Элементы спектрального анализа

Эффект Шпольского. Методы количественного анализа Факторы, влияющие на точность спектрального анализа. Физические процессы, обусловленные двухквантовыми реакциями. Спектрофлуориметрическая установка для спектральных и кинетических измерений.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 06.04.2007
Размер файла 403,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

42

КУРСОВАЯ РАБОТА

Элементы спектрального анализа

Содержание:

Введение.__________________________________________________2

Обзор литературы___________________________________________4

Глава I

§ 1. Эффект Шпольского. Методы количественного анализа._______11

§2. Факторы, влияющие на точность спектрального анализа._______19

§3. Физические процессы, обусловленные

двухквантовыми реакциями.___________________________________25

§3. Двухквантовые фотопроцессы с участием триплетных молекул.__31

§4. Зависимости интенсивности фосфоресценции

при одноквантовых и двухквантовых процессах._______________43

Глава II.

§1. Спектрофлуориметрическая установка для спектральных и кинетических измерений.______________________________________________________46

§2 Методика обезгаживания раствора.__________________________54

§ 3. Зависимость эффективности двухквантовой реакции от мощности возбуждения.____________________________________________________57

§4. Экспериментальные результаты.____________________________61

Заключение.________________________________________________65

Библиография.______________________________________________70

Введение.

Задача изучения механизма фотохимической реакции весьма сложна. Поглощение кванта света и образование возбуждённой молекулы происходит за время . для органических молекул с кратными связями и ароматическими кольцами, представляющими наибольший интерес для фотохимии существует два типа возбужденных состояний, которые различаются величиной суммарного спина молекулы: синглетные и триплетные. Синглетное возбужденное состояние молекула переходит непосредственно при поглощении кванта света. Переход из синглетного в триплетное состояние происходит в результате фотохимического процесса. Время жизни молекулы в возбуждённом - состоянии приблизительно равно ; в - состоянии -от до 20 с. Поэтому многие органические молекулы вступают в химические реакции именно в триплетном состоянии. По этой- же причине концентрация молекул в этом сотоянии может стать столь значительной, что молекулы начинают поглощать свет, переходя на высшие триплетные уровни, в которых они вступают в двухквантовые реакции. Возбуждённая молекула часто образует комплекс с невозбужденной молекулой ли с молекулой . такие комплексы, существующие только в возбуждённом состоянии, называются эксимерами или эксиплексами . Эксиплексы часто являются предшественниками первичной химической реакции - радикалы, ионы, ион-радикалы и электроны вступают в дальнейшие темновые реакции за время, не превышающее порядка .

Время затухания люминесценции, определяемое процессами релаксации энергии в люминесцирующем веществе, зависит от времени жизни в возбуждённом состоянии и варьируется от для разрешённых переходов, до нескольких часов для сильно запрещённых переходов[1].

Время затухания люминесценции также зависит от внешних условий(температуры, концентрации люминесцирующих молекул), которые могут увеличить вероятность безызлучательного перехода. При этом одновременно с уменьшением времени затухания люминесценции уменьшается и квантовый выход люминесценции.

Учёт времени затухания люминесценции необходим при практическом использовании люминесцирующего вещества для люминесцентного о анализа, с временным разрешением в качестве индикаторов электронно -лучевых приборов и светосоставов временного действия.

Изучение кинетики затухания люминесценции и зависимости выхода фотопродукта, а также концентрации триплетов от интенсивности(мощности) возбуждающего излучения при одноквантовых и двухквантовых реакциях является основным методом исследования преобразования и передачи энергии в веществе, в различных химических и биологических процессах[2]. Двухквантовая фотохимия представляет большой интерес для всех областей техники, где приходится иметь дело с фотохимическими процессами в полимерах и стеклах, содержащих ароматические группы или добавки. Лазеры, где активной средой служат органические соединения- одна из важнейших технических областей, где следует принимать во внимание возможность протекания двухквантовых реакций, могущих при определенных условиях повлиять на процессы, идущие в активной среде лазерного прибора[3]. И конечно же следует отметить существенную роль двухквантовых фотопроцессов при спектральном анализе. Важнейшим источником информации о строении и свойствах молекул и твердых тел являются их оптические спектры. В экспериментальных исследованиях триплетных молекул важное место, наряду со спектральными, занимают кинетические методы [4,5,6], то есть изучение процессов заселения и распада возбужденных состояний. Определенные из кинетических экспериментов параметры являются характеристиками, как самих молекул, так и их взаимодействия между собой и с матрицей, в случае примесных центров. Особенно важным является то, что параметры кинетики (время накопления и время дезактивации возбужденных состояний), определяются константами скоростей соответствующих переходов и, следовательно, позволяют извлечь информацию, о путях дезактивации триплетно возбужденных молекул. Этим обусловлена необходимость использования кинетических методов для установления и изучения механизмов дезактивации триплетных состояний органических молекул в твердых матрицах при их сенсибилизированном возбуждении.

Одним из направлений исследования межмолекулярных взаимодействий в конденсированных средах является изучение влияния температуры на люминесцентные характеристики центров излучения. Сведения, получаемые при этом, необходимы также для определения констант скоростей процессов, регулирующих накопление молекул в возбужденных состояниях и их деградацию. Поэтому в некоторых случаях нельзя не учитывать двухквантовые процессы, которые могут существенным образом повлиять на результаты исследований.

В этой работе будет исследоваться эффективность двухквантовой реакции от интенсивности возбуждения. В частности будет осуществлена попытка найти общий вид зависимости скорости образования фотопродукта от интенсивности возбуждающего излучения.

Обзор литературы.

