты сведены в таблицу 8

Таблица 8 - Расчет подвижный опор

№ участка

Диаметр трубопровода

d* S, мм

Длина участка, м

Длина между пролетами, м

Количество пролетов

Количество опор

Фактическая

длина Lф, м

Вес трубопровода G, Н/м

Вертикальная нагрузка

Fv, кН

Горизонтальная нагрузка Fг= FvЧ м

1

273Ч7

40

13

4

5

10

1217

12,17

3,651

2

219Ч6

50

11,6

5

6

10

843

8,43

2,53

3

219Ч6

30

11,6

3

4

10

843

8,43

2,53

4

219Ч6

20

11,6

2

3

10

843

8,43

2,53

5

219Ч6

40

11,6

4

5

10

843

8,43

2,53

6

194Ч5

60

10,2

6

7

10

663

6,63

1,99

7

159Ч4,5

40

9,3

5

6

8

503

4,024

1,21

8

159Ч4,5

40

9,3

5

6

8

503

4,024

1,21

9

133Ч4,5

60

8,4

8

9

7,5

391

2,933

0,88

10

108Ч4

40

8,3

5

6

8

277

2,216

0,67

11

89Ч3,5

60

6,8

9

10

6,67

210,9

1,41

0,423

12

76Ч3,5

30

6,2

5

6

6

167,5

1,005

0,3

13

76Ч3,5

25

6,2

5

6

5

167,5

0,838

0,25

14

57Ч3,5

30

5,4

6

7

5

125,5

0,628

0,19

15

76Ч3,5

20

6,2

4

5

5

167,5

0,838

0,25

16

76Ч3,5

30

6,2

5

6

6

167,5

1,005

0,3

17

76Ч3,5

40

6,2

7

8

5,71

167,5

0,956

0,29

18

76Ч3,5

30

6,2

5

6

6

167,5

1,005

0,3

19

89Ч3,5

30

6,8

5

6

6

210,9

1,265

0,38

20

89Ч3,5

15

6,8

3

4

5

210,9

1,055

0,32

21

57Ч3,5

40

5,4

8

9

5

125,5

0,628

0,19

22

89Ч3,5

33

6,8

5

6

6,6

210,9

1,392

0,42

23

89Ч3,5

15

6,8

3

4

5

210,9

1,055

0,32

24

76Ч3,5

34

6,2

6

7

5,67

167,5

0,95

0,29

25

89Ч3,5

20

6,8

3

4

6,67

210,9

1,41

0,42

26

89Ч3,5

30

6,8

5

6

6

210,9

1,265

0,38

3.7.3 Подбор компенсаторов

Компенсация температурных деформаций стальных трубопроводов имеет исключительно важное значение в технике транспорта теплоты.

Отсутствие компенсации вызывает возникновение напряжения в стенках трубопровода, вследствие расширения металла при нагреве.

Компенсаторы располагают между неподвижными опорами. Применяются

П- образные, сальниковые, линзовые компенсаторы. В качестве компенсаторов используют повороты трассы.

Наибольшее распространение на практике вследствие простоты изготовления получили П- образные компенсаторы, их компенсирующая способность определяется суммой деформации по оси каждого из участков трубопроводов.

Подбор компенсаторов осуществляется по величине расчетного теплового удлинения трубопроводов ДL, которые определяются:

ДL =б Ч Дt Ч L (3.33)

где : б - коэффициент температурного расширения = 0.012 мм/м 0 С

Дt - перепад температуры между стенками труб и окружающим

воздухом, оС

Дt = ( ф1 - tор) (3.34)

Дt = 125 - ( - 29 ) = 154 оС

L - расстояние между неподвижными опорами

ДLуч2= 0,012*154*105=194,04 мм

Расчетное тепловое удлинение с учетом растяжки компенсатора ДХ, мм

ДХ=0.5* Дl (3.35)

ДХуч2=0,5*194,04=97,02 мм

Все данные подобранных компенсаторов сводятся в таблицу 9.

В данном курсовом проекте принята подземная прокладка трубопровода, а также П - образные компенсаторы, они применяются при любом методе прокладки трубопровода .

