Технология конструкционных электротехнических материалов

Конструкция и область применения различных типов кабеля. Тепловой пробой твердых диэлектриков. Зависимость пробивного напряжения в твердом диэлектрике от частоты. Классификация магнитных материалов и требования к ним. Основные виды поляризации.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 04.12.2014
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФГОУ ВПО «НОВОСИБИРСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

ВОДНОГО ТРАНСПОРТА»

Тобольский филиал

Кафедра «Электротехники и электрооборудования»

Дисциплина «Технология конструкционных материалов»

РЕФЕРАТ

На тему:

«Технология конструкционных электротехнических материалов»

Вариант 18

Факультет: Заочный

Группа: ЭМ - 08

Шифр: 08-218

Выполнил:

Чечков Алексей Валерьевич

Преподаватель:

д-р техн.наук, профессор

Горелов Валерий Павлович

Тобольск - 2009

Содержание

Введение

1. Конструкция и область применения различных типов кабеля (вопрос 18)

2. Тепловой пробой твердых диэлектриков (вопрос 28)

3. Зависимость пробивного напряжения в твердом диэлектрике от температуры и частоты (вопрос 30)

4. Нагревостойкость твердых и жидких диэлектриков (вопрос 12)

5. Основные физико-химические характеристики проводниковых материалов (вопрос 16)

6. Классификация магнитных материалов и требования к ним (вопрос 22)

7. Основные виды поляризации (вопрос 4)

8. Сверхпроводники и возможности их применения в электротехнике (вопрос 20)

9. Векторное изображение электрических величин (тока, напряжения, ЭДС). Примечание комплексных чисел для расчета электрических цепей. Представление синусоидальных э.д.с., напряжений и токов комплексными числами

Ответы на письма в редакцию

Заключение

Список реферативно использованной литературы

Введение

Конструкционные материалы являются основными видами электротехнических материалов с которыми придется встретиться на практике будущим инженерам-электрикам. Эти материалы служат в качестве изоляции токоведущих частей энергооборудования. Они включают в себя такие разнообразные типы электрической изоляции как: воздух в линиях электропередач и электроаппаратах; нефтяные и искусственные масла в трансформаторах, кабелях и конденсаторах; твердые диэлектрики в изоляторах воздушных линий (ВЛ), конденсаторах, установочных изделиях и корпусах аппаратов и т.п.

При этом физические условия, в которых должна находиться и функционировать изоляция, накладывают определенные требования на физико-химические параметры материала, ограничивая возможные вид, тип используемых электротехнических материалов.

Кроме того, при конструировании даже простейших изделий, предназначенных для работы в электрическом поле, необходимо четко представлять, какие процессы происходят в материале, как влияет тот, или иной материал на работу других частей устройства, в том числе за счет перераспределения электрического поля. Здесь необходимо учитывать разноплановые характеристики материала - механические характеристики: плотность и вес материала, прочность на сжатие, разрыв или изгиб; теплофизические характеристики: теплопроводность, теплоемкость, нагревостойкость, теплостойкость и горючесть; электрофизические характеристики: диэлектрическая проницаемость, электропроводность, электрическая прочность, трекингостойкость; физико-химические характеристики: химическая стойкость, влагопроницаемость и т.д.

Зачастую всем требованиям невозможно удовлетворить, поэтому необходимо ясное понимание всего комплекса процессов, происходящих при функционировании устройств, чтобы оценить значимость каждого из требований и понять, какие их них, в каждом конкретном случае, являются главными, а какие - второстепенными и ими можно пренебречь [17].

1. Конструкция и область применения различных типов кабеля (вопрос 18)

Основными элементами всех типов кабелей, проводов и шнуров являются токопроводящие жилы, изоляция, экраны, оболочка и наружные покровы. Неизолированные провода изоляции не имеют. В зависимости от назначения и условий эксплуатации кабелей и проводов экран и наружные покровы могут отсутствовать.

Кабель - одна или более изолированных жил (проводников), заключенных, как правило, в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может накладываться защитный покров, в состав которого может входить броня.

Провод - одна неизолированная или одна и более изолированные жилы, поверх которых в зависимости от условий прокладки и эксплуатации может быть неметаллическая оболочка, обмотка и (или) оплетка волокнистыми материалами или проволокой.

Шнур - гибкий кабель с ограниченным числом токопроводящих жил небольшого сечения [14].

Токопроводящие жилы

Несмотря на большое многообразие конструкций кабельных жил и применяемых проводниковых материалов, для кабелей и проводов общего применения разработан ряд типовых конструкций медных и алюминиевых токопроводящих жил стандартных рядов сечений, требования к которым приведены в ГОСТ 22483-77.

Изоляция кабелей, проводов и шнуров

Для кабелей и проводов применяют резиновую, пластмассовую, пропитанную бумажную, фторопластовую и другие виды изоляции.

Резиновая изоляция изготавливается на основе натуральных или синтетических каучуков. Используются следующие типы установленных ГОСТом изоляционных резин: РТП-0, РТИ-1, РТИ-2, РНИ, классифицируемые в зависимости от содержания каучука. На основе каучука и кремнийорганических спиртов производится кремнийорганическая резина, обладающая более высокими электрофизическими свойствами. Например, она длительно устойчива к воздействию температур в диапазоне от -60 до +200є С.

Толщина резиновой изоляции составляет 1 мм у жил небольшого сечения (площадью до 1,5 мм2) и 3 мм у жил большого диаметра.

Изоляция из поливинилхлоридного пластиката (ПВХ) представляют собой смеси из поливинилхлорида с пластификаторами, стабилизаторами и иными добавками, которые придают ПВХ пластикатам эластичность, облегчают его обработку, однако ухудшают его электроизоляционные свойства, нагревостойкость, химическую стойкость. Он не поддерживает горения, весьма устойчив у воздействию воды, нефтепродуктов , кислот и щелочей. Однако при увеличении температуры от 20 до 70є С его удельное электрическое сопротивление уменьшается в 100 раз, поэтому кабели марки КОВЭ с изоляцией из поливинилхлоридного пластика изготовляют только напряжение до 220В. ПВХ пластикаты выпускают в соответствии с ГОСТ 5960-72.

Полиэтиленовая изоляция изготавливается на основе полиэтиленов низкой и высокой плотности. Полиэтилен низкой плотности получают полимеризацией этилена при высоком давлении, а полиэтилен высокой плотности -- при низком давлении с применением металлоорганических катализаторов. Недостатком полиэтилена является способность разрушатся с течением времени при наличии надреза на его поверхности, а также под действием света.

Изоляция из фторопласта (политетрафторэтилена) обладает высокими механическими и диэлектрическими свойствами. Фторопласт используется в диапазоне температур от -90 до +250є С. Фторопласт исключительно стоек к большинству химических веществ.

