Механические свойства твердых тел в практике

Свойства твердых тел. Основные виды деформации. Основные допущения о свойствах материалов и характере деформирования. Геометрическая схематизация элементов строительных конструкций. Внешнее воздействие на тело. Классификация нагрузок. Крутящий момент.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 28.01.2009
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Нетрудно понять, что по тому же самому принципу длина проволоки, подвешенной за один конец, также ограничена, так как при неограниченном удлинении прово-лока «разорвала бы сама себя». Для увеличения длины проволоки можно было бы поступить так же, как и с кирпичной трубой, только в этом случае нижний конец проволоки должен быть тоньше, чем ее верхняя часть. Так и поступают, когда, например, конструируют тросы приборов для измерения больших глубин океана и взятия проб с этих глубин.

Высоту стен, башен и труб можно также увеличить (как и длину свободно висящих проволок), если применить для них материалы, обладающие большей прочностью и меньшим удельным весом, чем существующие, но это -- дело будущего.

При строительстве мостов и зданий требовалось не только умение строить высокие и прочные опоры и стены, но необходимо было уметь перекрыть пролеты между ними. Известные древним строителям арки и купола не всегда были удобными. Требовались другие формы перекрытий; нужно было найти такие детали, которые хорошо бы работали на изгиб.

Без особого ослабления балки этот слой можно облегчить, экономя тем самым материал и делая балку тот же более легкой. Так и поступают в практике, применяя для конструкций, работающих на изгиб, балки таврового, двутаврового сечения и швеллеры .

Чем руководствуются конструкторы, устанавливая стандартные соотношения между различными размерами сечения балок?

Чтобы ответить на этот вопрос, нужно рассмотреть, какие напряжения возникают в различных местах сечения изгибаемой балки (рис.26.).

Мы уже знаем, что в верхней части сечения материал балки растягивается, а нижней -- сжимается, и что, кроме того, левая (в данном случае) часть балки стремится сдвинуться вниз относительно правой. Казалось бы, что для увеличения прочности балки ее конфигурацию можно менять так, как показано на рисунке 27, т. е. относя материал все дальше от нейтрального слоя и не меняя площади ее поперечного сечения. В этом слу-чае для такого же прогиба балки потребовалось бы сильнее растянуть ее верхний слой и сжать нижний, а они стали бы толще; сдвигу же сопротивлялась бы прежняя площадь балки. Но, как впервые в 1855 г. показал известный русский мостостроитель Д. И. Журавский, в результате изменения растягивающих или сжимающих балку напряжений по высоте между отдельными горизонтальными ее слоями также возникают сдвигающие усилия. Формула, носящая имя Д. И. Журавского, позволяет вычислить эти усилия в каждом конкретном случае. Понятно, что при уменьшении толщины балки в месте, прилегающем к «нейтральному слою», напряжения продольного сдвига в материале будут возрастать. Это может привести в конце концов к «расслаиванию» балки (рис. 26).

Соотношение между различными размерами сечения балки выбирают таким, чтобы балка одинаково хорошо противостояла растяжению, сжатию, поперечному и продольному сдвигу.

При увеличении длины пролета, перекрываемого балкой, начинает все сильнее сказываться возрастание ее веса. Балка «стремится переломить сама себя». Увеличение площади сечения балки не является выходом из этого затруднения, так как это привело бы к возрастанию ее веса. Следовательно, 'при перекрытии больших пролетов балки становятся невыгодными, но ведь при строительстве мостов, ангаров, подъемных кранов необходимым требованием к конструкции является большая длина детали, работающей на изгиб.

Всем известны чудесные качества купола, созданного природой -- скорлупы куриного яйца. Попробуйте раздавить его, сжимая ладонями вдоль большой оси . Если вам и удастся это сделать, то только ценой большого усилия, а ведь отдельные кусочки яичной скорлупы ломаются чрезвычайно легко. К настоящему времени теория расчета куполов разработана очень подробно. Достаточно сказать, что имеются купола, у которых отношение толщины оболочки к диаметру в несколько раз меньше того же отношения у яичной скорлупы.

И все-таки с точки зрения современного строителя и арки и купола обладают существенными недостатками.

Главным из них является кривизна этих форм. Конечно, жителю первого этажа удобно будет иметь потолок в виде купола. Но удобно ли это будет для жителей второго этажа? Конечно, можно выровнять верхнюю сторону купола, постелив на него плоский пол. Однако это приведет к затрате лишнего материала и сведет на нет все преимущества купола.