Достаточно хорошо известны четыре основных элементарных процесса, возникающие при взаимодействии света с атомом: это фотоионизация и фотовозбуждение атома, рэлеевское и рамановское (комбинационное) рассеяние света атомом. При небольшой интенсивности света все эти процессы носят однофотонный характер, они происходят в результате поглощения в элементарном акте одного фотона. Именно эти элементарные микроскопические процессы лежат в основе тех макроскопических закономерностей, которые определяют взаимодействие света небольшой интенсивности с веществом. В качестве примеров можно указать на "красную границу" при фотоионизации, на линейчатые спектры поглощения, на закон Бера, определяющий линейное поглощение света веществом, и т.д.

В том случае, когда интенсивность света велика, помимо указанных выше однофотонных процессов, существенную роль начинают играть и многофотонные процессы. Многофотонными аналогами основных однофотонных процессов являются многофотонная ионизация и многофотонное возбуждение атома, многофотонное рэлеевское рассеяние света (возбуждение высших оптических гармоник падающего излучения) и многофотонное рамановское рассеяние света (гиперрамановское рассеяние).

Схема фотопроцессов в молекуле красителя при наносекундом двухфотонном возбуждении

Все эти процессы происходят в результате поглощения в элементарном акте нескольких фотонов. В каждом конкретном случае число поглощаемых фотонов определяется исходя из закона сохранения энергии при переходе между начальным и конечным состояниями и энергии фотона (частоты излучения). Так как в каждом элементарном акте поглощается несколько фотонов, то могут происходить и более сложные многофотонные процессы, в которых закон сохранения энергии выполняется в результате ряда последовательных процессов поглощения и испускания фотонов, в том числе и фотонов различной энергии.

Поэтому в последнее десятилетие наметилась устойчивая тенденция изучения двухквантовых фотопроцессов в различных системах.

В статье Делоне М.Б., говорится о том, что при большой интенсивности света, взаимодействующего с веществом, проявляются многофотонные процессы: многофотонное возбуждение, многофотонная ионизация вещества и многофотонное рассеяние света веществом.Эти процессы аналогичны хорошо известным однофотонным процессам. Рассмотрению основных черт многофотонных процессов посвящена данная статья.

Много работ посвящены использованию и исследованию двухквантовых фотопроцессов в различных областях техники и прикладных дисциплинах.

В 1995 году Дэнк, Стpиклеp и Вебб предложили использовать двухфотонное возбуждение флуоресценции для получения биологических изображений. В последующее десятилетие флуоресцентная микроскопия с многофотонным возбуждением нашла множество применений в биомедицинских исследованиях, в том числе многие ученые нашего государства занимались этой проблематикой. Е.Ю. Клейменов, В.С. Иванов, Н.А. Крюков

 соих работах теоретически исследовали влияние кинетики фотопроцессов в молекулах красителей, используемых для маркировки биологических молекул, на разрешение флуоресцентного микроскопа с двухфотонным возбуждением флуоресценции наносекундным лазером. Рассмотренная схема фото-процессов в молекуле красителя при двухфотонном возбуждении, влияющих на разрешение микроскопа, приведена на Рис1.

В качестве меры аксиального разрешения флуоресцентного микроскопа использовалась полуширина кривой дифференциального z-отклика (DZR - зависимость интенсивности флуоресценции из тонкого поперечного (по отношению к оптической оси) слоя исследуемого образца от расстояния между этим слоем и геометрическим фокусом объектива конфокального флуоресцентного микроскопа). Результаты модельных расчетов кривых дифференциального z-отклика приведены на pис.2.

Кривые свидетельствуют о том, что для реальных молекул красителей уже при небольших мощностях возбуждающего излучения, эффект насыщения двухфотонного поглощения и эффект светового тушения флуоресценции за счет поглощения третьего кванта возбуждающего излучения молекулой, находящейся в низшем возбужденном синглетном состоянии, могут существенно ухудшить разрешение микроскопа. Предложены подходы к решению вопросов уменьшения роли таких эффектов.

В связи с бурными темпами НТП в последние годы все активнее в жизнедеятельность человека внедряется лазерная техника. Везде от медицины до судостроения лазеры стали удобными и надежными помощниками человека. В первую очередь это связано с фундаментальными исследованиями, по этой тематике, проведенные в нашей стране во второй половине прошлого столетия академиками Басовым, Прохоровым и др., а также американским ученым Таунсом . Сейчас спектр исследований очень широк: новые типы лазеров, вещества активной среды, улучшение параметров, интеграция с различными программными комплексами и т.д. исследуются и двухквантовые механизмы, протекающие под воздействием лазерного излучения, а также процессы, происходяцие в активной среде лазера.

В работе Амбарцумян Р.В. исследуется экспериментальное определение доли захватываемых частиц и уровня возбуждения при многофотонном возбуждении молекул ИК лазерным излучением.

Чернов П. В. в своей статье исследует фотохимию примесных молекул при двухквантовом возбуждении свободного объема полимерных оптических материалов. Показаны пути улучшения свойств активной среды лазеров на красителях.

Исследователи Корнельского университета в журнале Science от 30 мая, 2003 г. опубликовали статью о применении квантовых точек для 3D визуализации биологических структур с помощью многофотонной флуоресцентной микроскопии.

Многофотонная флуоресцентная микроскопия используется при диагностики объемных микроструктур с субмикронным пространственным разрешением на основе многофотонной флуоресценции. Основные области применения: считывание информации с трехмерного носителя, мониторинг объемной лазерной модификации материалов и диагностика биотканей с субклеточным разрешением.

Сулимов В.Б., Соколов В.О., Дианов Е.М. провели исследования воздействия УФ- лазерного излучения азотного лазера на функциональную активность иммунокомпетентных клеток методом хемилюминесценции цельной крови. Исследования показали что облучение в режиме жесткой фокусировки излучения приводит к выраженной модуляции функциональной активности иммунокомпетентных клеток, которая выражается в зависимости эффекта действия от исходной активности клеток и в целом носит нормализующий характер. Проведенные исследования показали, что основной механизм следует искать не в фотохимических изменениях, а в фотофизических процессах происходящих в системе NADPH-(Субстрат) отвечающей за реакцию фазоцитоза. Вероятными фотофизическими процессами могут выступать двухквантовая ионизация NADPH, фотоабляция фермент-субстратного комплекса.