Расчет компенсаторов вводится по таблицам и номограммам.

Таблица 9 Расчет компенсаторов.

№ участка

Диаметр трубопровода

dн х д , мм

Фактическое расстояние

между неподвижными

опорами Lф , м

Тепловое удлинение

Дl, мм

Расчетное тепловое

удлинение ДX , мм

Размер компенсаторов

Сила упругой

деформации Рк т.с

Количество

компенсаторов П , шт

В, м

Н, м

2

219Ч6

105

194,04

97,02

1,75

3,5

0,625

1

4

219Ч6

95

175,56

87,78

1,63

3,26

0,65

1

5

194Ч5

105

194,04

97,02

1,6

3,2

0,41

1

7

89Ч3,5

85

157,08

78,54

1,05

2,1

0,125

1

3.7.4 Расчет тепловых характеристик сети

Для теплоизоляционного слоя при любом способе прокладке следует применять материалы и изделия со средней плотность не более 400 кг/м теплопроводностью не более 0,07.

Теплоизоляционные конструкции тепловой сети предусматривают из следующих элементов: теплоизоляционного материала, арматурных деталей, покровного слоя из алюминиевой фольги.

Прокладка теплосетей бывает надземной и подземной.

Надземная прокладка:

1. Высокая - применяется в тех местах, где она обеспечивает проходы и проезды.

2. Низкая - там, где нет проходов и проездов.

Подземные прокладки:

1. Канальные

· В проходных каналах;

· В полуторных каналах;

· В непроходных каналах.

Канальные прокладки предназначены для защиты трубопроводов от механического воздействия грунтов и коррозионного влияния почвы. Стены каналов облегчают работу трубопроводов, поэтому канальные прокладки допускаются для теплоносителей с Р < 2,2 МПа и t<350 0 С.

2. Безканальные

· Засыпные

· Сборные

· Сборно-литые

· Литые

· Монолитные

В безканальных прокладках трубопровода работают в более тяжелых условиях, так как они воспринимают дополнительную нагрузку грунта и при неудовлетворительной защите от влаги подвержены наружной коррозии. В связи с этим безканальные прокладки рекомендуется применять при температуре теплоносителя t = 1800С.

В данном курсовом проекте принято двухтрубная водяная тепловая сеть, уложенная подземно безканально на глубину h =1,2 м.

Целью расчета является определение удельных тепловых потерь двухтрубного теплопровода и выявление соответствия выбранных условием для нормальной работы тепловой сети.

Необходимо учитывать сопротивление грунта, сопротивление изолированного теплопровода, как подающего, так и обратного.

Гидрозащитный слой накладывается двойным слоем с целью предотвращения проникновения грунтовых вод.

Защитно-механический слой является внешней оболочкой изолированного теплопровода назначением, которого является защите теплопровода от блуждающих токов и от механических воздействий грунта.

Материл теплоизоляционного слоя - маты из стеклянного штапельного волокна на синтетическом связующем марки МТ-35 и МТ-50.

лиз=0,04 Вт/ м 0С [1c,462]

Потери тепла трубопровода через изоляцию Q, Вт определяется по формуле:

Q =qЧ? (3.36)

q- удаленная потеря теплоты, Вт/м

? - длина трубопровода, м

при безканальной земельной прокладке q = (3.37)

t - средняя температура теплоносителя, 0С

t0 - температура окружающей среды, 0С

R- термическое сопротивление подающего трубопровода, м 0С/Вт

Ruз- термическое сопротивление слоя изоляции, м 0С/Вт

Ruз=Ч (3.38)

dн- наружный диаметр трубопровода, м

лиз- коэффициент теплопроводности слоя изоляции, Вт/ м 0С

dиз - диаметр трубопровода со слоем изоляции, м определяется по формуле

dиз= dн+2S (3.39)

где S- толщина стенки изоляции, мм [1c,462]

dиз = 89 + 2Ч50 =189 мм

Ruз1=Ч2,998 м 0С/Вт

Ruз2=Ч 2,553 м 0С/Вт

Термическое сопротивление определяется по формуле:

Rгр = Ч) (3.40)