Изоляционная резина на основе бутилкаучука по сравнению с резиной типа РТИ-1 обладает большим сопротивлением тепловому строению, большой стойкостью к действию влаги, кислот и щелочей. Кабели с такой изоляцией допускают нагрев до 85 є С и имеют более стабильные электроизоляционные свойства в широком диапазоне температур.

Изоляция из кремнийорганической резины длительно устойчива против воздействия температур от -60 до +200є С. Её механические и электрические характеристики выше, чем у резины типа РТИ-1, и стабильнее при изменении температуры. Поэтому такую изоляцию применяют для нагревостойких проводов, а так же для некоторых монтажных кабелей и проводов [14].

Оболочки

Для защиты изоляции жил от воздействия света, влаги, различных химических веществ, а также для предохранения её от механических повреждений кабель снабжают оболочками. Наиболее распространены металлические оболочки из алюминия, свинца и стали.

Алюминиевые оболочки - выполняются гладкими и гофрированными. На поверхности оболочки не допускается риски, вмятины, раковины, посторонние включения. Допускается пайка дефектов на строительной длине кабеля не более чем в трех местах. Алюминиевые оболочки в 2-2,5 раза прочнее свинцовых и имеют повышенную вибростойкость. Их могут использовать в качестве экранов для защиты кабелей от внешних электрических влияний.

Свинцовые оболочки уступают алюминиевым и по герметичности, и по механической прочности, и по стойкости к вибрации, и по весу. Однако они имеют существенное преимущество по отношению к алюминиевым: высокая стойкость в условиях воздействия агрессивных сред (пары щелочи, концентрированные щелочные растворы).

Кабели с невлагоемкой (пластмассовой или резиновой) изоляцией не нуждаются в металлической оболочке и поэтому их изготавливают в пластмассовой или резиновой оболочке.

Широкое применение имеют также комбинированные - металлопластмассовые оболочки (оболочки из полиэтилена с алюминиевыми и стальными лентами), заменяющие свинцовые оболочки.

Защитные покрытия

Кабели в металлических и неметаллических оболочках в зависимости от условий монтажа и эксплуатации изготавливаются с небронированными и бронированными стальными лентами или с оцинкованными стальными проволоками с различными наружными защитными покровами. Защитный покров кабелей состоит из подушки, брони и наружного покрова.

Подушка -- предназначена для предохранения его оболочки от повреждения

стальными лентами или проволоками и защиты её от коррозии.

Броня - предназначена для предохранения кабелей от механических повреждений

(от поедания животными).

Наружный покров - предназначены для предохранения кабелей от проникновения влаги и от механических повреждений.

Защитные покровы могут быть пластмассовые, волокнистые наружные и легкие защитные покрытия.

Кабели, провода и шнуры с резиновой изоляцией для предохранения изоляции от воздействия света и нефтяных продуктов оплетают хлопчатобумажной изоляцией.

Гибкие шнуры оплетают швейной ниткой в три сложения или глянцевой пряжей темных цветов или комбинированной из двух цветов. В зависимости от условий эксплуатации оплетка хлопчатобумажной пряжей может быть пропитана атмосферостойкими или противогнилостными составами.

Провода с резиновой изоляцией для защиты от воздействия масла, бензина и других растворителей, а также озона применяют с покрытием оплетки проводов лаками на основе эфиров целлюлозы. Для защиты хлопчатобумажной пряжи от плесневых грибов лаки применяют с антисептиком оксидефинилом или соединениями фенола[14].

На рисунке 1.1 показаны типичные конструкции силовых кабелей. Силовые кабели состоят из следующих основных элементов: токопроводящих жил, изоляции, оболочек и защитных покровов. Помимо основных элементов в конструкцию силовых кабелей могут входить экраны, нулевые жилы, жилы защитного заземления и заполнители.

Рисунок 1.1 - Сечения силовых кабелей : а) - двужильные силовые кабели с круглыми и сегментными жидами;

б) - трехжильные силовые кабели с поясной изоляцией и с отдельными оболочками; в) - четырехжильные силовые кабели с нулевой жилой секторной, круглой и треугольной формы

1 - токопроводящая жила;2 - нулевая жила;3 - изоляция жилы;4 - экран на токопроводящей жиле 5 - поясная изоляция;6 - заполнитель;7 - экран на изоляции жилы;8 - оболочка;9 - бронепокров 10 - наружный защитный покров.

Токопроводящие жилы предназначены для прохождения электрического тока, они бывают основными и нулевыми. Основные жилы применяются для выполнения основной функции силового кабеля- передачи по ним электроэнергии. Нулевые жилы предназначены для протекания разности токов фаз (полюсов) при неравномерной их нагрузке. Они присоединяются к нейтрале источника тока.

Жилы защитного заземления являются вспомогательными жилами силового кабеля и предназначены для соединения не находящихся под рабочим напряжением металлических частей электроустановки, к которой подключен силовой кабель, с контуром защитного заземления источника тока.

Изоляция служит для обеспечения необходимой электрической прочности токопроводящих жил силового кабеля по отношению друг к другу и к заземленной оболочке (земле).

Экраны используются для защиты внешних цепей от влияния электромагнитных полей токов, протекающих по силовому кабелю, и для обеспечения симметрии электрического поля вокруг жил кабеля.

Заполнители предназначены для устранения свободных промежутков между конструктивными элементами силового кабеля в целях герметизации, придания необходимой формы и механической устойчивости конструкции кабеля.

Оболочки защищают внутренние элементы кабеля от увлажнения и других внешних воздействий.

Защитные покровы предназначены для защиты оболочки силового кабеля от внешних воздействий. В зависимости от конструкции кабеля в защитные покровы входят подушка, бронепокров и наружный покров[15].

Силовые кабели с изоляцией из сшитого полиэтилена и оболочкой из полиэтилена показаны на рисунке 1.2

Рисунок 1.2 - Конструкция кабеля типа ПвПг

1- Токопроводящая медная жила; 2- Полупроводящий слой по жиле; 3- Изоляция; 4-Полупроводящий слой по изоляции; 5-Водонабухающая полупроводящая лента; 6- Экран из медных проволок; 7- Медная лента; 8-Водонабухающая лента; 9 - Оболочка из полиэтилена.

