Полупроводники: свойства, применение

Строение твердого тела. Понятие об энергетических уровнях. Классификация тел по электропроводности. Механизм образования электронной и дырочной проводимости. Примесные и собственные полупроводники. Области применения полупроводниковых материалов.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 12.02.2014
Размер файла 475,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА 1. ОСНОВЫ ФИЗИКИ ПОЛУПРОВОДНИКОВ

1.1 Полупроводники

1.2 Строение твердого тела

1.3 Понятие об энергетических уровнях

1.4 Классификация тел по электропроводности

1.5 Собственная проводимость полупроводника

ГЛАВА 2. ПОЛУЧЕНИЕ ПОЛУПРОВОДНИКОВ

2.1 Примесные и собственные полупроводники

2.2 Получение полупроводника n - типа

2.3 Получение полупроводника p - типа

2.4 Электронно-дырочный переход

ГЛАВА 3. ПРИМЕНЕНИЕ ПОЛУПРОВОДНИКОВ

3.1 Тепловые сопротивления

3.2 Фотосопротивления

3.3 Термоэлементы

3.4 Холодильники и нагреватели

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Полупроводники как особый класс веществ, были известны еще с конца XIX века, только развитие теории твердого тела позволила понять их особенность. Полупроводниками называют вещества, обладающие электронной проводимостью, занимающей промежуточное положение между металлами и изоляторами. От металлов они отличаются тем, что носители электрического тока в них создаются тепловым движением, светом, потоком электронов и т.п. источником энергии. Без теплового движения (вблизи абсолютного нуля) полупроводники являются изоляторами. С повышением температуры электропроводность полупроводников возрастает и при расплавлении носит металлический характер.

Задолго до этого были обнаружены:

1. эффект выпрямления тока на контакте металл-полупроводник

2. фотопроводимость.

Были построены первые приборы на их основе.

О.В. Лосев доказал возможность использования полупроводниковых контактов для усиления и генерации колебаний -- кристаллические детекторы. Однако в последующие годы кристаллические детекторы были вытеснены электронными лампами и лишь в начале 50-х гг. с открытием транзисторного эффекта (Бардин, Браттейн, Шокли, США, 1948) началось широкое использование Полупроводники (главным образом Ge и Si) в радиоэлектронике. Одновременно началось интенсивное изучение физики Полупроводники, чему способствовали успехи, достигнутые в технологии очистки кристаллов и их легирования. Интерес к оптическим свойствам Полупроводники возрос в связи с открытием вынужденного излучения в GaAs (Д. Н. Наследов, А.А. Рогачёв, С.М. Рывкин, Б.В. Царенков, СССР, 1962), что привело к созданию полупроводниковых лазеров вначале на р--n-переходе, а затем на гетеропереходах (Ж.И. Алферов и др.).

Широкие исследования Полупроводники в СССР были начаты ещё в конце 20-х гг. под руководством А.Ф. Иоффе в Физико-техническом институте АН СССР. Многие из основных теоретических понятий физики Полупроводники впервые сформулировали Я.И. Френкель, И.Е. Тамм, Б.И. Давыдов, Е.Ф. Гросс, В.А. Жузе, В.Е. Лашкарев, В.М. Тучкевич и др. Они же внесли значительный вклад в изучение Полупроводники и их техническое применение.

В последнее время большее распространение получили приборы, основанные на действии полупроводников. Эти вещества стали изучать сравнительно недавно, однако без них уже не может обойтись ни современная электроника, ни медицина, ни многие другие науки.

Целью данной курсовой работы является и систематизирование знаний по теме «Основы физики полупроводников» и изучить границы применимости данного явления.

Для достижения этой цели были поставлены следующие задачи:

1) проанализировать учебную и методическую литературу по данной теме;

2) изучить явления полупроводников и исследовать применения данного явления;

полупроводник электропроводность примесный энергетический

1. ОСНОВЫ ФИЗИКИ ПОЛУПРОВОДНИКОВ

1.1 Полупроводники

Полупроводниками называют вещества, обладающие электронной проводимостью, занимающей промежуточное положение между металлами и изоляторами.

От металлов они отличаются тем, что носители электрического тока в них создаются тепловым движением, светом, потоком электронов и т.п. источником энергии. Без теплового движения (вблизи абсолютного нуля) полупроводники являются изоляторами. С повышением температуры электропроводность полупроводников возрастает и при расплавлении носит металлический характер.

К полупроводниковым материалам относится большинство минералов, неметаллические элементы IV, V, VI групп периодической системы Менделеева, неорганические соединения (оксиды, сульфиды), некоторые сплавы металлов, органические красители. Широко применяемыми полупроводниковыми материалами являются элементы IV группы периодической системы Менделеева - германий и кремний11 Стриха В.И. Теоретические основы контакта металл-полупроводник.

Это вещества, кристаллизирующиеся в решётке типа алмаза. Такая решётка представляет собой тетраэдр, по вершинам которого расположены четыре атома, окружающие атом, находящийся в центре тетраэдра. Здесь каждый атом связан с четырьмя ближайшими соседями силами ковалентной связи, так как каждый из них имеет четыре внешних валентных электрона.

При температурах около абсолютного нуля в идеальном кристалле кремния или германия все ковалентные связи заполнены, а все электроны связаны с атомами и не могут участвовать в процессе электропроводности. Чтобы электрон мог проводить электрический ток, нужно затратить некоторую работу для его освобождения из ковалентной связи.

Это происходит при освещении кристалла. Свет, как известно, представляет собой поток частиц - фотонов, или квантов света. Если энергия фотона больше или равна энергии разрыва связи, то электрон может стать свободным и сможет принимать участие в процессе электропроводности. Здесь происходит переход электронов из наружной заполненной зоны в зону проводимости. При этом вместо ушедшего электрона в кристалле появляется незаполненная связь, которая может быть занята электроном из другой какой-нибудь связи. Одновременно в ранее заполненной зоне образуется дырка. Таким образом, незаполненная связь или дырка может перемещаться по кристаллу. Эта незаполненная связь эквивалентна положительной частице, двигающейся по кристаллу под действием внешнего электрического поля. В действительности дырки не представляют собой положительно заряженных частиц. Очевидно, что в идеальном кристалле количество дырок будет равно количеству свободных электронов.