где лгр- коэффициент теплопроводности грунта, Вт/ м 0С

лгр = 1,75 Вт/ мЧK

h- глубина грунта, мм

h = 1200мм

Rгр1 = Ч) = 0,291 м 0С/Вт

Rгр2 = Ч) = 0,268 м 0С/Вт

Дополнительное термическое сопротивление:

R0=Ч)2 (3.41)

b- расстояние между осями трубопроводов, м

R0 = Ч)2 = 0,169 м 0С/Вт

Удаленные тепловые потери тепла с одного метра в падающем теплопроводе q1, Вт /м определяется по формуле:

q1= (3.42)

где t0- температура грунта, 0С

R1- термическое сопротивление подающего трубопровода, м 0С/Вт

R2- температурное сопротивление обратного трубопровода м 0С/Вт

R1 = Rиз1 + Rгр1

R2 = Rиз2 + Rгр2

R1 = 2,998+0,291=3,289 м 0С/Вт

R2 = 2,553+0,268=2,821 м 0С/Вт

q1 = =35,5 Вт/м

Удельные температурные потери тепла с одного метра в обратном трубопроводе q2, Вт /м определяется по формуле:

q2= (3.43)

q2 = = 19,14 Вт/м

В результате вычислений получили удельные тепловые потери в подающем теплопроводе 35,5 Вт/м, в обратном теплопроводе 19,14 Вт/м ,

следовательно, необходимо увеличить удельные тепловые потери в обратном трубопроводе, так как они значительно меньше тепловых потерь в подающем трубопроводе.

4 Техника безопасности при выполнении ремонтных работ

Слесари-ремонтники выполняют самые различные слесарные и сборочные операции. Они работают на сверлильных и заточных станках, имеют дело с электрооборудованием машин и станков, пользуются грузоподъемными механизмами, начиная с блока и кончая поворотным краном. Слесарь-ремонтник должен четко знать правила безопасности и уметь организовать выполнение ремонтных работ в соответствии с этими правилами.

Запрещается применять прокладки между зевом ключа и гранями гаек, наращивать их трубами или другими рычагами. Раздвижные ключи не должны иметь слабины в подвижных частях.

Перед началом работы:

- привести в порядок спец. одежду;

- убрать лишние предметы с рабочего места;

- проверить исправность инструмента, приспособлений, ограждений и

специальных устройств.

При ремонте (на месте его постоянной работы) потребовать отключения изоляции концов кабеля для провода, питающих электродвигателей станка, при этом на месте, где произведено отключение, должен быть вывешен плакат: "Не включать - идет ремонт".

Ознакомиться с технологическим процессом и технологической картой;

Переносные электрические светильники допускается применять напряжением не выше 36 В. В помещениях особо опасных не выше 12 В.

При выполнении работ ручными инструментами убедиться в его исправности.

Ручной слесарный инструмент должен быть исправным и соответствовать характеру работы. Работать неисправным инструментом запрещается.

Инструмент должен быть правильно насажен и надежно закреплен на деревянной рукоятке. Рукоятки для молотков, топоров, кувалд и т.п. инструментов пропиливаются и расклиниваются завершенным металлическим или дубовым на клею клином.

Слесарный молоток должен иметь поверхность бойка слегка выпуклую, не косую, необитую и без заусенец.

Зубила и крейцмейсели с косыми и обитыми затылками не должны применяться при работе. Для избегания ударов по руке зубила должны быть длиной не менее 150 мм, при чем оттянутая часть его должна равняться 60-70 мм. Острия зубил и крейцмейселей должны быть заточены под углом 65-70°.

Пользоваться напильниками или другим инструментом, имеющим заостренные концы, без деревянных ручек нельзя. Напильники, отвертки и др. должны быть прочно закреплены в ручках.

Гаечные ключи должны строго соответствовать размерам гаек. Отвертывать и завертывать гайку (болт) путем удлинения гаечных ключей вторыми ключами или трубами запрещается.

Все электроинструменты перед началом должны быть тщательно осмотрены и правильность их действия проверена.

Работа с ручным электроинструментом без заземления корпуса категорически запрещается.