Таблица 1.1 Марки, элементы конструкции и области применения

Марка кабеля

Материал жил

Оболочка

Герметизация

Область применения

АПвП

Алюминий

П

нет

Прокладка в земле и на воздухе при условии обеспечения мер противопожарной защиты

ПвП

Медь

П

нет

То же

АПвПу

Алюминий

Пу

нет

То же на сложных участках трасс

ПвПу

Медь

Пу

нет

Тоже

АПвПг

Алюминий

П

г

Для прокладки в грунтах с повышенной влажностью и в сырых, частично затапливаемых помещениях

ПвПг

Медь

П

г

То же

АПвП2г

Алюминий

П

Тоже

ПвП2г

Медь

П

То же

АПвВ

Алюминий

В

нет

Для прокладки в кабельных сооружениях и производственных помещениях и в сухих грунтах

ПвВ

Медь

В

нет

То же

АПвВнг

Алюминий

Внг

нет

То же для групповой прокладки

ПвВнг

Медь

Внг

нет

Тоже

Типы оболочек: П - оболочка из полиэтилена; Пу - оболочка из полиэтилена, усиленная ребрами жесткости; В - оболочка из ПВХ-пластиката; Внг - оболочка из ПВХ-пластиката пониженной горючести. Типы герметизации:

г - продольная герметизация экрана водонабухающими лентами;

2г - поперечная герметизация алюминиевой лентой, сваренной с оболочкой, в сочетании с продольной герметизацией водонабухающими лентами.

2. Тепловой пробой твердых диэлектриков (вопрос 28)

У твердых диэлектриков могут наблюдаться три основных механизма пробоя

1. электрический;

2. тепловой;

3. электрохимический.

Каждый из указанных механизмов пробоя может иметь место в одном и том же материале в зависимости от характера электрического поля, в котором он находится - постоянного или переменного, импульсного, низкой или высокой частоты; времени воздействия напряжения; наличия в диэлектрике дефектов, в частности закрытых пор; толщины материала; условий охлаждения и т. д. [2, С.198].

Тепловой пробой связан с разогревом диэлектрика вследствие выделяемой в нем энергии при приложении напряжения. Если с повышением температуры выделяемая энергия увеличивается, то при некотором напряжении, называемом напряжением теплового пробоя, тепловыделение в диэлектрике превысит теплоотдачу в окружающую среду. Это обусловливает непрерывный рост температуры во времени и разрушение диэлектрика [2, С.198].

Для загрязненных либо недостаточно очищенных диэлектриков, а также для полупроводников и резистивных материалов механизм пробоя связан с процессами электропроводности и нагревания материалов. Тепловой пробой - разрушение диэлектрика за счет прогрессирующего локального энерговыделения при протекании тока в среде. Тепловой пробой возникает вследствие положительного температурного коэффициента электропроводности диэлектриков, т.е. увеличения электропроводности диэлектрика с ростом температуры. Эту зависимость обычно представляют в виде

, (2.1)

где а - температурный коэффициент зависимости; - начальная температура; - электропроводность при начальной температуре.

Механизм возникновения пробоя представляется следующим образом.

Приложенное напряжение вызывает потери энергии в диэлектрике; при постоянном напряжении они определяются удельной проводимостью диэлектрика , а при переменном - тангенсом угла диэлектрических потерь tg . Так как с повышением температуры величины , а в области повышенных температур - и величины tg растут, то при некотором напряжении возможно возникновение неустойчивого теплового состояния диэлектрика. В этом случае увеличение или tg с повышением температуры, в свою очередь, приводит к увеличению выделяемых в диэлектрике потерь и к дальнейшему росту температуры; это заканчивается тепловым разрушением диэлектрика.

Рисунок 2.1 - Схема диэлектрика к расчёту теплового пробоя:

А, В - электроды; С - диэлектрик

Рассмотрим слой однородного диэлектрика с толщиной = d, находящийся между бесконечными плоскими электродами (рисунок 2.1). Составим дифференциальное уравнение, соответствующее равновесному состоянию системы. В данном случае из соображений симметрии принимаем плоскопараллельное тепловое поле с градиентом температуры по оси z. Поток тепла, входящий за 1 с в параллельный электродам слой диэлектрика толщиной dz и площадью 1 см2, будет меньше потока, выходящего из слоя, на количество тепла, выделяющегося ежесекундно в этом слое вследствие диэлектрических потерь

, (2.2)

где k - коэффициент теплопроводности диэлектрика; - эквивалентная удельная проводимость диэлектрика. Для переменного напряжения

(2.3)

где - относительная диэлектрическая проницаемость; - частота приложенного напряжения.

Напряженность теплового пробоя изменяется обратно пропорционально d.

С учетом связи между и tg по уравнению (2.3) имеем

(2.4)

где k - в кал/с град см; - в вольтах.

Приведенные выше формулы получены в предположении, что в диэлектрике при его разогреве величина напряженности поля не зависит от координаты z. Это допущение можно считать справедливым при переменном напряжении, для которого, если пренебречь током проводимости

(2.5)

Величина для большинства технических диэлектриков слабо зависит от температуры при не очень высоких частотах. При постоянном напряжении

(2.6)

и вследствие зависимости от имеет место существенная зависимость Е от z, причем слои диэлектрика, ближайшие к электродам, нагружаются сильнее, чем центральные.

В этом случае напряженность и напряжение теплового пробоя определяются формулами, аналогичными (2.4 и (2.5), в которых изменяется только функция

(2.7)

(2.8)

При d ? и c ? 1(с) 1,0. Повышение пробивных напряжений для постоянного напряжения при тех же d и объясняется уменьшением напряженности в центральной части диэлектрика, т. е. в области наибольших температур, и затруднением развития теплового пробоя.

При малых толщинах диэлектрика на основании (2.7) и (2.8), пробивное напряжение пропорционально , а пробивная напряженность - обратно пропорциональна. Термическое разрушение диэлектрика может происходить и без неограниченного роста температуры. В стационарном состоянии, когда количество тепла, выделяемого в диэлектрике за счет потерь, равно количеству тепла, отводимого через электроды, установившаяся температура может оказаться слишком высокой. Разрушение в этом случае может наступить в результате оплавления, обугливания и подобных процессов, вызванных диэлектрическим нагревом. Это явление называют тепловым пробоем второго рода [2, С.204].

3. Зависимость пробивного напряжения в твердом диэлектрике от температуры и частоты (вопрос 30)

Исследования пробоя твердых диэлектриков по своему объему значительно превышают исследования всех других видов диэлектриков, что обусловлено более широким применением твердых диэлектриков. Это, в свою очередь, обусловлено их высокими электрическими характеристиками в сочетании с удовлетворительными механическими и теплофизическими характеристиками. Механизм пробоя значительно отличается для разных диэлектриков и даже для одного и того же диэлектрика при разных условиях [16].

Закономерности пробоя твердых диэлектриков:

Температурная зависимость. Эта зависимость зачастую имеет достаточно сложный вид. Например в некоторых случаях электрическая прочность с ростом температуры сначала увеличивается затем уменьшается, в других случаях монотонно возрастает или убывает. Последний случай обычно хорошо описывается моделью теплового пробоя.