С прекращением освещения электропроводность кристалла начнёт уменьшаться, так как электроны, которые освободились под действием света, будут размещаться в связях, т.е. произойдёт рекомбинация электронов и дырок. Этот процесс заканчивается в течение тысячных долей секунды или меньше и кристалл снова перестаёт проводить электрический ток. Явление, при котором возникает электрический ток под действием света в кристалле, помещённом во внешнее электрическое поле, называется фотопроводимостью.

Наименьшая энергия, которая необходима для перевода электрона из заполненной зоны в зону проводимости, определяет собой величину энергетического интервала между этими двумя или ширину запретной зоны.

Для разрыва валентных связей при очень низких температурах необходима энергия, равная 1.2 эв (~0.1922 адж) для кремния и 0.75 эв (~0.1201 адж) для германия. В световом луче энергия фотонов значительно выше: так, для жёлтого света она составляет 2 эв (0.3204 адж).

Освобождение электронов может произойти и другим путём, например при нагревании кристалла, когда энергия колебания атомов в кристаллической решётке может увеличиться настолько, что связи разрушатся, и электроны смогут освободиться. Этот процесс также протекает с образованием дырок.

В идеальных кристаллах, где количества электронов и дырок равны, проводимость называется собственной. Так как удельное сопротивление идеальных кристаллов полупроводников зависит только от температуры, то величина его может служить характеристикой данного полупроводника. Сопротивление идеальных кристаллов называют собственным сопротивлением полупроводника, например, для кремния при 300°К собственное удельное сопротивление равно 63600 ом*см (636 ом*м), а для германия при той же температуре 47 ом*см (0.470 ом*м).

Идеальные кристаллы, не содержащие никаких примесей, встречаются очень редко. Примеси в кристаллах полупроводников могут увеличивать количество электронов или дырок. Было установлено, что введение одного атома сурьмы в кубический сантиметр германия или кремния приводит к появлению одного электрона, а одного атома бора - к появлению одной дырки.

1.2 Строение твердого тела

Все тела состоят из атомов. Атом состоит из положительно заряженного ядра, вокруг которого вращаются электроны. Число электронов равно порядковому номеру элемента в периодической системе Менделеева. Электрон имеет отрицательный заряд:

Ядро атома содержит положительно заряженные протоны, заряд протона равен заряду электрона. Число протонов в ядре равно числу электронов, т.е. атом в целом - нейтральная частица.

Электроны, имеющие большую энергию, находятся дальше от ядра; они вращаются вокруг ядра по определенным орбитам.

Размещено на http://www.allbest.ru/

Рисунок 1 - Строение атома и

Количество электронов, находящихся на определенной орбите можно определить по формуле:

, (1)

где n - главное квантовое число, соответствующее номеру электронной орбиты.

В соответствии с формулой (1) на первом энергетическом уровне может вращаться только 2 электрона: , на 2-ом - , на 3-ем- .

У атомов полупроводников на внешнем энергетическом уровне находится 4 электрона, которые называются валентными. Внешний энергетический слой называется валентным слоем. Атомы полупроводников объединяются в кристаллическую решетку симметричного типа, т.е. образуются ковалентные или парно-электронные связи (рис. 2) и рассмотрим строение кристаллической решетки германия (рис. 3).

Размещено на http://www.allbest.ru/

Рисунок 2 - Ковалентная связь в кристалле кремния

Размещено на http://www.allbest.ru/

Рисунок 3 - Плоскостная схема кристаллической решетки германия

Каждый атом германия образует 4 ковалентные связи с четырьмя соседними атомами. Ковалентная связь образуется парой электронов, принадлежащих соседним атомам и вращающихся по орбитам, которые охватывают оба атома. Сила отталкивания между ядрами не дает им сближаться, а сила притяжения между каждым ядром и электроном мешает их удалению, т.е. такая связь очень прочна и требуется большая энергия для ее разрыва.

1.3 Понятие об энергетических уровнях и энергетических зонах

Электроны в одиночном атоме вращаются вокруг ядра по определенным орбитам, т.е. каждый электрон атома может обладать только определенным количеством энергии. Возможные значения энергии электрона называются энергетическими уровнями. Чем дальше орбита электрона находится от ядра, тем более высокий уровень энергии соответствует этой орбите. При взаимодействии атомов энергетические уровни смещаются, образуя энергетические зоны.

Энергетические уровни валентных электронов образуют валентную зону (ВЗ). Выше ВЗ расположена зона проводимости (ЗП) - это совокупность уровней свободных электронов, потерявших связь с атомом. Между ВЗ и ЗП находится запрещенная зона (ЗЗ) - зона, которая не может быть занята электронами данного вещества.

Переход электронов возможен из одной разрешенной зоны в другую при следующих условиях: - в другой зоне имеется хотя бы один свободный энергетический уровень; - у электрона достаточно энергии, чтобы преодолеть ЗЗ.

Если валентный электрон получил энергию для преодоления ЗЗ, то он переходит в ЗП и становится свободным носителем заряда. Если этой энергии недостаточно для преодоления ЗЗ, то электрон, лишь переходит на более удаленную от ядра орбиту, а затем возвращается на свою орбиту, отдавая полученную энергию в виде электромагнитной волны.

Размещено на http://www.allbest.ru/

Рисунок 4 - Энергетическая диаграмма полупроводника

1.4 Классификация тел по электропроводности

Все твердые тела делятся на 3 вида:

- проводники (рисунок 5а);

- полупроводники (рисунок 5б);

- диэлектрики (рисунок 5в).

Электрическая проводимость материалов зависит от наличия и ширины ЗЗ.

Размещено на http://www.allbest.ru/

а) б) в)

Рисунок 5 - Энергетические диаграммы материалов

У металлов отсутствует ЗЗ, следовательно, электроны даже при комнатной температуре могут свободно переходить в ЗП. Этим объясняется большая электропроводность металлов.

У полупроводников ширина ЗЗ: .

В частности у Ge ;

у Si .

Поэтому, учитывая энергию электрона при комнатной температуре - 0,025 эВ, электропроводность чистого полупроводника будет незначительна.