Мешалкин Ю.П. исследует сечение двухфотонного поглощения ароматических аминокислот и белков. В статье приводятся результаты по эффективности поглощения света при переходе от одноквантового возбуждения к двухквантовому на конкретных органических системах. При двухквантовом механизме поглощение света резко усиливается и это служит хорошим катализатором для многих биопроцессов.

Весьма интересна с точки зрения практического применения лазера, и возбуждаемого с помощью него люминесценция в генетических структурах

,проходящая также по двухквантовому механизму, работа Агальтсова А.М., Гаряева П.П., Горелик В.С., Щеглова В.А.

Как говорилось выше очень много исследований по двухквантовым фотопроцессам связаны с лазерной техникой.

Кузнецова Р.Т., Копылова Т.Н., Дегтяренко К.М., Сергеев А.К., Майер Г.В., Афанасьев Н.Б. в своих статьях исследуют фотохимические и фотофизические процессы в лазерно-активных средах диапазона 400 нм. Причем многоие из из них рассматриваются как двухквантовые(фотоионизация ароматических углелеводородных соединений с выбросим электрона в среду). Показано что при определённых условиях процессы могут менять свой характер, переходя от двухквантового к одноквантовому и наоборот.

Лохмана В.Н., Макарова Г.Н., Рябова Е.А. показана возможность разделения изотопов углерода методом ИК многофотонной диссоциации молекул CF2HClс разделительным реактором в резонаторе лазера как это влияет на мощностно- временные характеристики газового лазера.

Босый О.Н., Ефимов О.М. вывели и исследовали закономерности и механизм эффекта накопления в условиях многофотонной генерации центров окраски.

Также рассматривалась работа Акманова А.Г., Жданова Б.В., Шакирова Б.Г. , где они исследовали двухфотонное поглощение и оптическое ограничение ИК излучения в антимониде галлия n-типа, и связанные с этим явлением преимущества и возникающие сложности в полупроводниковых лазерах.

Глава I.

§1. Эффект Шпольского. Методы количественного анализа.

В настоящее время огромное значение в физико-химических исследованиях приобрели спектральные методы. Важное практическое значение имеют разнообразные спектрально-аналитические методы, к числу ко-торых относится молекулярный спектральный анализ.

Широкие возможности для развития молекулярного спектрального анализа появились благодаря открытию в 1952 г. профессором Э. В. Шпольским с сотрудниками эффекта тонкой квазилинейчатой структуры электронных спектров многоатомных молекул [6]. Такие спектры получили название квазилинейчатых, а эффект расщепления молекулярных спектральных максимумов в узкие квазилинии--«эффек-та Шпольского».

Смысл эффекта, открытого Э. В. Шпольским, в том, что иссле-дуемые молекулы, внедряясь в кристаллическую решетку соответ-ствующим образом подобранной матрицы, при низкой температуре находятся в состоянии, к которому применима модель «ориенти-рованного газа». В этом состоянии молекулы лишены возможно-сти свободно вращаться, находятся на больших расстояниях друг от друга, не могут взаимодействовать между собой, а из-за нейт-ральности растворителя и с молекулами последнего. Все это сни-мает сильные взаимодействия, вызывавшие размывание спектра, И благодаря этому молекула обнаруживает свои электронные и колебательные состояния [7, 8].

Такой эффект достигается растворением в одном из специально подобранных растворителей и последующим замораживанием при температуре кипения азота (t = --196°С) или более низкой.

Растворитель должен при замерзании легко кристаллизоваться,
быть нейтральным по отношению к внедренным молекулами оптически прозрачным в той области, где поглощают и излучают
внедренные в него молекулы. Этим качествам очень хорошо удовлетворяет класс нормальных парафиновых углеводородов от н-пентана до н-декана и выше [7, 8].

В последнее время диапазон растворителей, в которых соблю-даются описанные выше условия, значительно расширился, вклю-чив в себя и высшие спирты и в некоторых случаях даже такие соединения, как дибензиламиноэтанол [9]. Кристаллическая решетка, в которую внедряются исследуемые молекулы, является для них жесткой матрицей, куда молекулы помещаются, по-видимому, без существенной деформации, но и без излишней свободы [8, 11]. При этом было выяснено, что если для соединений линейной структуры (нафталин, антрацен и т. д.) необходима близость линейных размеров у молекул раст-ворителя и примеси [12--14], то для более сложных молекул такое соответствие не является необходимым условием возникновения квазилинейчатого спектра [15, 16]. Решающая в ряде случаев роль геометрии (аналогии размеров и формы примесных молекул и молекул растворителя) наталки-вает авторов [10, 13] на мысль, что характер внедрения примес-ной молекулы в кристаллическую решетку растворителя похож на химические системы, называемые соединениями включения [18], где примесные молекулы могут находиться или в полости отдель-ной молекулы растворителя (но для этого требуются относительно большие молекулы последнего, молекулярный вес которых боль-ше 1000) или в полости, образованной в пространственной ре-шетке растворителя в результате совместного расположения многих маленьких молекул [10,11, 14]. Такие соединения образуют однородную систему, где молекулы объединены не химическими, а ван-дер-ваальсовыми силами связи. В первую очередь здесь важна чисто пространственная конфигурация компонентов соеди-нения.

Способность растворителя при замерзании кристаллизоваться имеет большое значение для получения таких дискретных спект-ров, так как в растворителях, дающих при замерзании стеклообразную массу (например, в спиртах или их смесях), эффект столь резкого сужения спектральных полос не наблюдался [19].

При соблюдении всех этих условий удалось получить спектры люминесценции и поглощения, где вместо обычных диффузных по-лос шириной ~ и более наблюдается большое число резких и узких (~) линий [20,21]. Такие спектры по-лучили название квазилинейчатых.