Пробивное напряжение, обусловленное нагревом диэлектрика, связано с частотой поля, условиями охлаждения диэлектрика, температурой окружающей среды; оно зависит также от нагревостойкости материала. С повышением температуры электрическая прочность уменьшается.

Для однородных плоских диэлектриков, обладающих потерями, существует приближенный метод расчета пробивного напряжения.

Для расчета U пр полагаем, что пробой происходит при повышенных температурах и в диэлектрике преобладают потери от сквозной электропроводности. Таким образом, учитывая экспоненциальную зависимость тангенса потерь (tg д) от температуры и используя выражение Ра = U щ С-tgд, после преобразований получим

Pа = U2 f е S tgд eб(t - t0) / (1,8 1010 h), (3.1)

где U - приложенное напряжение; f - частота; е. - диэлектрическая проницаемость материала; S - площадь электрода; tg д - тангенс угла потерь диэлектрика при t 0 - температуре окружающей среды; б- температурный коэффициент тангенса угла потерь; t - температура нагретого за счет диэлектрических потерь материала; t 0 - температура электродов, приблизительно равная температуре окружающей среды; h - толщина диэлектрика.

Теплопроводность материала электродов обычно на два - три порядка больше, чем теплопроводность диэлектрика, поэтому полагаем, что теплота из нагревающегося объема диэлектрика передается в окружающую среду через электроды. Мощность, отводимая от диэлектрика, выражается формулой Ньютона

Ра = 2 у S (t - t0 ). (3.2)

где у - коэффициент теплопередачи системы диэлектрик - металл электродов.

Для наглядности дальнейших рассуждений воспользуемся графическим построением, показанным на рисунок 3.1, где в выбранной системе координат изображены экспоненты тепловыделения при различных значениях приложенного напряжения и прямая теплопередачи [16].

Рисунок 3.1 - Пробивное напряжение при тепловом факторе

На рисунке 3.1 изображены: прямая теплопередачи Рт = F(t); экспоненты тепловыделения для трех различных значений приложенного напряжения. При значении напряжения U 1, прямая теплопередачи является секущей кривой тепловыделения, и, следовательно, диэлектрик нагреется до температуры t 1температуры состояния устойчивого равновесия. Напряжение U1 будет неопасным для образца, если нагрев до этой температуры не приведет к механическому и ш химическому разрушению структуры материала образца. Поэтому увеличим напряжение до значения U 1, при котором кривая тепловыделения станет касательной к прямой теплопередачи, что приведет к состоянию неустойчивого теплового равновесия при температуре t. При значении напряжения U 2 кривая тепловыделения пройдет выше прямой теплопередачи, а это означает отсутствие теплового равновесия, т.е. температура будет возрастать до разрушения диэлектрика - до теплового пробоя.

Таким образом, напряжение U , при котором имеет место неустойчивый режим - граничный режим, можно принять за напряжение пробоя U пр.

Его значение можно определить по двум условиям

Ра = Рt, (3.3)

dPa / dt = dP t / dt (3.4)

Решая эти два уравнения относительно Ui с учетом выше обозначенных значений для Ра и Рt, получаем

U2 f е tgд S eб(t - t0) / (1,8 1010 h) = 2 у S (t - t0), (3.5)

U2 f е tgд S eб(t - t0) / (1,8 1010 h) = 2 у S (3.6)

Разделив эти два выражения, получим 1 / б = t - t 0, тогда, подставив его в последнее выражение и решив его относительно U, получим

U2пр = 1,8 1010 2 у h / (f е tgд б) (3.7)

или

Uпр = К ( у h / (f е tgд б)1/2, (3.8)

где К - числовой коэффициент, равный 1,15 10 5, если все величины выражены в единицах системы СИ.

Отсюда следует, что пробивное напряжение будет выше ( изменяется по закону экспоненты), если диэлектрик будет толще, условия теплоотвода лучше (у больше), частота ниже, а е и tgд меньше. При больших е, tgд и при высоких частотах, а также при большом температурном коэффициенте тангенса угла потерь пробивное напряжение будет ниже.

Этот расчет, пригодный только для одномерного потока теплоты, называется графоаналитическим и является приближенным, В нем не учтены перепад температуры по толщине диэлектрика (искажение электрического поля и повышение градиента напряжения в поверхностных слоях), а также теплопроводность материала электродов. Поэтому тепловой пробой часто наступает при напряжении ниже расчетного. Более точные методы расчета разработаны академиками Н.Н. Семеновым и ВА. Фоком только для изделий простейшей конфигурации [16].

4. Нагревостойкость твердых и жидких диэлектриков (вопрос 12)

Общефизические характеристики, такие как плотность материала, геометрические размеры, пористость, вязкость, влагостойкость и др., нормируются для каждого вида материала и, следовательно, подлежат определению при его испытании. Кроме того, при определении других характеристик (механических, электрических) часто требуется знать вышеуказанные параметры с некоторой допускаемой погрешностью [2, С.204].

Нагревостойкость - это способность электроизоляционного материала длительно выдерживать предельно допустимую температуру. Для электроизоляционных материалов, применяемых в электрических машинах и аппаратах, установлено семь классов нагревостойкости (таблица 4.1).

Таблица 4.1 Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости

Предельно допустимая

рабочая температура, °С

Y…………………………………....

90

A……………………………………

105

E…………………………………….

120

B………………………………….....

130

F…………………………………….

155

H…………………………………….

180

C…………………………………….

выше 180

К классу Y относятся органические диэлектрики: полистирол, полиэтилен, волокнистые непропитанные материалы на основе целлюлозы, картон, бумаги, хлопчатобумажные ткани и др.

К классу А относятся пропитанные (лаками и другими составами) хлопчатобумажные и шелковые ткани (лакоткани) и бумаги (лакобумаги), а также многие пластмассы - гетинакс, текстолит и др.

В класс Е входят такие материалы, как триацетатцеллюлозные и лавсановые изоляционные пленки, стеклотекстолит на бакелитовой смоле и др.

В класс В входят все клееные слюдяные материалы, в которых применены клеящие составы класса нагревостойкости А или Е (шеллачные, бакелитовые смолы, лаки на основе этих смол и высыхающих растительных масел).

К классу F относятся материалы на основе слюды, асбеста, стеклянных волокон, склеенных лаками повышенной нагревостойкости (полиуретановыми, эпоксидными и др.).

В класс Н входят кремнийорганические лаки и резины, а также композиционные материалы, состоящие из слюды, стеклянных волокон, асбеста, склеенных при помощи кремнийорганических смол и лаков, отличающихся повышенной стойкостью к теплу.