У диэлектрика ширина ЗЗ: , следовательно, в обычных условиях его электропроводность равна нулю.

1.5 Собственная электропроводность полупроводников

В полупроводнике существует электропроводность двух видов:

1) электронная - это движение электронов в ЗП;

2) дырочная - это движение дырок в ВЗ.

Дырка - это свободный энергетический уровень в ВЗ, оставшийся на месте ушедшего электрона. Она имеет положительный заряд, равный по величине заряду электрона. Дырка может быть заполнена другим электроном - валентным, перешедшим от соседнего атома или свободным. В первом случае исчезает одна дырка, но появляется другая в валентной оболочке соседнего атома, в результате чего дырка будет перемещаться в направлении, обратном движению электронов.

Процесс образования пары электрон проводимости - дырка проводимости называется генерацией.

Процесс исчезновения пары электрон проводимости - дырка проводимости называется рекомбинацией (рисунок 6).

Механизм дырочной проводимости отличается от электронной. При дырочной проводимости перемещаются электроны, но на ограниченные расстояния - от данных атомов к соседним.

Размещено на http://www.allbest.ru/

Рисунок 6 - Образование собственной электропроводности

Проводимость, обусловленная движением электронов в ЗП называется n-проводимостью, а движение дырок в ВЗ - р-проводимостью.

Если к полупроводнику приложить напряжение, то под воздействием созданного им электрического поля в полупроводнике свободные электроны будут перемещаться (дрейфовать) в сторону положительного электрода. В результате этого в цепи будет протекать обычный электронный ток (рисунок 7).

Рисунок 7 - Протекание токов в ПП

Одновременно с этим к положительной пластине будет перемещаться валентные электроны из ковалентной связи соседних атомов. На месте электрона возникает дырка. В образовавшуюся дырку с другой ковалентной связи атомов перейдет свободный электрон и т.д., дырка перемещается от одного края к другому, при этом образовывается ток, получивший название - дырочный.

Таким образом, в полупроводнике существует два типа токов, противоположных друг другу.

Движение носителей заряда под действием электрического поля называют дрейфом носителей, а ток проводимости - дрейфовым током.

(2)

Ток дрейфа имеет электронную и дырочную составляющие. Плотность зависит от концентрации носителей заряда, их подвижности и напряженности электрического поля.

2. ПОЛУЧЕНИЕ ПОЛУПРОВОДНИКОВ

2.1 Примесные и собственные полупроводники

Примесными полупроводниками называются полупроводники, содержащие примеси, валентность которых отличается от валентности основных атомов. Они подразделяются на электронные и дырочные.

Собственными полупроводниками называются чистые полупроводники, не содержащие примеси.

Примесный - полупроводник, электрофизические свойства которого в основном определяются примесями.

Большинство полупроводниковых (п/п) приборов изготовляют на основе примесных полупроводников . Таким образом в рабочем диапазоне температур полупроводникового прибора поставщиками основного количества носителей заряда в полупроводниковом материале должны быть примеси. Поэтому в практике важное значение имеют п/п материалы, у которых ощутимая собственная концентрация носителей заряда появляется при возможно более высокой температуре, т.е. полупроводники с достаточно большой шириной запрещенной зоны.

В элементарных полупроводниках (состоящих в основном из атомов одного химического элемента) примесями являются чужеродные атомы.

В п/п соединениях (состоящих из атомов двух или большего числа химических элементов) примесями могут быть и избыточные по отношению к стехиометрическому составу атомы химических элементов, входящие в химическую формулу сложного п/п соединения.

Такую же роль, как и примеси могут играть различные дефекты кристаллической решётки: пустые узлы, дислокации или сдвиги, возникающие при пластической деформации.

Атомы примесей в полупроводниках создают дополнительные энергетические уровни в пределах запрещённой зоны полупроводника. При небольшой концентрации примесей их атомы расположены в полупроводнике на таких больших расстояниях друг от друга, что не взаимодействуют между собой. Поэтому нет расщепления примесных уровней и вероятность непосредственного перехода электронов от одного примесного атома к другому ничтожно мала, т.е. с точки зрения зонной теории ничтожно мала вероятность перехода электрона с одного дискретного примесного уровня на другой.

При достаточной концентрации примесей в результате взаимодействия примесных атомов между собой примесные уровни одного типа расщепляются в энергетическую примесную зону. Примеси могут либо поставлять электроны в зону проводимости полупроводника, либо принимать их с уровней его валентной зоны.

Примеси могут быть донорного и акцепторного типа.

Рисунок 8. Энергетические диаграммы полупроводников электронного(п) и дырочного (p) типов.

Донор (т.е. отдающий электрон) - это примесный атом или дефект кристаллической решётки, создающий в запрещенной зоне вблизи "дна" зоны проводимости энергетический уровень, занятый в невозбуждённом состоянии электроном и способный в возбуждённом состоянии при тепловом возбуждении отдать электрон в зону проводимости.

Акцептор (т.е. присоединяющий электрон) - это примесный атом или дефект кристаллической решётки, создающий в запрещённой зоне вблизи "потолка" валентной зоны энергетический уровень, свободный от электрона в невозбуждённом состоянии и способный захватить электрон из валентной зоны благодаря тепловому возбуждению.

Доноры и акцепторы в полупроводнике могут быть ионизированы под действием энергии, поступающей в кристалл в виде квантов света, теплоты и т.д.

Под энергией ионизации донора понимают минимальную энергию, которую надо сообщить электрону, находящемуся на донорном уровне, чтобы перевести его в зону проводимости (рис.8).

Энергия ионизации акцептора - это минимальная энергия, которую необходимо сообщить электрону валентной зоны, чтобы перевести его на акцепторный уровень.

Кристаллическая решетка примесного полупроводника

Рассмотрим как влияет валентность примесных атомов замещения (т.е. когда атомы примеси находятся в узлах кристаллической решетки) на характер их поведения в ковалентных полупроводниках типа кремния или германия.

Рисунок 9.

Предположим, что в кристаллической решетке кремния Si (элемент IV группы) часть основных атомов замещена атомами мышьяка As (элемент V группы). У Si -4 валентных электрона. У As -5 валентных электрона. Встраиваясь в узел решетки, атом As отдает 4 электрона на образование связей с ближайшими соседями (ковалентная связь), а пятый электрон оказывается лишним, т.е. не участвует в создании ковалентных связей.