Рядом работ было доказано [22--24, 25], что эти спектры при-надлежат молекулам растворенного вещества, а не каким-нибудь кристаллическим агрегатам.

Так как примесная молекула находится в кристаллической ре-шетке растворителя, то последняя, очевидно, должна оказывать свое влияние на примесные молекулы. В квазилинейчатых спект-рах это проявляется в сдвиге всего спектра на по сравнению со спектром свободных молекул газа. «Сжатие» моле-кулы в кристаллической решетке растворителя должно привести к тому, что вместе с исчезновением трансляционных (связанных с взаимодействием молекул между собой) и вращательных степе-ней свободы (движений) возникают коллективные колебания ре-шетки. Все это должно привести к тому, что когда возбуждается примесная молекула, часть энергии ее электронного перехода превращается в колебания решетки растворителя. Это должно размыть спектр и сдвинуть головные линии в спектрах поглощения и излучения друг относительно друга. В парафиновых раствори-телях мы наблюдаем резкий квазилинейчатый спектр в твердом кристаллическом теле и строго резонансный характер головных линий этого спектра.

Для того чтобы объяснить это явление, Ребане и Хижняков в своей работе [26] обратили внимание на аналогию между ме-ханизмом возникновения в твердом кристаллическом теле -линий с естественной шириной в эффекте Мессбауэра и узких линий в оптическом квазилинейчатом спектре в эффекте Шпольского. Тео-ретическое обоснование возможности получения таких спектров и оптической области приведено в работах Трифонова [27], Ре-бане и Хижнякова [28], где рассмотрены взаимодействия при-месной молекулы с основным кристаллом и авторы пришли к выводу о возможности безфононных электронных переходов, которые и приводят к появлению квазилинейчатых спектров.

Во многих случаях каждому электронно-колебательному переходу в квазилинейчатых спектрах соответствует целая группа линий. Структура ее не изменяется вдоль всего спектра флуоресценции или фосфоресценции, но очень сильно зависит от растворителя и условий кристаллизации раствора. Такие группы получили название мультиплетов. Так, например, квазилинейчатые спектры коронена и пирена в н-гексане состоят из дублетов [29, 25,30], а «мультиплеты» 3,4-бензпирена в н-гептане состоят из 4 ком-понентов [29,7]. В последнее время в качестве наиболее ве-роятной была принята гипотеза [7], согласно которой разные компоненты мультиплета принадлежат разным пространственно разделенным примесным молекулам, отличаю-щимся характером взаимодействия с кристаллической решеткой растворителя. В этом случае их спектры сдвинуты в шкале частот друг относительно друга на определенные расстояния. Однако очень большая сложность мультиплетов, наблюдаемых в спектрах при 4°К [7], наличие в области перехода в спектрах ряда молекул нерезонансных линий [30, 31, 7], существенное различие в характере мультиплетов в спектрах родственных соединений, имеющих одинаковые геометрические размеры и форму в одном и том же растворителе [31, 32], заставили авторов работы [29] бо-лее детально исследовать вопрос о природе «мультиплетов» в спектрах Шпольского. В этой работе приводятся эксперименталь-ные факты, свидетельствующие о том, что по крайней мере часть линий сложных мультиплетов может быть связана с одним и тем же излучающим центром, с наличием у него близко расположен-ных уровней. Последнее авторы связывают, в частности, со сня-тием вырождения по симметрии в результате воздействия на мо-лекулярные электронные уровни внешнего кристаллического поля или взаимодействия внутримолекулярных электронных и колеба-тельных движений. Методы анализа, основанные на использовании квазилинейчатых спектров, нашли широкое применение в онкологии, гигиене и санитарии в связи с проблемой, профилактики канцерогенных воздействий [6, 7,34], в геохимии при изучении органического вещества земной коры, сопро-вождающего различные геологические процессы, в том числе связанные с образованием полезных ископаемых [7], на производстве при исследовании изменений углеводородного состава в процессе термиче-ской обработки искусственных топлив и пеков [ 33, 7] и как метод контроля степени чистоты вещества [35].

Такое широкое применение стало возможным благодаря разработке методов качественного и количественного [7, 6] анализов сложных молекул по квазилинейчатым спектрам их люминесценции.

Очевидно, первое количественное применение (полуколичественное) ,используя квазилинейную флуоресцентную эмиссию успешно было выполнено Богомоловым и др.[7] , когда был достигнут полуколичественный метод анализа 3,4 бензпирена (в н-гексане при 77 К),базировавшийся на числе линий, присутствующих в спектре, при концентрации 21 линия были видимы, несмотря на nо, что только 4 линии наблюдались при концентрации. Ильина и Персонов предложили метод для определения перилена в ароматический фракции масел и битумах[36]. Определение было выполнено по оценке содержания перилена в образцах, сравнивая с флуоресцентным спектром искусственных смесей, сделанных из подобного масла о прибавленной хорошо известной концентрацией перилена.

Муель и Лакрос[50], работая в лаборатории Пастера ( Институт Радия, Париж), описали первые количественные методы анализа для 3,4 бензпирена (при 83 К) в н-октане, когда было предложено использование методики стандартной примеси, обычно используемой в пламени фотометрии. Используя этот метод, Муель и Лакрос получили точность ±10 % и предел обнаружения для концентрации . Метод стандартной примеси был использован, чтобы избежать изменений, обусловленных самопоглощением, эффект для чужих ионов или молекул и изменение интенсивности обусловлены изменением в скорости замораживания, В этой прекрасной работе также было исследовано практическое применение.