Класс С составляют преимущественно диэлектрики неорганического происхождения (электрокерамика, стекло, микалекс, асбест и др.). Из органических высокополимерных диэлектриков в этот класс входит политетрафторэтилен (фторопласт-4) [2, С.213].

5. Основные физико-химические характеристики проводниковых материалов (вопрос 16)

кабель диэлектрик напряжение поляризация

Проводниковые материалы в основном служат для передачи электрической энергии и ее непосредственного преобразования в тепловую, механическую и другие виды энергии. Проводниками могут служить твердые тела, жидкости и газы. Твердыми проводниками являются металлы, различного рода сплавы, модификации углерода и композиции на их основе. К жидким проводникам относятся расплавленные металлы и различные электролиты. Большинство металлов являются жидкими проводниками лишь при повышенных температурах [2, С.39].

Электролитами являются водные растворы кислот, солей, щелочей и расплавы ионных соединений.

Все газы и пары металлов становятся проводниками при высокой напряженности приложенного электрического поля. Основным условием при этом является возникновение ударной или фотоионизации и газ может стать проводником с электронной и ионной электропроводимостью. При равенстве количества положительных и отрицательных заряженных частиц в объеме сильно ионизированного газа получают равновесную проводящую среду так называемого четвертого состояния вещества - плазму.

К основным характеристикам проводниковых материалов относятся: удельное сопротивление и удельная проводимость; температурный коэффициент удельного электрического сопротивления; термоэлектродвижущая сила (термоэдс); теплопроводность; теплостойкость; предел прочности на разрыв и относительное удлинение при разрыве (рисунок 5.1).

Знание этих характеристик позволяет оценить электрические, тепловые и механические свойства проводникового материала.

Рисунок 5.1 - Схема строения металлического проводника

Удельное сопротивление материала является основной величиной, характеризующей материал проводника. Для измерения удельного сопротивления проводников обычно пользуются образцами, изготовленными из исследуемого материала в виде отрезков проводов неизменного сечения. В этом случае, зная сопротивление R, площадь поперечного сечения S и длину l образца, удельное сопротивление материала можно вычислить, исходя из следующего известного соотношения

, т.е. . (5.1)

В Международной системе единиц (СИ) измеряют в омметрах (Омм). Однако на практике для оценки удельного сопротивления проводников широко пользуются внесистемной единицей Ом?мм2/м, связанной с единицей СИ соотношением 1 Ом-мм2/м = 10-6 Омм = 1 мкОмм

Удельное сопротивление проводников находится в пределах от 0,016 для серебра до 1,6 мкОм-м для фехралей (жаропрочных сплавов на железохромовой основе), т. е. имеет диапазон в два порядка.

Часто применяется величина, обратная удельному сопротивлению и носящая название удельной проводимости, которая равна

. (5.2)

Так как величина, обратная электрическому сопротивлению и называемая проводимостью, измеряется в единицах Си в сименсах (1/Ом = 1 См), то единица удельной проводимости равна 1 См/м.

Удельное сопротивление (а следовательно, и удельная проводимость) в основном зависят от средней длины свободного пробега электрона в данном проводнике, которая, в свою очередь, зависит от строения материала проводника. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления, а примеси, искажая решетку, приводят к увеличению его. Даже небольшое наличие примеси (приблизительно 0,5 %) приводит к увеличению с на 555 %.

Значительное возрастание с наблюдается при сплавлении двух металлов в том случае, если они образуют твердый раствор, т. е. образуют при затвердевании совместную кристаллизацию и атомы одного металла входят в кристаллическую решетку другого [2, С.57].

Повышенная электропроводность проводниковых материалов обусловлена большим количеством обобществленных электронов, которые классической электронной теорией металлов рассматриваются как электронный газ .

В соответствии с этими представлениями свободные электроны находятся в состоянии хаотического теплового движения со средней скоростью и, сталкиваясь с колеблющимися атомами кристаллической решетки. Среднее расстояние l, проходимое электроном между двумя столкновениями, называют длиной свободного пробега, средний промежуток времени между двумя столкновениями - временем свободного пробега. Время свободного пробега вычисляется по формуле

. (5.3)

Средняя кинетическая энергия электронов, находящихся в непрерывном хаотическом движении, линейно зависит от температуры

, (5.4)

где Дж/К - постоянная Больцмана. Температуре T= 300 К соответствует м/с.

Распределение электронов по энергетическим состояниям, характеризуемое вероятностью р (Е), подчиняется статистике Максвелла - Больцмана и описывается экспоненциальной функцией

. (5.5)

При этом считается, что в каждом энергетическом состоянии может находиться любое число электронов, а при температуре абсолютного нуля энергия всех свободных электронов равна нулю.

Если в проводнике существует электрическое поле, то под действием этого поля электроны приобретают ускорение, пропорциональное напряженности поля Е, в результате чего возникает направленное движение электронов со средней скоростью

. (5.6)

Такое направленное движение называют дрейфом электронов, оно накладывается на хаотическое движение электронов. Скорость дрейфа значительно меньше скорости теплового движения. Направленное движение электронов создает ток, плотность которого равна

, (5.7)

где n - концентрация электронов.

Этот ток пропорционален напряженности поля, коэффициентом пропорциональности является удельная электрическая проводимость

. (5.8)

Классическая теория, давая в целом правильное представление о механизме электропроводности, не учитывает распределение электронов по энергетическим состояниям. Поэтому она не может объяснить ряд противоречий теории с опытными данными, в частности, классическая теория не в состоянии объяснить низкую теплоемкость электронного газа. Более полное представление о процессах, происходящих внутри вещества, дает современная квантовая физика [2, С.58].

Электропроводность создается свободными электронами, способными покинуть атомы. Такой способностью обладают только валентные электроны. Поэтому в дальнейшем речь пойдет только об электронах, находящихся на энергетических уровнях валентной зоны.

Квантовая физика исходит из того, что электроны могут находиться на строго определенных энергетических уровнях, энергетическая плотность которых вблизи границ энергетических зон изменяется по параболическому закону (рисунок 5.2 а)

, (5.9)

где - эффективная масса электрона, учитывающая взаимодействие электрона с периодическим полем кристаллической решетки, то есть это масса свободного электрона, который под действием внешней силы смог бы приобрести такое же ускорение, как и электрон в кристалле под действием той же силы.