Работать на этих инструментах можно только в резиновых перчатках и галошах. При обнаружении напряжения на корпусе электроинструмента работа с ним должна немедленно прекратиться.

Ручки инструмента и вводы питающих электродов должны иметь надежную изоляцию.

При соединении к электросети без соответствующих штепселей категорически запрещается. Подключение инструмента к сети должно производиться гибким (шланговым) кабелем.

При окончании работы или при отлучке с места работы электроинструмент должен быть отключен.

Слесарные верстаки должны быть устойчивыми, прочно и надежно закреплены к полу. Поверхность верстака должна быть чистой и ровной.

В зависимости от роста рабочих у верстаков должны устанавливаться деревянные трапы.

Пожары на территории предприятия и в производственных помещениях возникают в большинстве случаев от небрежного и халатного отношения к хранению воспламеняющихся производственных отходов (масляные тряпки, пакля, бумага) используемых для очистки станков, инструмента и обтирания рук. Поэтому все воспламеняющиеся материалы необходимо хранить в отдельно металлической таре с крышкой и в специально отведенном месте.

Пожары могут возникать так же вследствие самовозгорания твердого минерального топлива, промасленных концов, неисправности электропроводов, и электроприводов. Во избежание пожаров необходимо выполнять все противопожарные мероприятия, курить следует только в специально отведенных местах. Банки с маслом, керосином и бензином необходимо убирать в места, специально отведенные для хранения огнеопасных материалов. Необходимо следить за исправностью электросети. После работы нужно проверить включены ли электрорубильники, электроприборы и осветительные точки, за исключением дежурных электроламп и проверить, нет ли других причин, могущих вызвать пожар.

Проведение сварочных и других огневых работ в помещениях и на территории предприятия допускается в порядке, установленном "Правилами пожарной безопасности при проведении сварочных и огневых работ на объектах народного хозяйства".

Слесари-инструментальщики и рабочие других профессий при пожаре должны быть на своих рабочих местах и выполнять распоряжения руководителей производства. Следует помнить, что при пожаре нельзя выбивать стекла в окнах, так как приток свежего воздуха способствует распространению пожара.

До прибытия пожарных команд тушить пожар можно огнетушителями, водой из пожарного крана или песком, для чего в специально отведенных местах должны быть ящики с песком и настенный щит с шанцевым противопожарным инструментом.

Горячий бензин, керосин, нефть, смазочные масла и другие горючие жидкости следует тушить пенными огнетушителями и песком.

5 Мероприятия по охране окружающей среды

Использование топливных элементов для энергоснабжения зданий.

Топливные элементы представляют собой очень эффективный, надежный, долговечный и экологически чистый способ получения энергии.

Первоначально применявшиеся лишь в космической отрасли, в настоящее время топливные элементы всё активней используются в самых разных областях - как стационарные электростанции, автономные источники тепло- и электроснабжения зданий, двигатели транспортных средств, источники питания ноутбуков и мобильных телефонов.

Топливный элемент (электрохимический генератор) - устройство, которое преобразует химическую энергию топлива (водорода) в электрическую, в процессе электрохимической реакции напрямую, в отличие от традиционных технологий, при которых используется сжигание твердого жидкого и газообразного топлива. Прямое электрохимическое преобразование топлива очень эффективно и привлекательно с точки зрения экологии, поскольку в процессе работы выделяется минимальное количество загрязняющих веществ, а также отсутствуют сильные шумы и вибрация.

При использовании чистого водорода в качестве топлива продуктами реакции помимо энергетической энергии являются тепло и вода (или водяной пар), то есть в атмосферу не выбрасываются газы, вызывающие загрязнение воздушной среды или вызывающие парниковый эффект.

Важное преимущество топливных элементов - их экологичность. Выбросы в атмосферу загрязняющих веществ при эксплуатации топливных элементов настолько низки, что в некоторых районах США для эксплуатации не требуется специального разрешения от государственных органов контролирующих качество воздушной среды.

Достоинство топливных элементов являются также доступность топлива, надежность (отсутствуют движущиеся части), долговечность и простота эксплуатации.

Топливные элементы можно размещать непосредственно в здания, при этом снижаются потери при транспортировке энергии, а тепло, образующееся в результате реакции модно использовать для теплоснабжения или горячего водоснабжения здания.