Другим существенным недостатком арок и куполов является их слабая сопротивляемость сосредоточенным на-грузкам. Рассмотрим работу арки по рисунку 28.

Слева изображена арка, на которую действует распределенная равномерно нагрузка. Вертикальная сила, действующая на верхнюю точку арки, стремится согнуть обе её половинки так, как показано пунктиром. Но другие силы, действующие на эти половинки, противодействуют такому изгибу, в результате чего материал арки работает только на сжатие.

Справа изображена арка, на которую действует только одна вертикальная сила, приложенная в верхней точке. Эта сила стремится изогнуть обе половины арки, но теперь противодействия изгибу нет, арка может разру-шиться. Сказанное выше характерно и для куполов.

Выход из этого положения напрашивается сам: надо выпрямить обе половинки арки (рис. 29, слева), тогда вертикальная сила будет сжимать укосины полученной фермы, не изгибая их. Такое изменение фермы не только упрочняет конструкцию, но и позволяет экономить материал (укосины короче дуг арки).

Нельзя ли еще сэкономить материал, уменьшая толщину укосин, например, в два раза? Если толщину укосин просто уменьшить, то может появиться опасность возникновения продольного изгиба. Чтобы избежать этого нежелательного явления, сэкономленный на одной укосине материал надо употребить для соединения середины каждой укосины с серединой горизонтального стержня фермы. В этом случае половина материала второй укосины составит чистую экономию. Ферма теперь будет выглядеть так, как показано на рисунке 29, справа. Введение дополнительных стержней упрочняет ферму. Предположим, что действующая сила стремится вызвать продольный изгиб левой укосины, при котором ее середина - пойдет вверх. Через дополнительный стержень она потянет вверх и горизонтальный стержень фермы, но он уже растянут нижними концами укосин, следователь-но, предотвратит продольный изгиб укосины. Аналогично этому будет оказано сопротивление движению середины укосины вниз. Итак, в случае действия на ферму силы деформация изгиба фермы в целом сводится к растяжению или сжатию составляющих ее стержней. Проще всего это понять, если предположить, что стержни, образующие ферму, соединены между собой шарнирами. Введение шарниров (рис. 30) не вызовет никаких изменений в работе фермы, и прочность ее останется прежней.

Реальные фермы должны обычно сопротивляться силам, приложенным не только в месте соединения их стержней. На рисунке 31 изображен тепловоз, идущий по мосту. Вес тепловоза вызывает изгиб только того стержня, по которому он движется в данный момент, а все остальные стержни фермы в это время работают на растяжение или сжатие. Таким образом, применение ферм позволяет свести изгиб балки по всей ее длине к изгибу только отдельного короткого стержня, а короткие балки хорошо противостоят изгибу, комбинация тонких балок-стержней в виде фермы позволяет перекрывать большие пролеты между опорами (100 м и более), чего нельзя добиться, применяя монолитные балки. При этом экономится большое количество материала.

Рис. 30. Введение шарниров не изменяет прочности фермы.

Приведенное здесь объяснение работы ферм вскрывает только важнейшие принципы, лежащие в основе их создания. Реальные фермы, конечно, являются более сложными сооружениями, чем ферма, изображенная на ри-сунке 30. Теория расчета ферм весьма сложна, и она еще не сказала своего последнего слова. Благодаря остроумным сочетаниям стержней разных сечений, длин инженеры непрерывно добиваются снижения веса сооружений и повышения их прочности, причем борьба идет за каждый процент и даже доли процента снижения затрат материала.

Огромный вклад в теорию расчета ферм внесли русские и особенно советские ученые. В середине прошлого столетия Дмитрий Иванович Журавский создал теорию расчета мостовых ферм. Особенно широкую известность в области изысканий рациональных типов прямолинейных ферм и теории арочных ферм приобрели труды выдающегося русского инженера, конструктора и изобретателя, почетного члена Академии наук СССР Владимира Григорьевича Шухова (1858 -- 1939). Он -- автор прославленной русской системы перекрытий в виде висящей крыши, автор так называемых гиперболоидальных башен, состоящих из многократных одинаковых элементов. Знаменитая радиотелевизионная башня Шухова в Москве известна всему миру. Башни такого типа получили весьма ши-рокое распространение: они применяются в качестве маяков, радио- и те-левизионных башен, вышек на судах и т. д.

Часто фермы применяют в сочетании с арками (рис. 32). Объединение фермы и арки приводит к созданию высокопрочных конструкций, позволяющих в большой степени экономить материал.

Своеобразной фермой является труба, работающая на изгиб. Прочные и легкие трубы-фермы применяются в современных конструкциях.