Рисунок 5.2 - Энергетическая плотность энергетических уровней электронов

В соответствии с принципом Паули на каждом энергетическом уровне могут находиться два электрона с противоположными спинами. Если концентрация свободных электронов равна n, то при температуре абсолютного нуля они займут n/2 самых низких энергетических уровней. Наиболее высокий из занятых уровней называется уровнем Ферми и обозначается Ет. При нагреве кристалла электронам сообщается тепловая энергия порядка kT, вследствие чего некоторые электроны, находящиеся вблизи уровня Ферми, переходят на более высокие энергетические уровни. Избыток энергии, получаемый электронами при нагреве проводника, очень незначителен по сравнению с энергией Ферми, при комнатной температуре он равен 0,026 эВ (1 эВ = 1,61019 Дж). Поэтому средняя энергия свободных электронов сохраняется практически неизменной, а незначительное изменение средней энергии означает малую теплоемкость электронного газа. В квантовой теории вероятность заполнения энергетических уровней электронами определяется функцией Ферми-Дирака (рисунок 5.2,б)

. (5.10)

Из формулы (5.10) следует, что уровень Ферми представляет собой энергетический уровень, вероятность заполнения которого равна 1/2.

Распределение электронов по энергиям (рисунок 5.2, в) определяется энергетической плотностью разрешенных уровней и вероятностью их заполнения

. (5.11)

Концентрация электронов может быть найдена путем интегрирования по всем заполненным состояниям

. (5.12)

Если считать, что атомы в металле ионизированы однократно, то концентрация свободных электронов будет равна концентрации атомов, которая рассчитывается по формуле

, (5.13)

где d - плотность материала;

А - атомная масса;

N0 - число Авогадро (6,02 ? 1023 моль-1).

Следовательно, уровень Ферми, отсчитанный от дна валентной зоны, может быть найден из уравнения (5.12)

. (5.14)

Величина энергии Ферми для различных металлов лежит в пределах от 3 до 15 эВ. Если в проводнике создать электрическое поле с напряженностью Ет , то электроны, расположенные вблизи уровня Ферми, переходят на более высокие энергетические уровни, приобретая добавочную скорость направленного движения

, (5.15)

где фf - время свободного пробега;

uf - тепловая скорость быстрых электронов, обладающих энергией, близкой к энергии EF.

Электроны, находящиеся на глубинных уровнях, вероятность заполнения которых равна 1, непосредственно реагировать на внешнее поле не могут, так как все ближайшие энергетические уровни заняты. Однако несмотря на это они участвуют в процессе электропроводности, перемещаясь на более высокие энергетические уровни по мере их освобождения. Поле начинает влиять на эти электроны тогда, когда они оказываются вблизи уровня Ферми. Таким образом, под действием поля в движение приходит весь «коллектив» электронов. Скорость движения этого «коллектива» определяется скоростью движения электронов, находящихся вблизи уровня Ферми. С учетом этого обстоятельства выражение для плотности тока принимает вид

, (5.16)

где - удельная электрическая проводимость.

Учтем, что

. (5.17)

Найдем отсюда и, подставив найденное значение в (5.16), получим

. (5.18)

Концентрация свободных электронов в чистых металлах различается незначительно. Поэтому удельная электрическая проводимость металлов определяется средней длиной свободного пробега электронов, которая зависит от структуры атомов и типа кристаллической решетки [2, С.61].

В чистых металлах с идеальной кристаллической решеткой единственной причиной, ограничивающей длину свободного пробега электронов, являются тепловые колебания атомов в узлах кристаллической решетки, амплитуда которых возрастает с ростом температуры. Интенсивность столкновений электронов с атомами, то есть их рассеяние, прямо пропорциональна поперечному сечению сферического объема, занимаемого колеблющимся атомом, и концентрации атомов. Следовательно, длина свободного пробега будет равна

. (5.19)

Потенциальная энергия атома, отклонившегося на величину от узла кристаллической решетки, определяется соотношением

. (5.20)

Здесь - коэффициент упругой связи, которая стремится вернуть атом в положение равновесия.

Поскольку средняя энергия колеблющегося атома равна kТ, то

. (5.21)

Решая (5.21) относительно ()2 и подставляя полученный результат в (5.19), определяем среднюю длину свободного пробега электрона

. (5.22)

Следовательно, удельная электрическая проводимость с ростом температуры уменьшается, а удельное электрическое сопротивление возрастает. Влияние температуры на сопротивление проводника оценивают температурным коэффициентом удельного сопротивления

. (5.23)

У большинства металлов при комнатной температуре 0,004 К-1. Если в металле имеются примеси, то помимо рассеяния на основных атомах возникает рассеяние электронов на примесных атомах, в результате чего уменьшается длина свободного пробега, определяемая соотношением

. (5.24)

Здесь и характеризуют рассеяние на тепловых колебаниях основных атомов и примесей соответственно.

Этим объясняется то, что чистые металлы имеют более низкое удельное сопротивление по сравнению со сплавами.

На высоких частотах плотность тока изменяется по сечению проводника. Она максимальна на поверхности и убывает по мере проникновения в глубь проводника. Это явление называется поверхностным эффектом.

Неравномерное распределение тока объясняется действием магнитного поля тока, протекающего по проводнику. Магнитный поток, сцепленный с проводом, пропорционален току

Ф = Li, (5.25)

где L - индуктивность проводника.

Если ток изменяется по синусоидальному закону i = Im sin щt, то изменение магнитного потока вызывает появление ЭДС самоиндукции

. (5.26)

Эта ЭДС имеет направление, противоположное току в проводе, и тормозит его изменение в соответствии с законом Ленца.

При прохождении переменного тока переменное магнитное поле возникает как вокруг проводника, так и внутри него. При этом потокосцепление максимально для внутренних слоев и минимально для внешних. Поэтому ЭДС самоиндукции оказывается максимальной в центре проводника и уменьшается в направлении к поверхности. Соответственно, и плотность тока наиболее значительно ослабляется в центральной части проводника и в меньшей степени - у поверхности, иначе говоря, происходит вытеснение тока к поверхности проводника. Оно тем сильнее, чем выше частота [2, С.63].

Распределение плотности тока по сечению проводника подчиняется экспоненциальному закону

, (5.27)

где j0 - плотность тока на поверхности;

z - расстояние, измеряемое от поверхности;

Д - глубина проникновения тока.

Глубина проникновения тока, выраженная в миллиметрах, равна расстоянию, на котором плотность тока уменьшается в е = 2,72 раз по отношению к своему значению на поверхности проводника. Она пропорциональна удельному сопротивлению с [Ом?м] и обратно пропорциональна частоте f [МГц]

. (5.28)

В случае сильно выраженного поверхностного эффекта, когда ток протекает по тонкому поверхностному слою, толщина которого много меньше диаметра провода d, экспоненциальное распределение тока может быть заменено однородным распределением с постоянной плотностью тока в пределах тонкого слоя толщиной Д, на основании чего можно ввести понятие эквивалентной площади сечения проводника, занятой током

. (5.29)

Поскольку площадь сечения, через которое протекает ток, уменьшилась, то сопротивление провода переменному току R~ стало больше, чем его сопротивление постоянному току R0, что учитывают коэффициентом увеличения сопротивления

. (5.30)

Полученная формула справедлива при Д « d.