Эта работа вскоре была завершена Дикуном [34], который в 1961 г изобрёл метод для определения 3,4 бензпирена при 77 К, используя 1,12 бензперилен как внутренний стандарт и н-гексан как раствор. Пропорциональность между линиями наблюдалась только при низких концентрациях ( меньше чем или?), и относительная ошибка, для 15 анализов была ± 8%. Этот метод был сравнён со спектрометрическим методом поглощения и заметное улучшение в чувствительности ( 100 раз ) наблюдалось с новым методом Автор также заметил, что наличие 1,12 бензперилена , который обычно присутствует в такой же хромотографической фракции не мешает, как обычно случается в методе поглощения.

Персонов[38] независимо изобрёл подобный метод внутреннего стандарта в н-октане при 77 К. Антрацен, пирен, перилен, 1,12 бензперилен и коронен были опробованы как внутренние стандарты. перилен и коронен дали фактически отчётливую флуоресценцию. Перилен, однако, имеет большое число интенсивных поглощают групп, которые в результате искажают соответствующую часть флуоресцентного спектра 3,4 бензпирена, коронен был попользован, как внутренний стандарт Персонов также наблюдал, что отношение интенсивностей () было чрезвычайно чувствительно к изменениям в скорости замораживания также, если образцы имели флуоресценцию тушителей, которая видоизменяла интенсивности 3,4 бензпирена и коронена в различные стороны, было замечено что это приводило к изменениям в отношении интенсивности для их линий. Используя метод внутреннего стандарта, Прохорова и Знаменский[39] обнаружили концентрацию в парафине. Успехи и трудности, связанные с аналитическим применением эффекта Шпольского были описаны в 1962 году Шпольским и Персоновым[40].

Эйчхоф и Кёхлер[49] исследовали люминесцентные характеристики антрацена, 3-метилколантрацена и 3,4 бензпирена при 79 К в н-гептане; в последнем из них была достигнута зависимость интен-сивности от концентрации. Относительная ошибка была 6,4 % при концентрации , предел обнаружения был .

Персонов и Теплицкая[41], используя метод абсолютных интенсивностей и метод примесей определили 3,4 бензпирен, перилен и 1,12 бензперилен в органических материалах из минералов и горных пород. Используя настоящий образец, сравнение было сделано между прямым методом и методом стандартных примесей и были получены очень похожие результаты для перилена и 1,12 бензперилена .

Персонов и Теплицкая ,однако, поднимают вопрос о том, что если образец известен не как тушитель флуоресценции и точные требования не налагаются на величину ошибки, анализ может быть в таких случаях проведен, используя метод сравнения со стандар-тным раствором правильнее, чем со средним числом большинства точных методов стандартных примесей[41].

Ягер и Лугрова[42] после исследования синтетических смесей, также показали, что количество 3,4 бензпирена, найденное после анализов, было всегда меньше, чем количество прибавленное ( -7 -10 % ). Авторы объясняют этот эффект ,как причину интерференции других компонентов, присутствующих в смеси. Также было найдено, что высоконцентрационная граница для анализа 3,4 бензпирена в конечном растворе была , будучи оптимальной при типичном значении .

Данильцева и Хесина [43] установили метод для анализа, 7,12-демитилбензоантрацена в н-октане при 77 К. Предложенный метод был комбинацией двух методов стандартной примеси и внутреннего стандарта (комбинированный метод): 3,4,5,6,7-трибензопирен (ТВР) был выбран внутренним стандартом, так как это соединение имеет отчётливый квазилинейный флуоресцентный спектр в н-октане и, следовательно, не искажает аналитику квазилинейного испускания.

Дикун и др [34] сравнили комбинированный метод, описанный выше с методом внутреннего стандарта и методом примесей для анализа 3,4 бензпирена в н-октане при 77 К. 1,12 бензперилен, был использован как стандарт для методов внутреннего и комбинированного. Это сравнение показало, что большая разница в результатах была получена, когда был исполь-зован метод примесей (+ 29 %),и похожие результаты ( 8 - 10 %) были получены, когда был использован или метод внутреннего стандарта, или комбинированный метод.

Дикун со своими сотрудниками, однако, поднимают вопрос о том, что когда анализируются реальные образцы, существует возможность, что они включают другие вещества, которые могут тушить флуоресценцию излучаемых соединения. Согласно Персонову и Теплицкой[41] такие соединения хотя они не представляют реальной проблемы ни в ком-бинированном методе ни в методе примесей - могут мешать в методе внутреннего стандарта. Количественные анализы для 3,4 бензпирена, сделанные Дикуном и его сотрудниками, в различных образцах, используя внутренний стандарт или комбинированный метод, показывают, что ре-зультаты представляют расхождения, но не было возможности прийти к определённому выводу, что примеси, которые присутствуют в образцах были ответственны за различия[34]. Эти сотрудники сделали вывод, что опасность тушения веществами, которая появляется в методе внутреннего стандарта сильно переоценивается Персоновым и Теплицкой.

Из всего вышесказанного ясно, что методы спектрального анализа нашли самое широкое применение и в медицине и в нефтеперерабатывающей промышленности и в фундаментальных исследованиях. Поэтому важную роль при использовании спектров органических соединений играет их достоверность и точность, а это не всегда возможно в силу многих причин.

§2. Факторы, влияющие на точность спектрального анализа.

Резкие квазилинейчатые спектры люминесценции (и поглоще-ния) обладают рядом особенностей, которые позволяют эффектив-но использовать их в аналитических целях. Эти особенности квазилинейчатых спектров лю-минесценции сделали их наиболее тонким и точным современным аналитическим методом и указывают на целесообразность и перспективность применения его для спектрохимического анализа многокомпонентных природных смесей[6,7].

1. Специфичность

Тонкость, многочисленность и индивидуальное расположение полос в спектре люминесценции каждого углеводорода позволяют осуществить достоверную идентификацию.

2. Селективность

Позволяет обнаруживать индивидуальные соединения в слож-ных смесях, когда доля вещества так мала, что спектр флуорес-ценции при обыкновенной температуре дает лишь слабый намек или вообще не дает указаний на его присутствие.