Из-за большой диэлектрической проницаемости среды (полупроводника) кулоновское притяжение этого лишнего электрона ядром As в значительной мере ослаблено. Поэтому радиус электронной орбиты оказывается большим, охватывает несколько межатомных расстояний (рис.9). Достаточно небольшого теплового возбуждения, чтобы оторвать избыточный электрон от примесного атома. Атом примеси, потерявший электрон, превращается в положительно заряженную частицу, неподвижно закрепленную в данном месте решетки. Это донорный атом. В отличие от беспримесного полупроводника образование свободного электрона здесь не сопровождается образованием дырки.

Таким образом, примеси замещения, валентность которых превышает валентность основных атомов решетки проявляют свойства доноров (кроме As типичными донорами в кремнии и германии являются фосфор Р и сурьма Sb).

Рисунок 10.

Если в кристаллическую решетку кремния внедрить примеси какого-нибудь трехвалентного элемента, например алюминия, то видим, что для установления химических связей с четырьмя соседними атомами решетки у примесного атома не хватает одного электрона, вследствие чего одна ковалентная связь оказывается ненасыщенной, т.е. имеется свободная дырка. Потребность в установлении четырех химических связей приводит к тому, что атом алюминия может захватить недостающий электрон у одного из соседних атомов кремния. В результате примесный атом (акцептор) превращается в отрицательно заряженный ион. Для совершения такого акта надо затратить энергию, равную энергии ионизации акцепторов. Захваченный электрон локализуется на примесном атоме и не принимает участия в создании электрического тока, т.к. атом-акцептор достроил свою оболочку до устойчивого состояния. В свою очередь атом кремния, потерявший электрон, становится положительно заряженным ионом, вблизи которого имеется свободное энергетическое состояние - дырка. За счет эстафетного перехода электронов от одного атома к другому дырка может перемещаться по кристаллу (рис.10).

Таким образом, примеси замещения, имеющие валентность меньше валентности основных атомов решетки, в ковалентных полупроводниках являются акцепторами. Помимо алюминия акцепторные свойства в кремнии и германии проявляют бор B, галлий Ga, индий In. Энергия ионизации акцепторов численно близка к энергии ионизации доноров.

Д=DЭА

Энергия ионизации примесных атомов значительно меньше энергии ионизации собственных атомов полупроводника или ширины запрещенной зоны. Поэтому в примесных полупроводниках при низких температурах преобладают носители заряда, возникшие из-за ионизации примесей. Если электропроводность полупроводника обусловлена электронами, его называют полупроводником n-типа, если электропроводность обусловлена дырками - полупроводником p-типа.

Обычно в полупроводниках присутствуют как доноры, так и акцепторы. Полупроводник, у которого концентрация доноров равна концентрации акцепторов, называют компенсированным.

Собственный полупроводник

Собственные полупроводники имеют кристаллическую структуру, характеризующуюся периодическим расположением атомов в узлах пространственной кристаллической решетки. В такой решетке каждый атом взаимно связан с четырьмя соседними атомами ковалентными связями (рис. 11), в результате которых происходит обобществление валентных электронов и образование устойчивых электронных оболочек, состоящих из восьми электронов. При температуре абсолютного нуля (T=0° K) все валентные электроны находятся в ковалентных связях, следовательно, свободные носители заряда отсутствуют, и полупроводник подобен диэлектрику. При повышении температуры или при облучении полупроводника лучистой энергией валентный электрон может выйти из ковалентной связи и стать свободным носителем электрического заряда.

При этом ковалентная связь становится дефектной, в ней образуется свободное (вакантное) место, которое может занять один из валентных электронов соседней связи, в результате чего вакантное место переместится к другой паре атомов. Перемещение вакантного места внутри кристаллической решетки можно рассматривать как перемещение некоторого фиктивного (виртуального) положительного заряда, величина которого равна заряду электрона. Такой положительный заряд принято называть дыркой.

Процесс возникновения свободных электронов и дырок, обусловленный разрывом ковалентных связей, называется тепловой генерацией носителей заряда. Его характеризуют скоростью генерации G, определяющей количество пар носителей заряда, возникающих в единицу времени в единице объема. Скорость генерации тем больше, чем выше температура и чем меньше энергия, затрачиваемая на разрыв ковалентных связей. Возникшие в результате генерации электроны и дырки, находясь в состоянии хаотического теплового движения, спустя некоторое время, среднее значение которого называется временем жизни носителей заряда, встречаются друг с другом, в результате чего происходит восстановление ковалентных связей. Этот процесс называется рекомбинацией носителей заряда и характеризуется скоростью рекомбинации R, которая определяет количество пар носителей заряда, исчезающих в единицу времени в единице объема. Произведение скорости генерации на время жизни носителей заряда определяет их концентрацию, то есть количество электронов и дырок в единице объема. При неизменной температуре генерационно-рекомбинационные процессы находятся в динамическом равновесии, то есть в единицу времени рождается и исчезает одинаковое количество носителей заряда (R=G). Это условие называется законом равновесия масс. Состояние полупроводника, когда R=G, называется равновесным; в этом состоянии в собственном полупроводнике устанавливаются равновесные концентрации электронов и дырок, обозначаемые ni и pi . Поскольку электроны и дырки генерируются парами, то выполняется условие: ni=pi . При этом полупроводник остается электрически нейтральным, т.к. суммарный отрицательный заряд электронов компенсируется суммарным положительным зарядом дырок. Это условие называется законом нейтральности заряда. При комнатной температуре в кремнии ni=pi=1,4· 1010 см-3, а в германии ni=pi=2,5· 1013 см-3. Различие в концентрациях объясняется тем, что для разрыва ковалентных связей в кремнии требуются большие затраты энергии, чем в германии. С ростом температуры концентрации электронов и дырок возрастают по экспоненциальному закону.