В перспективе рассматривается возможность использования экологически чистых возобновляемых источников энергии (например, солнечной энергии или энергии ветра) для разложения воды на водород и кислород методом электролиза, а затем преобразование получившегося топлива в топливном элементе. Такие комбинированные установки, работающие в замкнутом цикле, могут представлять собой совершенно экологически чистый, надежный, долговечный и эффективный источник энергии.

Список используемой литературы

1.Е.Я.Соколов Теплофикация и тепловые сети М. Издательство МЭИ,2001

2.В.Е.Козин Т.А.Левин. Теплоснабжение М.: Высшая школа,1980

3.В.С.Шутов Компенсаторы тепловых сетей М. Энергоатомиздат, 1990

4.Ф.С.Центр Проектирование тепловой изоляции электростанций


Подобные документы

  • Характеристика объектов теплоснабжения. Расчет тепловых потоков на отопление, на вентиляцию и на горячее водоснабжение. Построение графика расхода теплоты. Определение расчетных расходов теплоносителя в тепловой сети. Расчет магистрали тепловой сети.

    курсовая работа [1,1 M], добавлен 14.08.2012

  • Построение графиков регулирования отпуска теплоты. Определение расходов сетевой воды аналитическим методом. Потери напора в домовой системе теплопотребления. Гидравлический расчет трубопровода тепловых сетей. Подбор подпиточного и сетевого насоса.

    курсовая работа [112,4 K], добавлен 14.05.2015

  • Определение расхода тепла на отопление и горячее водоснабжение. Построение годового графика тепловой нагрузки. Составление схемы тепловой сети. Гидравлический расчет водяной тепловой сети. Выбор теплофикационного оборудования и источника теплоснабжения.

    курсовая работа [208,3 K], добавлен 11.04.2015

  • Оценка расчетных тепловых нагрузок, построение графиков расхода теплоты. Центральное регулирование отпуска теплоты, тепловой нагрузки на отопление. Разработка генерального плана тепловой сети. Выбор насосного оборудования системы теплоснабжения.

    курсовая работа [2,5 M], добавлен 13.10.2012

  • Описание системы теплоснабжения. Климатологические данные города Калуга. Определение расчетных тепловых нагрузок района города на отопление, вентиляцию и горячее водоснабжение. Гидравлический расчет водяных тепловых сетей. Эффективность тепловой изоляции.

    курсовая работа [146,6 K], добавлен 09.05.2015

  • Определение расчётных тепловых нагрузок района города. Построение графиков расхода теплоты. Регулирование отпуска теплоты. Расчётные расходы теплоносителя в тепловых сетях. Гидравлический и механический расчёт водяных тепловых сетей, подбор насосов.

    курсовая работа [187,6 K], добавлен 22.05.2012

  • Централизованное теплоснабжение промышленного района: расчет тепловых потоков на отопление, вентиляцию и горячее водоснабжение жилых районов и промышленного предприятия, гидравлический расчет всех трубопроводов и тепловой нагрузки на отопление.

    методичка [1,2 M], добавлен 13.05.2008

  • Определение расчетных тепловых нагрузок, схемы присоединения водоподогревателя к тепловой сети и метода регулирования. График регулирования по совмещенной нагрузке отопления и горячего водоснабжения. Гидравлический расчет тепловых сетей района города.

    курсовая работа [329,8 K], добавлен 02.05.2016

  • Расчет нагрузок отопления, вентиляции и горячего водоснабжения зданий жилого микрорайона. Гидравлический и тепловой расчет сети, блочно-модульной котельной для теплоснабжения, газоснабжения. Выбор источника теплоснабжения и оборудования ГРУ и ГРПШ.

    курсовая работа [1,1 M], добавлен 12.03.2013

  • Определение тепловых нагрузок для каждого потребителя теплоты. Вычисление годового расхода теплоты для всех потребителей (графическим и расчетным способом). Гидравлический расчет водяной тепловой сети. Выбор оборудования и принципиальной схемы котельной.

    курсовая работа [1,3 M], добавлен 23.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.