3. Чувствительность

Чувствительность обнаружения индивидуального углеводоро-да в «чистых» растворах н-парафинов достигает [7]. Т. е. превосходит на 2--3 порядка чувствительность обыч-ного люминесцентно-спектрального анализа при комнатной тем-пературе и намного превосходит чувствительность методов коле-бательных спектров.

С помощью квазилинейчатых спектров возможно определение отдельных индивидуальных органических соединений (одновременно 4--5 веществ) в многокомпонентных смесях даже тогда, когда они входят в смесь в виде следов и анализ другими методами не-возможен.

Анализ имеющихся экспериментальных данных показывает, что харак-тер квазилинейчатого спектра зависит от условий образования смешан-ного кристалла (растворитель -- вещество). Оптические свойства обра-зовавшегося поликристаллического раствора определяются свойствами растворителя, условиями кристаллизации раствора, наличием люминесцирующей примеси, характером взаимодействия между ними и содер-жанием в растворе других компонент.

Растворители. Для получения дискретных спектров флуоресценции и поглощения ароматических углеводородов удобными растворителями оказались нормальные парафины, хотя в ряде исследований была пока-зана пригодность для этих целей других жидкостей, кристаллизующихся при замораживании: Для каждого соединения удается подобрать один или группу н-парафинов, в которых условия для возникновения квази-линейчатых спектров наиболее благоприятны. В частности, для соедине-ний с линейной структурой (полиацены, полифенилы, дифенилполиены и т.д.) наиболее резкие спектры наблюдаются в тех случаях, когда ли-нейные размеры молекул растворителя близки к линейным размерам молекул примеси. Меняя растворитель, удается выделить квазилиней-чатые спектры различных компонент смеси.

Концентрации. Выбор оптимальных концентраций исследуемого вещества в «чистом» растворителе диктуется следующими соображени-ями. Как отмечалось ранее в ряде работ [6,7], квазилинейчатый характер имеют спектры молекул, находящихся в замороженном раст-воре в состоянии так называемого «ориентированного газа», т. е. для этого необходимы небольшие концентрации примесных молекул. Уве-личение концентрации приводит к возникновению взаимодействия меж-ду молекулами примеси, к миграции энергии между раз-личными компонентами сложной смеси и, возможно, к образованию аг-регатов примесных молекул. Это в свою очередь способствует «размы-ванию» спектра и появлению полос в более длинноволновой области.

Существуют данные о влиянии примеси и на характер кристалличе-ской структуры матрицы, возникающей при замораживании. Под влия-нием высоких концентраций растворенного вещества в некоторых уча-стках происходит перестройка матрицы -- растворителя, что приводит к изменению характера квазилинейчатого спектра растворенных молекул.

Скорость охлаждения. В ряде работ [7, 32] показано, что характер и структура квазилинейчатых спектров сильно зависят от скорости ох-лаждения раствора. Обычно кюветы или пробирки с исследуемым раствором быстро погружаются в жидкий азот. В таком случае говорят о быстром замораживании. Однако скорость замораживания раствора существенно зависит от объема и формы кюветы. Можно предположить, что наружные слои раствора замерзают довольно быстро, а внутренние могут промерзать значительное время. В результате условия образова-ния кристаллического раствора в разных частях кюветы неодинаковы, что сказывается на характере спектра излучения и еще сильнее на спектре поглощения. В тонких слоях (100 мкм и меньше) кристаллизация проходит быстрее, и это может приводить к существенным спект-ральным изменениям[37].

Влияние кислорода. Известно, что все растворители при комнат-ной температуре и атмосферном давлении содержат то или иное количе-ство растворенного в них кислорода. Так, например, в н-гексане при этих условиях растворено кислорода. Известно так-же, что люминесценция полициклических ароматических углеводородов в растворе н-парафинов при комнатной температуре подвержена силь-ному кислородному тушению. Например, люминесценция 3,4-бензпирена и 1,12-бензперилена в н-гексане при комнатной температуре тушится кислородом в 10 раз. Однако при понижении температуры раствора до 77°К растворенный в н-гексане кислород перестает оказывать влияние на интенсивность квазилиний флуоресценции этих соединений. Но при замораживании раствора в открытой кювете происходит силь-ная конденсация газообразного кислорода из окружающего воздуха, что приводит к частичному падению интенсивности люминесценции в результате воздействия конденсированного кислорода на люминесцирующие молекулы .

Условия возбуждения. Для возбуждения люминесценции образца необходимо, чтобы длина волны возбуждающего света попадала в об-ласть поглощения исследуемой молекулы. Выбор оптимальных условий возбуждения для данной смеси можно производить также с помощью спектров возбуждения. Возбуждение свечения исследуемого раствора длинами волн, соответствующими наиболее интенсивным полосам спектра возбуждения, будет давать наиболее интенсивные и частично дифференцированные спектры люми-несценции сложной смеси.

Мультиплетность. Квазилинейчатые спектры обладают своеобраз-ной особенностью: в целом ряде случаев каждому электронно-колеба-тельному переходу в спектре соответствует группа линий, повторяющих-ся часто по всему спектру и получивших название мультиплетов. Одной из причин возникновения мультиплетов является наличие нескольких типов излучающих центров,- находящихся в различных локальных усло-виях, что приводит к смещению электронных уровней, в то время как расположение колебательных подуровней при этом остается неизмен-ным . Объяснение происхождения мультиплетной структуры спектров не исчерпывается гипотезой разных центров. Некоторые из компонент мультиплета могут быть связаны с наличием близко рас-положенных уровней у одного и того же излучающего центра [7].

Учет влияния примесей в растворителе. Растворители, используе-мые для получения квазилинейчатых спектров, могут содержать как растворимые, так и нерастворимые примеси. Растворимые приме-си могут обладать собственной люминесценцией и могут выступать в роли так называемого внутреннего фильтра, когда они поглощают или возбуждающий свет, или люминесценцию исследуемых молекул. При высоких концентрациях такие примеси могут участвовать во всевозмож-ных процессах миграции энергии между компонентами раствора, а так-же способствовать перестройке матрицы растворителя и т.д.

