Анализ отражения наносекундных импульсов от метаматериала с отрицательной магнитной проницаемостью

Метаматериалы как искусственно сформированные среды, обладающие особыми электромагнитными свойствами. Исследование и анализ волновых процессов при отражении импульсов заданных форм (прямоугольной, в виде разности полиномов Лаггера, формы Гаусса).

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 28.08.2012
Размер файла 511,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Содержание

Введение

1. Описание принципа работы устройства

2. Расчет устройства

3. Анализ волновых процессов

Заключение

Список используемой литературы

отражение импульс метаматериал

Введение

Метаматериалы - это искусственно сформированные и особым образом структурированные среды, обладающие электромагнитными свойствами, сложно достижимыми технологически либо не встречающимися в природе. Первые работы в этом направлении относятся еще к 19 веку. В 1898 году Джагадис Чандра Бозе провел первый микроволновый эксперимент по исследованию поляризационных свойств созданных им структур искривленной конфигурации. В 1914 году Линдман воздействовал на искусственные среды, представлявшие собой множество беспорядочно ориентированных маленьких проводов, скрученных в спираль и вложенных в фиксировавшую их среду.

В 1946-1948 годах Уинстон Е. Кок впервые создал микроволновые линзы, используя проводящие сферы, диски и периодически расположенные металлические полоски, фактически образовавшие искусственную среду со специфичным по величине эффективным индексом преломления. С тех пор сложные искусственные материалы стали предметом изучения для многих исследователей во всем мире. В последние годы новые понятия и концепции в синтезе метаматериалов способствовали созданию структур, имитирующих электромагнитные свойства известных веществ или обладающих качественно новыми функциями.

Приставка "мета" переводится с греческого как "вне", что позволяет трактовать термин "метаматериалы" как структуры, чьи эффективные электромагнитные свойства выходят за пределы свойств образующих их компонентов. Одно из первых упоминаний этого термина прозвучало в 1999 году в выпуске новостей форума промышленной и прикладной физики (FIAP) Американского физического сообщества (APS). Там содержался анонс серии докладов по секции "Метаматериалы", запланированных на заседание APS в марте 2000 года. Среди включенных в программу докладов фигурирует выступление Роджера М. Уэлсера из университета штата Техас в Остине, которого и считают автором термина "метаматериал". Впрочем, практически одновременно с ним аналогичное понятие применил Эли Яблонович, чей доклад на упомянутом форуме содержал в названии слово "Meta-Materials". Анализ публикаций по различным аспектам технологий метаматериалов позволяет классифицировать все многообразие естественных и искусственных сред в зависимости от эффективных значений их диэлектрической (е) и магнитной (м) проницаемостей (рис.1).

У почти всех встречающихся в природе веществ диэлектрическая и магнитная проницаемости больше нуля.

Существенно, что у подавляющего большинства сред в наиболее интересных для практического использования диапазонах частот эти параметры, как правило, вообще больше или равны единице. В зарубежной литературе данные материалы обычно называют DPS (double positive, двойные позитивные), подчеркивая тем самым положительность значений как е, так и м (правый верхний квадрант на рис.1). DPS-среды считаются прозрачными для электромагнитных волн, если внутренние потери в них малы.

Рис. 1 - Классификация физических сред в зависимости от знака величин диэлектрической (е) и магнитной (м) проницаемостей

Материалы, у которых отрицательна е либо м, на принятом за рубежом научном сленге называют SNG (singlenegative, мононегативные). В таких средах электромагнитные волны быстро затухают по экспоненте. В отношении подобных материалов полагают, что они непрозрачны для излучения, если их толщина больше, чем характерная экспоненциальная длина затухания электромагнитных волн. Если е < 0 и м > 0, SNG-материал называют ENG (е-негативные), если е > 0 и м < 0 - MNG (м-негативные).

1. Описание принципа работы устройства

Альтернативными средами с положительной диэлектрической и отрицательной магнитной проницаемостями являются, в определенных частотных режимах, некоторые гиротропные вещества. История искусственных MNG-материалов начинается в 1950-х годах, когда различные кольцевые и кольцеподобные структуры с отрицательной магнитной проницаемостью представляли интерес как типовые блоки для создания искусственных диэлектриков при изготовлении микроволновых линз. В этом контексте разрезное кольцо, использовавшееся еще в экспериментах Герца для приема электромагнитных волн, было вновь востребовано и описано в учебнике Щелкунова и Фрииса.

Прообразы двойных разрезных колец, использованных впоследствии Джоном Пендри, были на самом деле предложены в 1994 году в работе М.В. Костина и В.В. Шевченко. Основные структуры, используемые для получения MNG-сред, сегодня включают тонкие вложенные металлические цилиндры, рулонные структуры типа "рулет" (рис.3), вложенные разрезные кольца, Щ-подобные и прямоугольные рамки (рис.4) и т.д. Рассмотрим наиболее важные из них.