2.2 Получение полупроводника n - типа

Если к собственному ПП добавить атом примеси 5 - ой группы валентности (фосфор, мышьяк), то 4 валентных электрона фосфора образуют 4 ковалентных связи с 4-мя соседними атомами кремния. Пятый электрон фосфора не может образовать ковалентную связь, при Т=0К он удерживается своим атомом силами электростатического притяжения, но сравнительно небольшие тепловые возмущения легко его отрывают от атома он становится «свободным» носителем заряда - переходит в ЗП, а атом фосфора превращается в положительный ион.

Примеси 5-ой группы валентности, которые отдают свои электроны в ЗП при сообщении некоторой энергии, называются донорными (рисунок 11).

Рисунок 11 - Введение донорной примеси

Примесные атомы образуют локальные энергетические уровни. В атоме фосфора 5-ый электрон слабее связан с атомом, чем остальные валентные электроны, поэтому дополнительный энергетический уровень 5-го электрона расположен выше ВЗ, но так как существует остаточная связь с атомом, этот уровень находится ниже ЗП. Энергетический локальный уровень Wд, в невозбужденном состоянии занят электроном, а при возбуждении отдает электрон в ЗП. Этот уровень называется донорным (рисунок 12).

Рисунок 12 - Энергетическая диаграмма ПП n - типа

2.3 Получение полупроводника p - типа

Если в кристаллическую решетку кремния ввести атом трехвалентного бора В, то три электрона В образуют ковалентные связи с тремя из четырех соседних атомов кремния. Одна из ковалентных связей остается незаполненной (рисунок 13).

Рисунок 13 - Введение акцепторной примеси

Свободная связь может быть легко занята электроном, перешедшим от атома основной решетки. На месте ушедшего электрона образуется «дырка», а атом бора превращается в отрицательный электрон (неподвижный). Примеси, которые при возбуждении способны захватить электрон из валентной зоны называются «акцепторными».

В кремнии с примесью бора локальный энергетический уровень WA располагается в 33 вблизи «потолка» ВЗ и называется акцепторным.

Акцепторный уровень в невозбужденном состоянии не занят и при возбуждении способен захватить электрон из ВЗ, образуя дырку. Энергия ионизации акцептора: WA = WA - WB во много раз меньше ширины 33, то при комнатной температуре все акцепторы ионизируются (рисунок 14).

Электропроводность полупроводников в этом случае обусловлена перемещением дырок, так как их намного больше чем свободных электронов. Основными носителями заряда являются дырки, неосновными - электроны. Такой тип электропроводности называется дырочной. Полупроводники называются р-типа или с дырочной электропроводностью.

Рисунок 14 - Энергетическая диаграмма ПП р- типа

Подвижные носители заряда, концентрация которых преобладает в примесных полупроводниках называются основными (дырки в р-типа и электроны в полупроводниках), а носители, составляющие меньшинство в n-типа, электроны в р-типа полупроводниках.

2.4 Электронно-дырочный переход

Рабочими элементами всех полупроводниковых приборов являются ЭДП.

ЭДП называется граница между двумя областями полупроводника, одна из которых имеет электропроводность р-типа, а другая n-типа.

Р-n переход нельзя получить простым соприкосновением двух образцов полупроводников с различными типами электропроводности, так как в месте соединения неизбежны зазоры и дефекты. Идеальный ЭДП осуществляется в монокристалле, в котором тем или иным способом получена резкая граница между р и n областями. Рассмотрим процессы в плоскостном р-n переходе (рисунок 15).

Плоскостным называется переход, у которого линейные размеры, определяющие площадь перехода намного превышают его толщину.

При комнатной температуре можно считать все атомы акцепторов и доноров полностью ионизированными.

Концентрация дырок в р-области, где они являются основными намного больше, чем в n-области, где они неосновные, т.е. Рр »Рn

Рисунок 15 - Плоскостной р-n переход

Концентрация электронов в n-области намного больше концентрации электронов в р - области, где они являются неосновными носителями, т.е. Nn»Np

Следовательно, в р-n переходе имеется градиент концентрации носителей заряда каждого знака. Под действием градиента концентрации носители заряда диффундируют из области с высокой концентрацией в область с пониженной концентрацией. Дырки из р в n - область, электроны из n в р- область.

Эти потоки носителей заряда образуют диффузионный ток р-n перехода, имеющий дырочную и электронную составляющую тока через переход: и .

В результате диффузии в прилегающем к контакту слое р-области образуется отрицательный пространственный заряд. В прилегающем к контакту n- слое образуется положительный пространственный заряд.

Таким образом, вблизи контакта областей с различными типами электропроводности возникает двойной электрический слой или двойной слой пространственного заряда. В приконтактном слое концентрация основных носителей заряда уменьшается по сравнению с концентрацией в остальном объеме полупроводника. Обедненный спой имеет значительно меньшую электропроводность и его называют запирающим.

Внутри обедненного слоя присутствует прослойка с собственной электропроводностью (наиболее высокоомная часть запирающего слоя). Пространственные заряды создают электрическое поле р-n перехода, напряженность которого препятствует диффузии основных носителей через р-n переход. В то же время неосновные носители каждой из областей могут беспрепятственно переходить через переход, создавая дрейфовый ток.

Направление дрейфового тока (дрейфовая составляющая дырочного тока и дрейфовая составляющая электронного тока противоположно диффузионному. Поскольку в изолированном полупроводнике плотность тока должна быть равна 0, то устанавливается динамическое равновесие, при котором диффузионные и дрейфовые потоки зарядов через р-n переход компенсируют друг друга, т.е.

и .

Перепад потенциала в р-n переходе называют потенциальным барьером или контактной разностью потенциалов.

Таким образом: высота потенциального барьера определяется отношением концентраций носителей заряда одного знака на границах перехода. У большинства кремниевых диодов = 0,7 -0,8 В, у германиевых 0,3 - 0,4В.