Иногда фермы делают из труб. Так, раму велосипеда, представляющую не что иное, как ферму, изготавливают из тонкостенных трубок, благодаря которым рама приобретает прочность и легкость.

Интересно отметить, что прежде чем люди научились строить и использовать фермы, гениальный конструктор -- природа уже создала своеобразные фермы самой разнообразной конфигурации. Однако трубы хорошо сопротивляются не только деформации изгиба. Загляните под кузов автомобиля. От коробки передач к заднему мосту автомобиля идет так называемый карданный вал (рис. 33) довольно большой толщины. Для чего же его сделали таким толстым? Ответ на этот вопрос звучит парадоксально: для того, чтобы он был легче.

Карданный вал работает на скручивание (под действием собственного веса вал изгибается, но незначительно, поэтому в дальнейшем рассуждении этот изгиб мы учитывать не будем).

Деформация кручения сводится к сдвигу одних элементов материала детали по другим. При скручивании сплошного вала такой сдвиг происходит сильнее у поверхности вала, чем в его частях, лежащих около центральной оси. Именно поверхностные слои оказывают основное сопротивление скручивающим вал нагрузкам, поэтому материал середины вала целе-сообразно убрать и разместить возможно дальше от центра. Итак, валы выгоднее делать не сплошным, а трубчатыми.

Карданный вал автомобиля «Москвич» имеет диаметр около 100 мм и толщину стенок 2 мм. Если его сделать сплошным, причем равным полому валу по прочности на скручивание, то при изготовлении из того же самого материала сплошной вал должен был бы иметь диаметр 54 мм. Вес такого вала оказался бы более чем в 3,7 раза больше веса полого вала.

Казалось бы, что для получения самых прочных и легких валов их нужно выполнять в виде труб возможно большого диаметра с тонкими стенками. Однако это, как и в случае чрезмерного снижения толщины балок, может привести к продольному расслаиванию материала таких валов под действием продольных сил сдвига Д. И. Журавского.

Кроме того, в этом случае трудно будет крепить на концах таких валов шкивы, шестерни, да и возникает опасность повреждения тонких стенок вала oт случайных ударов.

Диаметр и толщину стенок полых валов в каждом частном случае выбирают исходя из конкретных условий.

Применение полых валов дает возможность делать их прочнее и в значительной степени экономить при этом материалы. Итак, мы рассмотрели только основные принципы выбора форм деталей, работающих или на сжатие, или на растяжение, или на изгиб, или на кручение. В действительности же подавляющее большинство деталей машин и сооружений вынуждено сопротивляться нагрузкам, вызывающим в них одновременно несколько деформаций разных видов. Конечно, это приводит к усложнению и выбора форм детали и ее расчета. Однако изложенные принципы являются основой такого выбора и всех расчетов на прочность.

Кроме того, мы рассматривали формы деталей, не имеющих резких переходов, канавок, выточек, сверлений, резьб и др. Как показывает практика, влияние этих факторов на прочность деталей довольно велико, и его всегда приходится учитывать.

.

Снижение прочности деталей при наличии резких переходов в их размерах наблюдается и в конструкциях таких сложных конфигураций, как корпус автомобиля и у таких простых деталей, как изображенный на рисунке 34 круглый вал с резким переходом одного диаметра в другой. Если диаметр толстого участка вала в 2 раза больше диаметра тонкого участка, а радиус сопряжения участка меньшего диаметра с уступом на валу в 10 раз меньше малого диаметра, то такой вал при работе на скручивание будет в 1,7 раза менее прочным, чем гладкий вал с диаметром, Прочность детали зависит от наличия резких переходов в их равным диаметру тонкого формах, конца. Если же радиус сопряжения увеличить только в 2 раза, то прочность ступенчатого вала на скручивание возрастет на 12--18% (в зависимости от материала вала и характера приложения к нему нагрузки).

Особенно велико снижение прочности деталей из-за концентрации напряжений в местах резких изменений формы в случае ударных нагрузок. Так, при испытаниях на маятниковом копре для разрушения рассмотренного ступенчатого вала понадобится вдвое менее сильный удар, чем для разрушения гладкого вала, имеющего такой же диаметр, как и тонкий конец ступенчатого вала.

