Динамика частиц

Движение несвободной частицы. Силы реакции и динамика частиц. Движение центра масс, закон сохранения импульса системы. Закон сохранения кинетического момента системы. Закон сохранения и превращения механической энергии системы частиц. Теорема Кёнига.

Рубрика Физика и энергетика
Вид доклад
Язык русский
Дата добавления 30.04.2009
Размер файла 32,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Движение несвободной частицы. Силы реакции

Несвободной называется материальная точка, на движение которой (координаты и скорость) наложены некоторые ограничения. Всякий механизм является примером несвободной системы материальных точек.

Связями называются ограничения движений материальных точек, не зависящие от начальных условий движения и системы приложенных сил. Связи делятся на двухсторонние и односторонние ( 1.физический маятник из твердого стержня; 2.математический маятник на нити).

Связи бывают голономные (интегрируемые) и неголономные (они накладывают ограничения на скорость точек, неинтегрируемые).

Связи, ограничивающие перемещения материальных точек, действуют на эти точки посредством сил, называемых силами реакции связей.

В задачах динамики несвободной материальной точки пользуются принципом освобождения от связей. Отбрасывая мысленно связи, включают силы реакций связей в число задаваемых сил. При этом несвободная материальная точка рассматривается как свободная, движущаяся под действием задаваемых сил и сил реакций связей.

Динамика системы частиц. Движение центра масс, закон сохранения импульса системы.

Центром масс (или центром инерции) механической системы называется воображаемая точка, которой приписывается масса всей системы и положение которой определяется радиусом-вектором:

(*)

Скорость и ускорение центра масс (ЦМ) можно получить дифференцированием предыдущей формулы по времени.

Импульсом механической системы называется сумма импульсов точек системы:

Из (*) следует, что (**)

Определим уравнения движения центра масс. Из (**) следует:

где по третьему закону Ньютона.

Итак,

Отсюда получаем закон изменения импульса системы:

По аналогии со случаем одной частицы, можно утверждать, что если проекция силы не некоторую неподвижную ось в любой момент времени равна нулю, то проекция импульса системы или проекция скорости центра масс системы на ту же ось сохраняется. Следовательно, в направлении этой оси центр масс движется равномерно.

В случае изолированной (замкнутой) системы материальных точек =0 (по определению). Отсюда следует, что

Мы получили закон сохранения импульса замкнутой системы.

Центр масс замкнутой системы движется равномерно и прямолинейно, и внутренние силы не могут изменить скорости (импульса) системы.

Закон сохранения кинетического момента системы

Уравнение движения каждой материальной точки системы умножим слева векторно на радиус- вектор этой точки . Учитывая определения момента импульса и момента силы , получаем:

,

где называется кинетическим моментом системы;

Учитывая 3-й закон Ньютона, имеем:
Таким образом, получаем:

Закон изменения кинетического момента системы читается так:

Производная по времени кинетического момента системы равна сумме моментов всех внешних сил, действующих на систему.

Если При помощи секторной скорости это же запишется так:

В случае замкнутой системы Мы получили закон сохранения кинетического момента замкнутой системы. Под действием внутренних сил кинетический момент замкнутой системы не изменяется.

Закон сохранения и превращения механической энергии системы частиц

Умножим уравнение движения материальной точки системы на ее элементарное перемещение , учтем деление сил на внутренние и внешние. Тогда изменение кинетической энергии частицы произойдет за счет работы как внутренних, так и внешних сил:

Для всех частиц системы ( в силу аддитивности энергии и работы):

Дифференциал (изменение) кинетической энергии системы равен сумме элементарных работ внутренних и внешних сил, действующих на частицы системы.

Представим потенциальную энергию системы в виде слагаемых:

где первое слагаемое обусловлено взаимодействием частиц системы между собой, а второе слагаемое -потенциальная энергия частиц во внешнем поле.

Полная механическая энергия системы равна:

E=T+U.

В случае, когда частицы системы находятся в поле потенциальных сил, явно не зависящих от времени dU/dt=0.

С учетом этого условия, после умножения каждого уравнения движения каждой материальной точки системы на ее скорость и суммируя все эти уравнения, получим:

Это уравнение утверждает, что в замкнутой системе материальных точек, находящихся в стационарном потенциальном поле, в процессе движения сохраняется скалярная величина :

Такие системы называются консервативными.

Закон сохранения и превращения механической энергии является частным случаем всеобщего закона природы - закона сохранения и превращения энергии (ЗСПЭ).

Итак, мы имеем 7 уравнений, выражающих законы сохранения и изменения в механической системе:

При определенных условиях они приводят к законам сохранения. В случае замкнутой системы при отсутствии внутренних превращений механической энергии в другие виды энергии, законы сохранения дают 7 первых интегралов и 3 вторых интегралов движения:

т.е. десять классических интегралов механики.

Все законы сохранения были получены из уравнений движения Ньютона. Поэтому они связаны со свойствами пространства и времени, которые постулируются в классической механике.

Сохранение импульса связано с однородностью пространства, в силу которой механические свойства замкнутой системы не меняются при любом параллельном переносе системы как целого.

Сохранение момента связано с изотропией пространства, в силу которой механические свойства замкнутой системы не изменяются при любом повороте системы как целого.

Сохранение механической энергии связано с однородностью времени, в силу которой механические свойства замкнутой системы не меняются при любом «переносе» системы во времени.

Теорема Кёнига

Эта теорема утверждает, что кинетическая энергия механической системы может быть представлена в виде суммы двух слагаемых: кинетической энергии поступательного движения и кинетической энергии движения частиц относительно ее центра масс, т.е.

(*)

Для доказательства этого утверждения воспользуемся известным соотношением (классическая теорема сложения скоростей):

Подставим это соотношение в формулу, определяющую кинетическую энергию системы:

Учитывая, что в СО «Центр масс» суммарный импульс (последнее слагаемое в предыдущей формуле) равен нулю, тотчас же получаем искомое выражение (*).

С помощью теоремы Кёнига полную механическую энергию системы материальных точек можно записать так:

где - внутренняя энергия системы.


Подобные документы

  • Движение центра масс механической системы. Количество движения точки и импульс силы. Теорема об изменении количества движения механической системы. Движение точки под действием центральной силы. Закон сохранения кинетического момента механической системы.

    презентация [533,7 K], добавлен 09.11.2013

  • Измерение полного импульса замкнутой системы. Строение и свойства лазерного наноманипулятора. Направление момента силы относительно оси. Закон изменения и сохранения момента импульса. Уравнение движения центра масс. Системы отсчета, связанные с Землей.

    презентация [264,6 K], добавлен 29.09.2013

  • Понятие механической системы; сохраняющиеся величины. Закон сохранения импульса. Взаимосвязь энергии и работы; влияние консервативной и результирующей силы на кинетическую энергию частицы. Момент импульса материальной точки; закон сохранения энергии.

    курсовая работа [111,6 K], добавлен 06.12.2014

  • Измерение силы тока, проходящего через резистор. Закон сохранения импульса. Трение в природе и технике. Закон сохранения механической энергии. Модели строения газов, жидкостей и твердых тел. Связь температуры со скоростью хаотического движения частиц.

    шпаргалка [126,6 K], добавлен 06.06.2010

  • Кинетическая энергия, работа и мощность. Консервативные силы и системы. Понятие потенциальной энергии. Закон сохранения механической энергии. Условие равновесия механических систем. Применение законов сохранения. Движение тел с переменной массой.

    презентация [15,3 M], добавлен 13.02.2016

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.

    реферат [160,9 K], добавлен 15.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.