3. ПРИМЕНЕНИЕ ПОЛУПРОВОДНИКОВ

3.1 Тепловые сопротивления (термисторы)

Изменение электропроводности полупроводников под влиянием температуры позволило применять их в приборах, работа которых основана на использовании этого свойства. Полупроводники используют в качестве термометров для замера температур окружающей среды. Они более чувствительны, чем термометры сопротивления, изготовляемые из металла под названием болометров и применяемые в лабораторной практике для измерения очень высоких или самых низких температур. О температуре судят, замеряя электрическое сопротивление болометра. Но точность измерения с помощью этих приборов невелика, так как металлы изменяют своё сопротивление всего на 0,3% на каждый градус. Иное положение имеет место при использовании полупроводников. У некоторых полупроводников повышение температуры на 1°C увеличивает электропроводность на 3-6%, повышение температуры на 10° - примерно на 75%, а повышение температуры на 100°C увеличивает электропроводность в 50 раз. Благодаря высокому удельному сопротивлению полупроводников их применяют в качестве чувствительных термометров при дистанционных измерениях. Сопротивление металлических проводов даже очень тонких и длиной в несколько километров оказывается ничтожным по сравнению с сопротивлением термометра. Размеры полупроводниковых сопротивлений могут быть чрезвычайно малыми длиной в несколько десятых долей миллиметра. Это снижает инерционность прибора, так как при малых размерах сопротивление быстро принимает температуру окружающей среды. Значительное изменение электропроводности полупроводников в зависимости от температуры обеспечивает точность измерений.

Полупроводниковые термометры сопротивления под названием термисторов широко применяют в технике. С их помощью контролируют температуру в большом числе точек, причём показания её могут быть получены на приборах, установленных в одном пункте. При таком контроле температур в помещениях с помощью термисторов можно поддерживать температуру на желаемом уровне, включая и выключая нагревательные приборы, когда заданный уровень температуры отклоняется от нормы. Работают они при температурах до 300°C (573°K). Термисторы могут выполнять функции ограничителя времени. Для этого последовательно с полупроводниковым термосопротивлением включается то или иное активное электросопротивление. В результате в сети получается возрастающий со временем ток, так как ток разогревает полупроводник и повышает его электропроводность, следовательно, повышается и величина тока в цепи. По мере разогрева полупроводника сопротивление падает, а ток повышается ещё в большей степени. Параллельно с ростом температуры увеличиваются и потери тепла в окружающую среду до тех пор, пока они не сравняются с теплотой, выделяемой током; тогда будет достигнута равновесная температура, которую полупроводник и будет сохранять, пока к нему приложена данная разность потенциалов.

Продолжительность времени, необходимого для достижения равновесия и определённого тока при данной разности потенциалов, определяется размерами образца и условиями охлаждения. Такое «реле» времени допускает регулировку в самых широких пределах. Можно подобрать условия так, чтобы это время было от долей секунды до 10 мин. По достижении установленного времени может производиться автоматическое включение и выключение систем освещения или действующих установок.

Термосопротивления применяют как регуляторы температуры, температурные компенсаторы, в приборах для измерения утечки газа, для дистанционного измерения влажности, для измерения высоких давлений, механических напряжений, скорости или количества протекающих жидкости, скорости движения газов, для измерения больших ускорений.

При изготовлении термисторов пользуются окислами различных металлов, таких, как CuO, Mn3O4, UO2, а также Ag2S. Хорошие результаты дают смеси полупроводников, такие, как CuO+Mn3O4; Mn3O4+NiO; Mn3O4+NiO+Co3O4.

Вещества, используемые для изготовления термосопротивлений, представляют собой мелкокристаллические порошки. Составляя смесь, регулируют их проводимость, обусловленную ионами с разной валентностью. Это позволяет удовлетворять самые различные требования, которые предъявляются к термосопротивлениям в зависимости от их назначения.

Термосопротивления изготавливают прессованием полупроводникового порошка с последующим спеканием в твёрдую компактную массу, а также путём плавки полупроводника для придания ему нужной формы и размеров. Изготавливают их в виде шариков, стержней, дисков, шайб и чешуек.

Наша промышленность выпускает различные типы термосопротивлений, среди которых наиболее распространёнными являются: ММТ-1, ММТ-4, КМТ-1, КМТ-4, ММТ-8 и ММТ-911 Кнаб О.Д. БИСПИН - новый тип полупроводниковых приборов//Электронная промышленность.

В этих марках буквы являются условным обозначением материала термосопротивлений, а цифры - его конструктивного оформления. Первые четыре из приведенных сопротивлений применяют для измерения и регулирования температуры; в качестве «реле» времени; для дистанционного измерения влажности воздуха (по принципу психометра Ассмана); для замера малых скоростей движения и теплопроводности газов, жидкостей и для ряда других целей.

В качестве переменных сопротивлений без скользящего контакта в различных автоматических схемах слабого тока применяют термосопротивления с косвенным подогревом, обозначаемые ТКП-300, ТКП-20, что означает термосопротивление косвенного подогрева, в отличие от ТП - термосопротивления прямого подогрева. Цифры указывают электросопротивление полупроводника в омах при номинальной мощности, рассеиваемое в подогреваемой обмотке.

3.2 Фотосопротивления

Перевод электронов в свободное состояние или образование «дырок» в полупроводнике может происходить не только под влиянием тепла, но и в результате воздействия других видов энергии, таких, как световая, энергия потока электронов, ядерных частиц. Увеличение количества свободных электронов или «дырок» проявляется повышением электропроводности и возникновением тока.

У многих полупроводников связь между электронами и атомами настолько незначительна, что лучистой энергии света вполне достаточно для перевода электронов в свободное состояние. Для жёлтого света энергия фотона составляет 2 электрон-вольта, а у некоторых полупроводников перевод электронов в свободное состояние происходит под влиянием нескольких десятых долей электрон-вольта. У таких полупроводников повышение проводимости наблюдается даже под влиянием инфракрасной части спектра. Это даёт возможность обнаруживать на расстоянии многих километров излучение, исходящее от даже слабо нагретых тел. В результате такого излучения имеет место небольшое повышение тока в цепи с соответственным полупроводником. Первичное слабое повышение тока затем многократно увеличивается с помощью усилителей, иногда даже в миллион раз. Это даёт необходимый сигнал.

Повышение электропроводности, вызванное светом, носит название фотопроводимости, а основанные на этом явлении приборы называют фотосопротивлениями.

Подбирают фотосопротивления в зависимости от условий облучения, в которых им приходится работать. Наиболее употребительные материалы для фотосопротивлений в видимой части спектра - сернистый кадмий, сернистый таллий, сернистый висмут, а для инфракрасных лучей - сернистый, селенистый и теллуристый свинец.