Описанное явление концентрации напряжений, ведущее к снижению прочности деталей, наблюдается не только у круглых валов, но и у деталей любой формы. Поэтому конструкторы всегда стремятся сгладить эти переходы, если уж не удается вовсе избежать их при обработке деталей на станках, резцы или другие инструменты оставляют на поверхности деталей неровности, риски, задиры. Эти риски, иногда не различимые невооруженным глазом, также являются концентраторами напряжений и заметно снижают прочность деталей. Чтобы повысить эту прочность, поверхность деталей шлифуют или полируют. Несмотря на то, что при этих операциях с детали снимается часть ее материала, и сечение детали уменьшается, прочность детали заметно возрастает.

Однако умения создать высокопрочный материал и правильно выбрать форму детали из него еще недостаточно для того, чтобы обеспечить возможно большую прочность этой детали и затратить на ее изготовление как можно меньше материала. Нужно еще уметь изменять свойства материала уже готовой детали так, чтобы он как можно лучше «вел себя» в конкретных условиях ее работы.

Заключение

В результате работы над рефератом, я более подробно узнала о видах деформации, учет которых очень важен в строительстве. Познакомилась с наиболее распространенными видами строительных материалов. Узнала о том, как выбирают форму детали, для того чтобы изделие служило дольше. И получила более полное представление о том, с чем мне придется столкнуться в дальнейшей учебе.

Список литературы

1.Егоров А.А. Рассказ о прочности.- М.: Государственное учебно-педагогическое издательство Министерства просвещения РСФСР,1962.

2.Ицкович Г.М. Сопротивление материалов.- М.: Высшая школа,1982.

3.Касьянов В.А. Физика.10 кл.- М.: Дрофа,2003.

4.Михайлов А.М. Сопротивление материалов.- М.: Стройиздат,1989.

5.Пинский А.А. Физика.10 кл.- М.: Просвещение,1997.

6.Степин П.А. Сопротивление материалов.- М.: Высшая школа,1979.


Подобные документы

  • Физика твердого тела – один из столпов, на которых покоится современное технологическое общество. Физическое строение твердых тел. Симметрия и классификация кристаллов. Особенности деформации и напряжения. Дефекты кристаллов, способы повышения прочности.

    презентация [967,2 K], добавлен 12.02.2010

  • Общая характеристика и значение основных механических свойств твердых тел, направления их регулирования и воздействий: деформация, напряжение. Классификация и типы деформации: изгиба, кручения и сдвига. Пластическое течение кристаллов. Закон Гука.

    контрольная работа [782,4 K], добавлен 27.05.2013

  • Задача сопротивления материалов как науки об инженерных методах расчета на прочность, жесткость и устойчивость элементов конструкций. Внешние силы и перемещения. Классификация нагрузки по характеру действия. Понятие расчетной схемы, схематизация нагрузок.

    презентация [5,5 M], добавлен 27.10.2013

  • Тепловые свойства твердых тел. Классическая теория теплоемкостей. Общие требования к созданию анимационной обучающей программы по физике. Ее реализация для определения удельной теплоемкости твердых тел (проверка выполнимости закона Дюлонга и Пти).

    дипломная работа [866,2 K], добавлен 17.03.2011

  • Содержание молекулярно-кинетической теории газов. Химический состав жидкости. Особенности межмолекулярного взаимодействия в данном агрегатном состоянии. Механические и тепловые свойства твердых тел. Практическое применение плазмы - ионизованного газа.

    контрольная работа [26,0 K], добавлен 27.10.2010

  • Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат [1,1 M], добавлен 26.04.2010

  • Кристаллическая структура и полупроводниковые свойства карбида кремния и нитрида алюминия. Люминесцентные свойства SiC и твердых растворов (SiC)1-x(AlN)x. Технологическая установка для выращивания растворов. Электронный микроскоп-микроанализатор ЭММА-2.

    дипломная работа [175,9 K], добавлен 09.09.2012

  • Свойства материалов: механические, физические, химические. Виды деформаций: растяжение, сжатие, сдвиг, кручение и изгиб. Расчет плотности, теплопроводности и теплоемкости материалов. Огнестойкость материалов: несгораемые, трудносгораемые, сгораемые.

    презентация [32,0 M], добавлен 10.10.2015

  • Свойства звука и его высота, громкость и скорость. Расчет скорости в жидкости, газе и в твердых телах. Акустический резонанс и его применение, свойства отражения и поглощения, воздействие шума на человека и значение достижений науки в борьбе за тишину.

    реферат [35,3 K], добавлен 18.05.2012

  • Определение понятия "газ" как агрегатного состояния вещества, характеризующегося очень слабыми связями между молекулами, атомами и ионами. Основные состояния жидкостей: испарение, конденсация, кипение, смачивание и смешиваемость. Свойства твердых тел.

    презентация [711,7 K], добавлен 31.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.