Двойной кольцевой резонатор (split ring resonator, SRR) (рис.2) - очень удачная структура, в которой емкость между двумя кольцами компенсируется их индуктивностью. Изменяющееся во времени магнитное поле с вектором напряженности, перпендикулярным поверхности колец, вызывает потоки, которые, в зависимости от резонансных свойств структуры, порождают вторичное магнитное поле, усиливающее исходное либо противодействующее ему, что приводит к положительным или отрицательным эффективным значениям м. Частотную зависимость м(щ) можно описать по формуле (1) [1].

(1)

где щpm - плазменная частота для MNG.

Если:

1) x= ±, то >0,

2) |x|>, то >0; |x|>, то >1;

3) |x|<, то <0; |x|>0, то >-.

Рис. 2

Рис. 3

Рис. 4

Для круглого двойного цилиндра в вакууме с сечением в виде двойного разрезного кольца (рис.3) в пренебрежении толщиной стенок справедливо следующее выражение [2]:

(2)

где а - длина ячейки, у - электрическая проводимость стенок цилиндров, d - зазор между разрезными кольцами в поперечном сечении, r - внутренний радиус меньшего из колец.

Выбираем параметры r и d так, чтобы обеспечивался наиболее широкий диапазон частот.

Резонансная частота данного элемента, при которой µэф>?, в отсутствии потерь (у = 0) и с учетом выполнения равенства для скорости света в среде с2= 1 / (µ0е0е):

(3)

Значение плазменной частоты может быть получено при условии у=0, µэф=0:

(4)

Как видно, различия между плазменной и резонансной частотами определяются множителем 1-рr2/a2 в знаменателе подкоренного выражения. µэф приобретает отрицательное значение в интервале между щ0m и щpm.

Коэффициент отражения без потерь определяем по формуле (5).

. (5)

При:

1) x= ±, то R= -1,

2) |x|>, то -1<R<0;

3) |x|<, то R= -1.

Коэффициент отражения c потерями:

. (6)

По заданию даны три формы импульсов, отражающихся от метаматериала [2]:

1) Прямоугольная форма импульса

Импульс описывается следующим образом:

, (7)

где T=1 нс - длительность импульса.

Спектральный анализ непериодических сигналов проводится на основе интегрального преобразования Фурье. Преобразование Фурье сигнала s(t) дает спектральную плотность или спектр сигнала [3]:

. (8)

Тогда модуль отраженного импульса без учета потерь:

. (9)

С учетом потерь:

. (10)

2) Импульс в виде разности полиномов Лаггера [2]

Импульс описывается следующим образом:

. (11)

Его спектральная зависимость от частоты:

. (12)

Тогда модуль отраженного импульса без учета потерь:

. (13)

С учетом потерь:

. (14)

3) Импульс формы Гаусса с меньшей крутизной:

. (15)

Его спектральная зависимость от частоты:

. (16)

Тогда модуль отраженного импульса без учета потерь:

. (17)

С учетом потерь:

. (18)

4) Импульс формы Гаусса с большей крутизной:

. (19)

Его спектральная зависимость от частоты:

. (20)

Тогда модуль отраженного импульса без учета потерь:

. (21)

С учетом потерь:

. (22)

2. Расчет устройства

Выберем несколько параметров для дальнейших расчетов:

.

Тогда по формуле (3) вычисляем резонансную частоту:

и значение плазменной частоты (4):

При расчете магнитной проницаемости без учета потерь получаем зависимость , где х - частота, которую берем в диапазоне -2- 2:

Рис. 5

Получив расчет коэффициента отражения из (5), построим зависимость модуля |Rw0(x)| без потерь:

Рис. 6

и , с потерями из (6):

Рис. 7

Рис. 8

где - диапазоны частот, т.к. при расчете происходит деление на 0.

Рассмотрим прямоугольный импульс, который описывается выражением (8):

Рис. 9

Спектральная плотность прямоугольного импульса и отраженный от метаматериала прямоугольный импульс без потерь представлены на рис.10:

Рис. 10

Зависимость отраженного от метаматериала прямоугольного импульса от частоты с потерями показана на рис.11.

Рис. 11

Рассмотрим импульс в виде разности полиномов Лаггера, который описывается выражением (11):

Рис. 12

Спектральная плотность импульса в виде разности полиномов Лаггера:

Рис. 13

Отраженный от метаматериала импульс Лаггера без потерь:

Рис. 14

Зависимость отраженного от метаматериала импульса Лаггера от частоты с потерями:

Рис. 15

Рассмотрим импульс формы Гаусса с меньшей крутизной, который описывается выражением (15):

Рис. 16

Спектральная плотность импульса формы Гаусса с меньшей крутизной имеет вид, представленный на рис.17.

Рис. 17

Отраженный от метаматериала импульс без потерь:

Рис. 18

Зависимость отраженного от метаматериала импульса от частоты с потерями:

Рис. 19

Рассмотрим импульс формы Гаусса с большей крутизной, который описывается выражением (19):

Рис. 20

Спектральная плотность импульса формы Гаусса с большей крутизной имеет вид:

Рис. 21

Отраженный от метаматериала импульс без потерь:

Рис. 22

Зависимость отраженного от метаматериала импульса от частоты с потерями:

Рис. 23

3. Анализ волновых процессов

Закончив исследование волновых процессов (т.е. меняя размеры элементов метаструктуры r и d), проведем их анализ.