Фотосопротивления широко применяют для сигнализации и автоматики, управления на расстоянии производственными процессами, сортировки изделий. С их помощью предупреждают несчастные случаи и аварии при нарушении хода процесса, автоматически останавливая машины.

Фотоэлектрическое устройство приходит в действие от появления или исчезновения лучей на фотосопротивлении или резкого изменения их интенсивности, например, при появлении пламени, наступлении темноты, прерывания луча.

Для контроля хода процесса луч света направляют на фотосопротивление. Между источником света и фотосопротивлением находится или проходит «указатель», свидетельствующий о нормальном ходе процесса. Таким указателем могут быть изделия, непрерывно движущиеся на конвейерной ленте. В случае нарушения нормального хода процесса конвейер может автоматически выключаться.

Фотосопротивление используют для сортировки изделий по их окраске или размерам. В зависимости от изменения размера или окраски изделия количество световой энергии, попадающей на фотосопротивление, может изменяться, а вместе с этим изменяется проводимость и ток в полупроводнике. Это даёт возможность направлять отсортированные изделия в предназначенные для каждого из них места.

3.3 Термоэлементы

Термоэлементы - приборы, в которых тепловая энергия непосредственно превращается в электрическую.

Основаны они на явлении Зеебека Шалимова К.В. "Физика полупроводников" Изд. "Энергия" 1976, заключающемся в том, что при нагреве места спая двух разнородных металлов в замкнутой цепи возникает электродвижущая сила. Явление Зеебека используется давно для измерения температур с помощью термопар. Для получения электрической энергии из тепловой металлические проводники не пригодны, так как коэффициент полезного действия (к.п.д.) термоэлементов из проволоки составляет всего 0,5%. Для этой цели используют полупроводники, которые дают возможность непосредственно превращать тепловую энергию в электрическую без участия каких-либо машин.

Коэффициент полезного действия термоэлемента, составленного из полупроводников, доходит до 7-10%, т.е. находится на уровне к.п.д. таких машин, как паровозы, в которых он равен 4-8%.

Термоэлементы составляют из полупроводников с р- и n-проводимостью, соединённых друг с другом металлической пластинкой. Конструктивное выполнение такого термоэлемента сходно с термоэлементом из металлических проволок. Примером хорошей пары являются цинк - сурьма и сернистый свинец. При подогреве места «спая» полупроводниковых пластинок в замкнутой цепи возникает электродвижущая сила. Соединение таких отдельных термоэлементов в батарею даёт возможность получать постоянный ток необходимого напряжения в 120 и более в; мощность большинства термогенераторов ограничена несколькими десятками ватт. Недавно создан термогенератор мощностью в 200 вт, проектируются ещё более мощные.

Батареи из термоэлементов с радиальным расположением отдельных элементов, спаи которых сходятся в центре круга, служат для получения электроэнергии, питающей радиоустановки, в местах отсутствия электрической энергии. Спаи в этом случае подогревают керосиновой лампой или керогазом.

3.4 Холодильники и нагреватели

Важной особенностью, открывающей широкие перспективы применения полупроводников, является получение с их помощью холода и тепла более экономичными путями.

Такое использование полупроводников основано на термоэлектрических явлениях, обратных наблюдающимся в термоэлементах. Ток, возникающий в замкнутой цепи термоэлемента, охлаждает горячий спай и наоборот, подогревает холодный спай. При пропускании же тока через термоэлементы в обратном направлении выделяется тепло в горячем спае и отнимается тепло от холодного. Один и тот же спай двух проводников при одном направлении тока нагревается, а при другом охлаждается. Пользуясь этим, можно охлаждать воздух в холодильном шкафу, в который помещён охлаждаемый спай металла. Для этого в термоэлементе поддерживают температуру нагреваемого спая, близкую к комнатной, отводя от него выделяемую теплоту в окружающую среду; при этом другой спай значительно охлаждается, а через него охлаждается и окружающий воздух.

Применяя для этой цели полупроводники, характеризующие достаточно высокой величиной к.п.д. термоэлемента, можно получить в холодильном шкафу необходимые низкие температуры. Например, полупроводники из сплавов висмута, селена, теллура и сурьмы обеспечивают в термоэлементе разность температур около 60°C, а в сконструированном с помощью таких полупроводников холодильном шкафу поддерживается температура минус 16°C.

Этим же явлением можно воспользоваться и для отопления зданий. Пропуская электрический ток через термоэлектрическую цепь, помимо обычного нагрева всего проводника, охлаждают один спай и нагревают другой, т.е. переносят тепло от одного спая к другому. Академик А.Ф.Иоффе рассчитал, какое количество тепла будет при этом выделено. От охлаждаемого спая отнимается некоторое количество тепловой энергии

Q0=бT0It,

где б - термоэлектродвижущая сила, в;

T0 - абсолютная температура холодного спая;

I - величина тока, а;

t - длительность прохождения тока, сек.

Соответственно в тёплом спае, абсолютную температуру которого обозначим через Т1, выделяется тепловая энергия Q1:

Q1=бT1It.

Эта тепловая энергия Q1 больше теплоты Q0, в отношении:

Q1/ Q0= Т1/ T0.

Если ограничиться рассмотрением процесса на обоих спаях, то их можно описать следующим образом: электрический ток отнимает от холодного спая теплоту Q0 и передаёт теплому спаю большее количество тепла Q1, добавляя недостающую энергию в виде электрической энергии W. К теплоте Q0, отнимаемой от холодного спая, добавляется энергия W, и сумма их Q0+W= Q1 выделяется на тёплом спае.

Из приведенных данных о величинах Q0 и Q1 видно, что отношение затрачиваемой электрической энергии W к теплоте Q1, которая освобождается на теплом спае, равно:

W/Q1=Q1¬Q0/Q1=T1¬T0/T.

Если абсолютная температура теплого спая Т1=300°, что соответствует +27°C, а температура Т0=270° или -3°C, то

W/Q1=30/300=0,1,

Отсюда следует, что для передачи в тёплое помещение при температуре 2727°C100 кал тепла можно было бы использовать 90 кал, взятых от холодной среды (например, от внешнего воздуха) и добавить всего 10 кал за счёт электроэнергии.