Электрические свойства тонких пленок отличаются от свойств объемных проводников. Это объясняется изменением структуры проводящих пленок и, соответственно, механизма перемещения электрических зарядов, создающих электрический ток. На рисунке 5.3 показаны три области, соответствующие трем различным механизмам протекания тока. При напылении пленки сначала образуются отдельные разрозненные островки (область 1), переход электронов происходит через узкие диэлектрические зазоры, что обусловлено термоэлектронной эмиссией и туннельным эффектом. В этой области удельное сопротивление очень велико, а температурный коэффициент отрицателен, так как с ростом температуры облегчается переход электронов от островка к островку [2, С.64].

Рисунок 5.3 - Различные механизмы протекания тока в тонких плёнках

По мере напыления пленки происходит образование проводящих цепочек между отдельными островками и начинает работать обычный механизм электропроводности, удельное сопротивление пленки уменьшается, а температурный коэффициент становится положительным (область 2). При дальнейшем напылении островки исчезают и образуется сплошная пленка толщиной около 0,1 мкм (область 3). На этом участке удельное сопротивление выше, чем удельное сопротивление монолитного проводника, что объясняется размерным эффектом, суть которого состоит в сокращении длины свободного пробега электронов вследствие их отражения от поверхности пленки. Полагая, что процессы рассеяния электронов в объеме и на поверхности независимы, можно для длины свободного пробега электронов в пленке записать

. (5.31)

Здесь l и ls - длины свободного пробега электронов при рассеянии в объеме и на поверхности.

Приближенно полагая длину свободного пробега при рассеянии на поверхности lS равной толщине пленки д, получим

. (5.32)

Здесь с - удельное электрическое сопротивление монолитного проводника.

Сопротивление пленки определяется по формуле

, (5.33)

где l - длина проводящей пленки;

S - площадь поперечного сечения пленки.

Учитывая, что S = дщ,

где щ - ширина пленки, получаем

. (5.34)

Здесь - удельное поверхностное сопротивление. Величина сS равна сопротивлению пленки при условии l = щ, то есть сS представляет собой сопротивление пленки, имеющей форму квадрата.

Подбором толщины пленки можно изменять величину сS независимо от удельного сопротивления материала.

В микроэлектронике в качестве соединительных пленок применяют пленки из чистого металла, чаще всего алюминия, а в качестве резистивных пленок - тугоплавкие металлы (вольфрам, тантал, рений, хром, молибден) и сплавы никеля с хромом [2, С.65].

6. Классификация магнитных материалов и требования к ним (вопрос 22)

Магнитными веществами, или магнетиками, называются вещества, обладающие магнитными свойствами. Под магнитными свойствами понимается способность вещества приобретать магнитный момент, т.е. намагничиваться при воздействии на него магнитного поля. В этом смысле все вещества в природе являются магнетиками, так как при воздействии магнитного поля приобретают определенный магнитный момент. Этот результирующий макроскопический магнитный момент М представляет собой сумму элементарных магнитных моментов mi - атомов данного вещества

(6.1)

Элементарные магнитные моменты могут быть либо наведены магнитным полем, либо существовать в веществе до наложения магнитного поля; в последнем случае магнитное поле вызывает их преимущественную ориентацию [2, С.298].

Магнитные свойства различных материалов объясняются движением электронов в атомах, а также тем, что электроны и атомы имеют постоянные магнитные моменты.

Вращательное движение электронов вокруг ядер атомов аналогично действию некоторого контура электрического тока и создает магнитное поле, которое на достаточном расстоянии представляется как поле магнитного диполя с магнитным моментом, значение которого определяется произведением тока и площади контура, который ток обтекает. Магнитный момент является векторной величиной и направлен от южного полюса к северному. Такой магнитный момент называется орбитальным.

Сам электрон имеет магнитный момент, который называется спиновым магнитным моментом.

Атом представляет собой сложную магнитную систему, магнитный момент которой является результирующей всех магнитных моментов электронов, протонов и нейтронов. Так как магнитные моменты протонов и нейтронов существенно меньше, чем магнитные моменты электронов, магнитные свойства атомов по существу определяются магнитными моментами электронов. У имеющих техническое значение материалов это прежде всего спиновые магнитные моменты [2,С.298].

Результирующий магнитный момент атома при этом определяется векторной суммой орбитальных и спиновых магнитных моментов отдельных электронов в электронной оболочке атомов. Эти два вида магнитных моментов могут быть частично или полностью взаимно скомпенсированы.

В соответствии с магнитными свойствами материалы делятся на следующие группы:

а) диамагнитные (диамагнетики),

б) парамагнитные (парамагнетики),

в) ферромагнитные (ферромагнетики),

г) антиферромагнитные (антиферромагнетики),

д) ферримагнитные (ферримагнетики),

е) метамагнитные (метамагнетики).

А) Диамагнетики

Диамагнетизм проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.

Диамагнетизм свойствен всем веществам. При внесении какого-либо тела в магнитное поле в электронной оболочке каждого его атома, в силу закона электромагнитной индукции, возникают индуцированные круговые токи, т. е. добавочное круговое движение электронов вокруг направления магнитного поля. Эти токи создают в каждом атоме индуцированный магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему магнитному полю (независимо от того, имелся ли первоначально у атома собственный магнитный момент или нет и как он был ориентирован). У чисто диамагнитных веществ электронные оболочки атомов (молекул) не обладают постоянным магнитным моментом. Магнитные моменты, создаваемые отдельными электронами в таких атомах, в отсутствие внешнего магнитного поля взаимно скомпенсированы. В частности, это имеет место в атомах, ионах и молекулах с целиком заполненными электронными оболочками в атомах инертных газов, в молекулах водорода, азота.

Удлинённый образец диамагнетика в однородном магнитном поле ориентируется перпендикулярно силовым линиям поля (вектору напряженности поля). Из неоднородного магнитного поля он выталкивается в направлении уменьшения напряжённости поля [2, С.301].

Индуцированный магнитный момент I, приобретаемый 1 молем диамагнитного вещества, пропорционален напряженности внешнего поля H, т.е. I=чН. Коэффициент ч называется молярной диамагнитной восприимчивостью и имеет отрицательный знак (т.к. I и H направлены навстречу друг другу). Обычно абсолютная величина ч мала (~10-6), например для 1 моля гелия ч = -1,9·10-6.

Классическими диамагнетиками являются так называемые инертные газы (He, Ne, Ar, Kr и Xe), атомы которых имеют замкнутые внешние электронные оболочки.