На нерастворимых и плохо растворимых примесях при обычном способе замораживания раствора, как на центрах кри-сталлизации, может происходить быстрый рост кристаллов н-парафина, и тем самым могут создаваться условия, как бы имитирующие ускорен-ное замораживание со всеми его преимуществами. Роль таких примесей становится еще более эффективной, если они могут служить акцептором - энергии возбуждения агрегатов исследуемых молекул в случае высокой концентрации последних. Попадание примеси в агрегации и кристаллы исследуемых молекул приводит к исчезновению диффузных спектров агрегатов, наложенных на квазилинии, что значительно облегчает ана-лиз. При проведении анализа иногда бывает целесообразно специально вносить такие примеси в исследуемую смесь [31,44, 41].

Влияние предварительного облучения. Известно, что некоторые[6] ор-ганические соединения под влиянием облучения ультрафиолетовым све-том испытывают фотохимические превращения. Поэтому во время ана-лиза сложных смесей таких соединений при рассмотрении их растворов под ультрафиолетовой лампой при комнатной температуре или во время установки ампулы (кюветы, пробирки) с раствором в дьюаре с жидким азотом облучение исследуемого объекта необходимо свести к минимуму, т. е. рассматривать под УФ-лампой минимальное время и устанавливать ампулу в дьюаре при перекрытом пучке ультрафиолетового излучения. Аналогично время рассмотрения хроматограмм на ко-лонке, в тонком слое и на бумаге под ультрафиолетовыми лучами необ-ходимо также свести к минимуму. Фотохимические превращения в растворах сложных углеродистых смесей могут происходить и под воздействием рассеянного дневного света. В работе Р..И. Персонова [31] описано, как в растворе перилена в хлороформе после 15-минутного облучения рассеянным дневным све-том обнаружилось присутствие не перилена, а неизвестного соединения, квазилинейчатый спектр люминесценции которого сдвинут по отноше-нию к спектру перилена в более длинноволновую сторону. Автор пред-полагает, что этот спектр мог принадлежать одному из хлор-производ-ных перилена, образовавшемуся в хлороформе под воздействием днев-ного облучения. Под воздействием возбуждающего излучения в исследуемом веществе могут возникать различные процессы, приводящие к ошибкам в анализе. Остановимся на процессах, носящих двухквантовый характер.

§3. Физические процессы, обусловленные двухквантовыми реакциями

Рассмотрим двухквантовые фотопроцессы, протекание которых в молекулярных системах может привести к усложнению анализа продукта с помощью эффекта Шпольского. Наиболее часто можно наблюдать фотоионизацию, фотоокисление, фоторазложение и Т-Т поглощение

В твердом стеклообразном растворе фенантрена- при 77 К приблизительно в центре спектра ЭПР появляется новая линия для перехода [53]. Интенсивность этой полосы погло-щения пропорциональна квадрату мощности радиочастотного поля. Это было приписано двухквантовому переходу между несоседними триплетными подуровнями. Такой тип перехо-да представляет общее явление в спектрах ЭПР триплетных состояний органических мо-лекул.

Общая теория двухквантовых переходов развита Гёпперт-Майером [45]. Впоследствии дополнялась и расширялась многими авторами[2]. Одновременное поглощение двух квантов падающей электромагнитной волны может происходить всегда, когда имеется промежуточное состояние с энергией, близкой, (но не обязательно точно равной) энергии

средней точки между двумя уровнями энергии, причем энергия кванта падающего света дол-жна быть точно равна половине разности энергии этих уровней(рис .1.1).

Двухквантовые пере-ходы представляют собой общее явление в абсорбционной спек-троскопии различного типа [46- 51]. Для обнаружения двухквантового перехода необходимо, чтобы изме-рение производилось возможно скорее после облучения. В противном случае слабый двухквантовый сигнал может быть закрыт сигналом свободных ради-калов, возникших при разложении растворителя.

Для состояния органических соединений двухквантовые переходы проявляются наиболее легко при магнитных полях, удовлетворяющих условию[52]:

(1.1)

Образование молекулы в электронно-возбужденном состоянии, синглетном или триплетном требует поглощения одного кванта света молекулой в основном состоянии. Поэтому первичный фото-химический акт обычно происходит в результате поглощения одного кванта света (закон Штарка -- Эйнштейна). Скорость образования первичного продукта фотохимической реакции очевидно должна быть пропорциональна интенсивности света. Принсгейм [25], по-видимому, был первый, кто в 1923 г. предположил, что возможны фотохимические реакции, происходящие после поглощения кванта света молекулой в электронно-возбужденном состоянии. В этом случае первичный химический акт происходит в результате последовательного поглощения двух квантов света. Такие реакции мы в дальнейшем будем называть двухквантовыми.

где А -- исходная молекула; А* -- электронно-возбужденное со-стояние этой молекулы; В -- продукт реакции; и -- кванты света с одинаковой или разной энергией. Волнистой стрелкой показан темповой процесс (люминесценция или (и) безызлучательный переход в исходное состояние), который определяет собственное время жизни молекулы в состоянии А*. Из схемы сразу видно, что увеличение интенсивности света и собственного времени жизни состояния А* будут благоприятствовать реализации двухквантовых реакций.

Из схемы двухквантовой реакции следует выражение для
скорости реакции

, (2.1)

где -- интенсивность света; -- коэффициент пропорциональности. Было показано, что в неполярных жидкостях различия в энергиях одноквантовой фотоионизации ТМФД определяются различные химические реакции, в частности, с соседними молекулами растворителя. Эти реакции успешно конкурируют с быстрыми процессами внутренней конверсии.

