Изобарный процесс
Уравнение состояния для моля идеального газа, уравнение Майера. Графическое изображение изобарного процесса. Понятие про сложный теплообмен. Процесс теплопередачи через однородную плоскую стенку. Коэффициентом теплопередачи, термическое сопротивление.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 12.01.2012 |
Размер файла | 34,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Изобарный процесс
Изобарный процесс (др.-греч. Яупт, isos - «одинаковый» + Ьбспт, baros - «вес») - термодинамический процесс, происходящий в системе при постоянном давлении и массе идеального газа.
Согласно закону Гей-Люссака, при изобарном процессе в идеальном газе работа, совершаемая газом при расширении или сжатии газа, равна A = PДV.
Количество теплоты, получаемое или отдаваемое газом, характеризуется изменением энтальпии: дQ = ДI = ДU + PДV.
Изобарный процесс:
dQ = dU+pdV
При изобарном процессе dQp = CpdT, поэтому первое начало термодинамики примет вид:
CpdT = CvdT + pdV
Уравнение состояния для моля идеального газа:
pV = RT
Для изобарного процесса это уравнение примет вид
pdV = RdT
Соотношения Cp = Cv+R или Cp-Cv = R называют уравнением Майера.
Рис. 1 - График изобарного процесса
теплопередача изобарный процесс
В действительных условиях работы различных теплообменных устройств теплота передается одновременно теплопроводностью, конвекцией и излучением. Такое явление называется сложным теплообменом.
Передача теплоты от одной подвижной среды (жидкости или газа) к другой через разделяющую их твердую стенку любой формы называется теплопередачей. Примером теплопередачи служит перенос теплоты от дымовых газов к воде через стенки труб парового котла, включающий в себя конвективную теплоотдачу от горячих дымовых газов к внешней стенке, теплопроводность в стенке и конвективную теплоотдачу от внутренней поверхности стенки к воде. Особенности протекания процесса на границах стенки при теплопередаче характеризуются граничными условиями третьего рода, которые задаются температурами жидкости с одной и другой стороны стенки, а также соответствующими значениями коэффициентов теплоотдачи.
Рассмотрим процесс теплопередачи через однородную плоскую стенку толщиной д. Заданы: коэффициент теплопроводности стенки л, температуры окружающей среды tж1 и tж2, коэффициенты теплоотдачи б1 и б2. Необходимо найти тепловой поток от горячей жидкости к холодной и температуры на поверхностях стенки tс1 и tс2.
Рис. 2
При стационарном режиме этот же тепловой поток пройдет путем теплопроводности через твердую стенку и будет передан от второй поверхности стенки к холодной среде за счет теплоотдачи.
Величина k называется коэффициентом теплопередачи, который выражает количество теплоты, проходящее через единицу поверхности стенки в единицу времени при разности температур между горячей холодной и горячей жидкостью, равной 1К (размерность Вт/(м2·К)). Величина обратная коэффициенту теплопередачи, называется полным термическим сопротивлением теплопередачи
Величины и называются термическими сопротивлениями теплоотдачи.
Размещено на Allbest.ru
Подобные документы
Процесс теплопередачи через плоскую стенку. Теплоотдача через цилиндрическую стенку. Особенности теплопередачи при постоянных температурах. Увеличение термического сопротивления, его роль и значение. Определение толщины изоляции для трубопроводов.
презентация [3,9 M], добавлен 29.09.2013Уравнение состояния идеального газа, закон Бойля-Мариотта. Изотерма - график уравнения изотермического процесса. Изохорный процесс и его графики. Отношение объема газа к его температуре при постоянном давлении. Уравнение и графики изобарного процесса.
презентация [227,0 K], добавлен 18.05.2011Разделение теплопереноса на теплопроводность, конвекцию и излучение. Суммарный коэффициент теплоотдачи. Определение лучистого теплового потока. Теплопередача через плоскую стенку. Типы теплообменных аппаратов. Уравнение теплового баланса и теплопередачи.
реферат [951,0 K], добавлен 27.01.2012Стационарная передача через плоскую стенку. Плотность теплового потока через стальную стенку и слой накипи. Расчет тепловой изоляции стальной трубки по заданным параметрам. Нестационарный нагрев длинного круглого вала. Сложный теплообмен, потеря тепла.
контрольная работа [479,6 K], добавлен 16.11.2010Определение и модель идеального газа. Микроскопические и макроскопические параметры газа и формулы для их расчета. Уравнение состояния идеального газа (уравнение Менделеева-Клайперона). Законы Бойля Мариотта, Гей-Люссака и Шарля для постоянных величин.
презентация [1008,0 K], добавлен 19.12.2013Исследование свойств теплопроводности как физического процесса переноса тепловой энергии структурными частицами вещества в процесс их теплового движения. Общая характеристика основных видов переноса тепла. Расчет теплопроводности через плоскую стенку.
реферат [19,8 K], добавлен 24.01.2012Понятие процесса переноса тепла и вещества, потенциалы переноса. Температурное поле, примеры одномерного и двухмерного полей. Стационарный и нестационарный процесс теплопередачи. Характеристика параметров материала: плотность, пористость, влажность.
контрольная работа [203,4 K], добавлен 21.01.2012Методы расчёта коэффициентов теплоотдачи и теплопередачи. Вычисление расчётного значения коэффициента теплопередачи. Определение опытного значения коэффициента теплопередачи и сопоставление его значения с расчётным. Физические свойства теплоносителя.
лабораторная работа [53,3 K], добавлен 23.09.2011Взаимосвязь внутренней энергии и теплоты газа. Первое начало термодинамики. Общее понятие о теплоемкости тела. Энтропия как мера необратимого рассеяния энергии или беспорядка. Адиабатический процесс: уравнение, примеры. Политропные и циклические процессы.
презентация [889,7 K], добавлен 29.09.2013Вывод первого начала термодинамики через энергию. Уравнение состояния идеального газа, уравнение Менделеева-Клапейрона. Определение термодинамического потенциала. Свободная энергия Гельмгольца. Термодинамика сплошных сред. Тепловые свойства среды.
практическая работа [248,7 K], добавлен 30.05.2013