К диамагнетикам также относятся: инертные газы в жидком и кристаллическом состояниях; соединения, содержащие ионы, подобные атомам инертных газов (Li+, Be2+ , Al3+ , O2- и т.д.); галоиды в газообразном, жидком и твердом состояниях; некоторые металлы (Zn, Au, Hg и др.). Диамагнетиками, точнее сверхдиамагнетиками, с чД = - (1/4р) ? 0,1, являются сверхпроводники; у них диамагнитный эффект (выталкивание внешнего магнитного поля) обусловлен поверхностными макроскопическими токами. К диамагнетикам относится большое число органических веществ, причём у многоатомных соединений, особенно у циклических (ароматических и др.), магнитная восприимчивость анизотропна (таблица 6.1).

Таблица 6.1 Диамагнитная восприимчивость ряда материалов

Вещество

чД ·106

Вещество

чД ·106

Металлы

Медь Cu …………

Бериллий Be………

Цинк Zn…………

Серебро Ag ………

Золото Au …………

Ртуть Hg …………

Висмут Bi …………

Неорганические

соединения

H2O (жидкость)…..

CO2 (газ)……….…

NaCl (кристалл)…..

Al2O3 (кристалл)…..

CuCl (кристалл)……

PbO (кристалл)…..

AgNO3 (кристалл)…

PbSO4 (кристалл)…

BiCl3 (кристалл)…

-5,41

-9,02

-11,4

-21,5

-29,6

-33,4

-284 (ср.)

-13 (0є C)

-21

-30,3

-37,0

-40,0

-42,0

-43,7

-69,7

-100

Органические

соединения

Метан CH4 (газ)…

Бензол C6H6

(жидкость)………....

Анилин C6H7

(жидкость)…………

Нафталин C10H6 (жидкость)…………

Октан C8H6

(жидкость)…………

Дифениламин C12H11N

(кристалл) …………

Тетрафенилатилен C21H20 (кристалл)…

-16,9

-54,8 (ср.)

-62,9

-91,8 (ср.)

-96,8

-107

-217

Б) Парамагнетики

Парамагнетизм - свойство веществ (парамагнетиков) намагничиваться в направлении внешнего магнитного поля, и, в отличие от ферро-, ферри- и антиферромагнетизма, парамагнетизм не связан с магнитной атомной структурой, а в отсутствие внешнего магнитного поля намагниченность парамагнетика равна нулю.

Парамагнетизм обусловлен в основном ориентацией под действием внешнего магнитного поля Н собственных магнитных моментов µ частиц парамагнетического вещества (атомов, ионов, молекул). Природа этих моментов может быть связана с орбитальным движением электронов, их спином, а также (в меньшей степени) со спином атомных ядер. При µН « kТ, где Т - абсолютная температура, намагниченность парамагнетика М пропорциональна внешнему полю: М=чН, где ч - магнитная восприимчивость. В отличие от диамагнетизма, для которого ч < 0, при парамагнетизме восприимчивость положительна; её типичная величина при комнатной температуре (Т ? 293 К) составляет 10-7 - 10-4.

Парамагнетик - магнетик с преобладанием парамагнетизма и отсутствием магнитного атомного порядка. Парамагнетик намагничивается в направлении внешнего магнитного поля, т.е. имеет положительную магнитную восприимчивость, которая в слабом поле при не очень низкой температуре (т.е. вдали от условий магнитного насыщения) не зависит от напряженности поля. Поскольку свободная энергия парамагнетика понижается в магнитном поле, при наличии градиента поля он втягивается в область с более высоким значением напряжённости магнитного поля. Конкуренция диамагнетизма, появление дальнего магнитного порядка или сверхпроводимости ограничивают область существования вещества в парамагнитном состоянии[2, С.299].


Подобные документы

  • Сверхпроводники и возможности их применения в электротехнике. Зависимость пробивного напряжения в твердом диэлектрике от температуры и частоты. Поляризация диэлектриков и диэлектрическая проницаемость. Нагревостойкость твердых и жидких диэлектриков.

    реферат [968,8 K], добавлен 12.02.2013

  • Основные сведения о строении вещества, классификация и общие характеристики электротехнических материалов. Принципы использования электротехнических материалов в устройствах электротехники и электроэнергетики. Силы электростатического притяжения.

    презентация [706,2 K], добавлен 29.01.2011

  • Формы электрических полей. Симметричная и несимметричная система электродов. Расчет максимальной напряженности кабеля. Виды и схема развития пробоя твердого диэлектрика. Характеристики твердой изоляции. Зависимость пробивного напряжения от температуры.

    контрольная работа [91,5 K], добавлен 28.04.2016

  • Определение тока утечки, мощности потери, удельных диэлектрических потерь при включении образца на переменное напряжение. Классификация и основные свойства полупроводниковых материалов. Физический смысл и область использования магнитных материалов.

    контрольная работа [93,7 K], добавлен 28.10.2014

  • Понятие молекулярной связи как самой непрочной, ее сущность и особенности. Зависимость эффекта дипольной поляризации в вязкой среде от увеличения ее температуры. Зависимость диэлектрической проницаемости тел от структурных особенностей диэлектрика.

    контрольная работа [19,8 K], добавлен 06.04.2009

  • Электрические, тепловые, влажностные и химические свойства диэлектриков. Поляризация мгновенная и протекающая замедленно. Дипольно-релаксационная поляризации. Общее понятие о доменах, сопротивление изоляции. Классификация диэлектриков по виду поляризации.

    презентация [964,7 K], добавлен 28.07.2013

  • Диэлектрические материалы для создания электрической изоляции токоведущих частей в электротехнических и радиоэлектронных устройствах. Электропроводность диэлектриков. Образцы для определения электрической прочности твердых электроизоляционных материалов.

    реферат [201,9 K], добавлен 07.11.2013

  • Понятие диэлектрической проницаемости как количественной оценки степени поляризации диэлектриков. Зависимость диэлектрической проницаемости газа от радиуса его молекул и их числа в единице объема, жидких неполярных диэлектриков от температуры и частоты.

    презентация [870,1 K], добавлен 28.07.2013

  • Основные критерии классификации магнитных материалов. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Свойства ферритов и магнитодиэлектриков. Магнитные материалы специального назначения. Анализ магнитных цепей постоянного тока.

    курсовая работа [366,4 K], добавлен 05.01.2017

  • Классификация электротехнических материалов. Энергетические уровни. Проводники. Диэлектрические материалы. Энергетическое отличие металлических проводников от полупроводников и диэлектриков. Полупроводниковые материалы. Магнитные материалы и магнетизм.

    реферат [1022,4 K], добавлен 15.04.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.