При параметрах r=2 мм, а d=0,05мм (т.е. уменьшение параметра r на 3 мм) наблюдаем: значительное уменьшение амплитуды отраженного прямоугольного импульса от метаматериала с учетом потерь (рис.24) на 12%, без потерь (рис.25) - малое изменение формы импульса.

Рис. 24

Рис. 25

Уменьшение амплитуды импульса разности полиномов Лаггера в 10 раз с учетом потерь (рис.26), без потерь (рис.27) - изменений нет.

Рис. 26

Рис. 27

Амплитуды отраженных импульсов Гаусса с большей и меньшей крутизной уменьшились в 10 раз с учетом потерь (рис28), без потерь (рис.29) - изменений нет.

Амплитуды отраженных импульсов Гаусса с большей крутизной уменьшились в 10 раз с учетом потерь (рис30), без потерь (рис.31) - изменений нет.

При параметрах r=5 мм, а d=0,005мм (т.е. уменьшение параметра d в 10 раз) происходит:

- небольшое изменение формы импульса прямоугольной формы с учетом (рис.32) и без учета (рис.33) потерь.

- уменьшение амплитуды импульса разности полиномов Лаггера приблизительно на 50% без потерь (ри.35), а с учетом потерь (рис.34) изменений нет.

Амплитуда отраженного импульса Гаусса с большей крутизной уменьшилась на 10-15% без потерь (рис.36), с учетом потерь (рис.37) - на 5-7%, а у импульса Гаусса с меньшей крутизной - уменьшилась на 5-7% с учетом потерь (рис.38), без учета потерь (рис.39) - изменений не произошло.

Заключение

Проведен анализ волновых процессов при отражении импульсов от полубесконечного метаматериала с отрицательной для указанных форм импульсов, расчет отраженного поля проведен путем разложения падающего поля в интеграл Фурье, построены зависимости от времени для некоторых частных случаев, оценено влияние размеров элементов метаструктуры, без учета и с учетом потерь. Составлена программа в пакете Mathcad, с помощью которой проводились все построения.

Размещено на Allbest.ru


Подобные документы

  • Временные диаграммы периодических сигналов прямоугольной формы. Зависимость ширины спектра периодической последовательности прямоугольных импульсов от их длительности. Теорема Котельникова, использование для получения ИКМ-сигнала. Электрические фильтры.

    контрольная работа [1,3 M], добавлен 23.08.2013

  • Методы и этапы проектирования генератора пачки прямоугольных импульсов (ГППИ). Обоснование выбора узлов, элементной базы и конкретных типов интегральных схем. Принцип работы управляемого генератора прямоугольных импульсов и усилителя сигналов запуска.

    курсовая работа [374,2 K], добавлен 11.01.2011

  • Описание схемы системы Г – Д, ее структура и основные элементы, назначение. Расчет электромагнитных процессов импульсного регулятора тока возбуждения генератора. Вычисление среднего значения тока для заданных значений скважности импульсов управления.

    контрольная работа [339,6 K], добавлен 22.02.2011

  • Изучение понятия и процессов, происходящих с электромагнитными волнами - электромагнитными колебаниями, распространяющимися в пространстве с конечной скоростью, зависящей от свойств среды. Ученые, которые занимались их изучением - Дж. Максвелл, Г. Герц.

    презентация [1,8 M], добавлен 16.12.2011

  • Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.

    статья [77,4 K], добавлен 07.05.2002

  • Понятие метаматериала. Внедрение в исходный природный материал периодических структур, модифицирующих диэлектрическую проницаемость и магнитную восприимчивость. Металлические проволоки. Кольцевой щелевой резонатор. Отрицательный показатель преломления.

    реферат [186,4 K], добавлен 30.01.2014

  • Чувствительность оптического приемного модуля. Сопротивление нагрузки фотодетектора. Интеграл Персоника для прямоугольных входных импульсов и выходных импульсов в форме "приподнятого косинуса". Длина регенерационного участка волоконно-оптической системы.

    контрольная работа [80,8 K], добавлен 18.09.2012

  • Формула расчета разности потенциалов двух точек электрического поля. Применение электрокардиографии в медицине. Принцип построения электрокардиограмм. Генерация электрических импульсов при работе сердца. Стандартное отведение электродов от конечностей.

    презентация [595,7 K], добавлен 07.04.2013

  • Особенности физики света и волновых явлений. Анализ некоторых наблюдений человека за свойствами света. Сущность законов геометрической оптики (прямолинейное распространение света, законы отражения и преломления света), основные светотехнические величины.

    курсовая работа [2,1 M], добавлен 13.10.2012

  • Назначение и типы ограничителей. Амплитудные селекторы. Дифференцирующие и интегрирующие цепочки. Диаграммы, поясняющие работу ограничителя. Сглаживание вершин импульсов с помощью ограничителя сверху. Выделение импульсов с помощью ограничителей.

    лекция [27,3 K], добавлен 22.09.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.