Первичный двухквантовый фотохимический процесс часто сопровождается различными вторичными одноквантовыми фотохимическими процессами. Хотя в жесткой среде, особенно при низких температурах, можно зафиксировать такие частицы, как радикалы, ион-радикалы и электроны, часто трудно установить, образовались ли они в первичном двухквантовом процессе или во вторичных процессах[53].

Молекулы в высших возбужденных состояниях обычно могут вступать с разной вероятностью в различные первичные реакции. Естественно, что изменение среды сильно влияет на направление первичной реакции. Как недавно было установлено, увеличение энергии второго кванта приводит не только к резкому увеличению эффективности двухквантовой реакции, но и к изменению преимущественного направления химической реакции. Учитывая все эти соображения, целесообразно обсуждать двухквантовые реакции не по типам химических реакций а по классам ароматических соединений[53].

Льюис и Липкин[54] показали, что в жестких средах могут протекать три типа первичных фотохимических реакций:

Фотодиссоциация, например:

(3.1)

Фотоокисление, например

(4.1)

Фотоионизация, например

(5.1)

Льюис и Каша [54] предложили два механизма этих реак-ций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии

(6.1)

либо в результате поглощения фотона триплетной молекулой
. (7.1)

В жесткой среде при низкой температуре можно накопить зна-чительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [67] последовательно поглощаются два отдельных фо-тона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.

Механизм реакции двухфотонной сенсибилизированной реакции разрыва связи молекулы ЛВ растворителя может быть записан следующим образом[55]:

или

,

,

,

где X и Y--молекулы растворенного вещества. Различные экс-периментальные данные (например, зависимость скорости обра-зования радикалов от концентрации растворенного вещества или интенсивности возбуждающего света) находятся в хорошем со-гласии с выводом, вытекающим из приведенной кинетический схемы.

Установлено, что длины волн, эффективные для вторичного возбуждения (т.е. ) и приводящие к разложению рас-творителя, совпадают с длинами волн полос триплет-триплетного поглощения растворенного вещества (X или Y). Например, в случае сенсибилизатора -- нафталина -- полоса поглощения при 2600К оказывается эффективной в отношении раз-ложения этанола и диэтилового эфира с образованием этильного радикала [56-59]. С другой стороны, переход при 4000 ? эффективен относительно разрыва связи в метилиодиие или трет-бутаноле и образования метильного радикала [60]. Иными словами, эффективность второго кванта hv2, по-види-мому, определяется энергией, требуемой для разрыва данной связи в молекуле растворителя, и спектром триплет-триплетного поглощения растворенного вещества. Теренин и сотр. [60] при-менили эту селективность, исследуя зависимость скорости обра-зования радикалов от концентрации субстрата в системе нафта-лин (сенсибилизатор) + метилиодид (субстрат) в стеклообраз-ном этанольном растворе.. Это исследование, вероятно, также подтверждает постулированный выше процесс триплет-триплетного переноса энергии.

Появление сигналов ЭПР радикала обычно связано с неболь-шим уменьшением интенсивности сигнала ЭПР состояния и сильным увеличением интенсивности фосфоресценции [61]. Эти явления и выводы, вытекающие из них, можно сумми-ровать следующим образом[55]:

В процессе фотолиза не происходит разрушения молекул
сенсибилизатора. Интенсивности сигнала ЭПР состояния и
интенсивности испускания более или менее полно вос-станавливаются после расплавления стекла и повторного его
замораживания.

Спектр ЭПР состояния позволяет заключить, что время
жизни состояния при протекании процесса фотолиза не меняется. Однако увеличенная интенсивность испускания характеризуется резким сокращением времени жизни. Для слу-чая, когда в качестве сенсибилизатора использовался нафталин, наблюдалось уменьшение до значения, меньшего чем 10 мс, увеличение в 30 раз и уменьшение интенсивности сигнала ЭПР триплетных молекул до 70% [61].

3. Очень вероятно, что образуется некий комплекс триплетной молекулы и радикала. Константа скорости излучательного перехода для «состояния » такого комплекса значительно уве-личивается по сравнению с таковой для молекулы, возможно, по тому же механизму, который имеет место в комплексах арома-тических молекул с О2 или N0. Поэтому происходит уве-личение и уменьшение . С другой стороны, столь мало, что концентрация «состояний » комплекса быстро па-дает. Таким образом, вклад комплекса в сигнал ЭПР незначите-лен. Однако образование комплекса приводит к уменьшению концентрации триплетных молекул, не участвующих в образова-нии комплекса. Поскольку спектр ЭПР обусловлен поглощением триплетных молекул, не связанных в комплекс, из этого следует, что должна уменьшаться, тогда как сильно умень-шаться не должно. Нагревание до плавления образца приводит к исчезновению радикалов и более или менее полному восста-новлению первоначальной фотоактивности.

§3. Двухквантовые фотопроцессы с участием триплетных молекул.

Как было отмечено выше Льюис и Липкин[54] показали, что в жестких средах могут протекать три типа первичных фотохимических реакций:

Фотодиссоциация, например:

Фотоокисление, например

(8.1)

Фотоионизация, например

(9.1)

Льюис и Каша [55] предложили два механизма этих реак-ций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии

(10.1)

либо в результате поглощения фотона триплетной молекулой
. (11.1)

В жесткой среде при низкой температуре можно накопить зна-чительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [62] последовательно поглощаются два отдельных фо-тона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.

Одними из первых исследователей рекомбинационного испу-скания были Дебай и Эдвардс [63]. Они облучали при 77 К твердые растворы легко окисляющихся веществ (фенол, толуидин) и зарегистрировали испускание с чрезвычайно высоким временем жизни (более 100 с). Его затухание было неэкспоненциальным, и авторы предположили, что имеет место последовательность ря-да стадий: фотоионизация [по терминологии Льюиса и Липкина -- фотоокисление, см. уравнение (8.1)], диффузия захваченных матрицей электронов к ионизованным молекулам и их рекомби-нация, в результате которой получается возбужденное состояние:


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.