Поскольку такое извлечение тепла из внешнего холодного воздуха или водного резервуара легко и доступно, возникает заманчивая возможность, затрачивая всего 10% от вносимого в помещение тепла за счёт электроэнергии, отапливать помещение практически за счёт извлекаемого снаружи тепла. Но процесс в термоэлектрической батарее не ограничивается только выделением и поглощением тепла на спаях. Вдоль ветвей самой термобатареи возникает поток тепла от теплого спая к холодному, который противодействует переносу тепла в обратном направлении, сопровождающему прохождение тока. Кроме того, часть электрической энергии превращается в тепло в обеих ветвях термоэлемента. В результате наличия этих двух процессов использование электроэнергии резко снижается; приходится добавлять не 10% электроэнергии, а около 60%; но и такой результат представляет значительный интерес: затрата электроэнергии составляет только около половины теплоты, поступающей в помещение, а остальная половина доставляется более холодным наружным воздухом или проточной водой при температурах, близких к нулю.

Чем меньше разность Т1-Т0 по сравнению с Т1, тем выгоднее окажется термоэлектрическая батарея по сравнению с электрической печью сопротивления.

Термоэлектрическая батарея обладает и другим важным преимуществом. Если изменить направление тока на противоположное, то на наружных спаях начнёт выделяться теплота Q0, а нагревавшие помещение спаи будут отнимать теплоту Q1, охлаждая помещение. В жаркое время года та же термобатарея может охлаждать воздух. Регулируя величину и направление тока в батарее, можно поддерживать в помещении одинаковую температуру при любых температурах внешнего воздуха.

ЗАКЛЮЧЕНИЕ

Полупроводники - это сравнительно новые материалы, с помощью которых на протяжении последних десятилетий удаётся разрешать ряд чрезвычайно важных электротехнических задач.

Полупроводниковые приборы можно встретить в обычном радиоприемнике и в квантовом генераторе - лазере, в крошечной атомной батарее и в микропроцессорах.

Инженеры не могут обходиться без полупроводниковых выпрямителей, переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить надежность.

В настоящее время насчитывается свыше двадцати различных областей, в которых с помощью полупроводников разрешаются важнейшие вопросы эксплуатации машин и механизмов, контроля производственных процессов, получения электрической энергии, усиления высокочастотных колебаний и генерирования радиоволн, создания с помощью электрического тока тепла или холода, и для осуществления многих других процессов.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Ашкрофт, Н. Физика твердого тела/ Н.Ашкрофт. Н.Мермин.- М.:Мир, 1979.- с. 257-278. 2. Трофимова, Т.А. Курс физики/ Т.А.Трафимова. - М.: Высшая школа, 2004.- с. 443-450.

3. Детлаф, А.А. Курс физики/ А.А.Детлаф. Б.М.Яворский. - М.: Высшая школа, 2001.- с.127-134. 4. Савельев, И.В. Курс общей физики/ И.В.Савельев. - М.: Наука, 1982.-с.345-356.

5. Шалимова, К.В.Физика полупроводников/ К.В.Шалимова К.В.-М.: Изд. "Энергия" 1976.-с.43-59.

Размещено на Allbest.ru


Подобные документы

  • Полупроводники n- и p-типа, методы получения и их зонные диаграммы. Основные и неосновные носители зарядов. Прохождение тока через полупроводники с разным типом проводимости. Виды транзисторных технологий, методика изготовления и область применения.

    реферат [756,9 K], добавлен 28.07.2010

  • Основы и содержание зонной теории твердого тела. Энергетические зоны полупроводников, их типы: собственные и примесные. Генерация и рекомбинация носителей заряда. Исследование температурной зависимости электрического сопротивления полупроводников.

    курсовая работа [1,8 M], добавлен 09.06.2015

  • Строение полупроводников - материалов, которые по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками. Электронная проводимость, обусловливаемая наличием у полупроводника свободных электронов. Донорные примеси.

    дипломная работа [676,6 K], добавлен 24.09.2015

  • Исследование металлов, хорошо проводящих электрический ток. Полупроводники - твердые тела с промежуточной электропроводностью. Проявление различия полупроводников и металлов в характере зависимости электропроводности от температуры. Уравнение Шредингера.

    реферат [338,7 K], добавлен 18.02.2009

  • Полупроводники - вещества, обладающие электронной проводимостью, занимающие промежуточное положение между металлами и изоляторами. История открытия, распространенность полупроводников в природе и человеческой практике, их применение в наноэлектронике.

    реферат [51,6 K], добавлен 10.01.2012

  • Образование электрического тока в металлическом проводнике. Классификация жидкостей по степени электропроводности: диэлектрики, проводники (электролиты) и полупроводники. Определение понятия электролитической диссоциации и описание закона Фарадея.

    презентация [413,8 K], добавлен 16.05.2012

  • Физический смысл и практическое значение пробоя. Определение диэлектрика пластмасса. Классификация проводниковых материалов, показатели для бериллиевой бронзы. Вольтамперная характеристика тринистора. Свойства, преимущества и недостатки альсиферов.

    контрольная работа [255,3 K], добавлен 05.11.2010

  • Открытие сверхпроводников, эффект Мейснера, высокотемпературная сверхпроводимость, сверхпроводящий бум. Синтез высокотемпературных сверхпроводников. Применение сверхпроводящих материалов. Диэлектрики, полупроводники, проводники и сверхпроводники.

    курсовая работа [851,5 K], добавлен 04.06.2016

  • Деление твердых тел на диэлектрики, проводники и полупроводники. Собственная и примесная проводимость полупроводниковых материалов. Исследование изменений сопротивления кристаллов германия и кремния при нагревании, определение энергии их активации.

    лабораторная работа [120,4 K], добавлен 10.05.2016

  • Зонная модель электронно-дырочной проводимости полупроводников. Расчет концентрации ионизованной примеси. Контакт двух полупроводников с различными типами проводимости. Электронно-дырочные переходы. Полупроводниковые выпрямители. Суть сверхпроводимости.

    презентация [122,7 K], добавлен 09.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.