Види теплогенераторів
Особливості конструкції топок: шарових, камерних, вихрових. Конструкції парових котлів і котельних агрегатів. Пароперегрівники, повітропідігрівники та водяні економайзери. Допоміжне обладнання котельних установок. Основні етапи процесу очистки води.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 07.10.2010 |
Размер файла | 99,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Перехідну зону розміщують у конвективній частині, щоб уникнути частих аварій через перепал труб і для продовження компанії котла (періоду між промиваннями), бо в цій зоні на стінках труб інтенсивно відкладаються накипотвірні речовини. Прямотокові котли надкритичного тиску виконуються без винесення перехідної зони (точніше, зони максимальної теплоємності) у конвективний газохід. При цьому менше витрачається дорогої аустенітової сталі і знижується вартість котла.
Прямотокові парогенератори дуже вимогливі до якості живильної води, бо розчинені тверді речовини, що надходять з водою, не видаляються з парогенератора: частина їх осаджується на стінках труб, а частина заноситься з парою і осаджується на лопатях турбін.
Вже споруджено ще потужніші прямотокові котлоагрегати на майже ті самі параметри пари для блоків 500 і 800 Мвт видатністю відповідно 1600 і 2500 т пари на годину.
Крім котлів з природною циркуляцією і прямотокових агрегатів, існує ще багато конструкцій парових котлів з багатократною примусовою циркуляцією води, що здійснююється за допомогою спеціальних насосів, високонапірних парогенераторів з топками, які працюють під тиском, парогенераторів атомних електростанцій тощо. Проте ці конструкції не набули у нашій країні великого поширення і не мають важливого значення для великої енергетики.
3. Внутрішньокотлові процеси
3.1 Циркуляція води
Циркуляція - це безперервний рух речовини (рідини, газу) по замкненому шляху. Такий рух води - природна циркуляція - відбувається у водотрубному котлі під час його роботи внаслідок різниці густин пароводяної суміші в грійних трубах і води в ненагріваних.
На рис. III-48 показано схему найпростішого циркуляційного контуру, що складається з верхнього і нижнього барабанів, лівої грійної і правої ненагріваної труб. При роботі такого контура в усталеному стані в нагріваній трубі відбувається кипіння води, і труба на дільниці Нпар заповнена пароводяною сумішшю. При цьому утворюється рушійний напір Р, що дорівнює різниці зисків:
Нпар - Нпар сум = Нпар( - сум),
де і сум - відповідно густини води й пароводяної суміші.
Цей напір при усталеному режимі дорівнює сумі опорів, що виникають під час руху води в контурі. Вода з верхнього барабана по ненагріваній трубі надходить у нижній барабан, а з нього-в грійну трубу. Після виходу суміші з труби у верхній барабан пара йде в паровий простір, а вода знов надходить у праву опускну трубу і т.д.
Джерелом енергії, що витрачається на перекачування води під час природної циркуляції води в замкненому контурі, є робота розширення парових бульбашок, що утворюються в кип'ятильній трубі при більш високому тиску, ніж тиск у паровому просторі - верхнього барабана котла.
При нормальному режимі циркуляції від стінок теплосприймальних поверхонь нагріву, що обмиваються водою, інтенсивно відводиться теплота. Коефіцієнт тепловіддачі при цьому від стінок до води дуже великий (обчислюється тисячами і десятками тисяч вт/м2 град), тому температура стінок мало відрізняється від температури води і утворювані парові і виділювані газові бульбашки не можуть затримуватися на стінках: температура металу в різних частинах котла при змінних режимах швидко вирівнюється; від температурної нерівномірності не виникають помітні термічні напруги.
Режим циркуляції характеризується багатьма величинами: швидкістю циркуляції 0 м/сек називається швидкість води на вході в підйомну трубу, кратністю циркуляції К-відношення кількості води Gц, що надходить в грійну трубу, до кількості пари D, що утворюється в цій трубі за цей самий час, кг/кг. Ця величина зворотна ваговому паровмістові суміші на виході з кип'ятильної труби.
У котлах з природною циркуляцією кратність циркуляції більша від одиниці. У сучасних котлах значення К коливається від 6 до 12. У прямотокових котлах вода не циркулює (К = 1).
Кипіти циркулююча вода починає не у вхідному перерізі труби, а на певній відстані від входу на висоті точки закипання hт. з. Це пояснюється тим, що коли вода у верхньому барабані навіть повністю нагріта до температури кипіння, то в нижньому барабані вона буде недогрітою, бо тиск тут вищий, ніж у верхньому барабані, і воді треба надати якусь кількість теплоти для нагрівання її до температури кипіння, що й відбувається на дільниці огріваної труби висотою hт.з.
На паротвірній дільниці підйомної труби пара й вода рухаються з різними швидкостями, середня абсолютна швидкість пари n більша від середньої абсолютної швидкості води b, різниця між ними називається відносною швидкістю пари r = n - b. Зведеною швидкістю пари 0 називають швидкість пари, віднесену до всього перерізу труби, тобто ту швидкість, яку вона мала б, якби займала не частину перерізу труби (як це в дійсності має місце), а весь її переріз. Цією величиною, як і раніше наведеними, користуються при розрахунках циркуляції.
У парових котлах до колекторів і барабанів приєднується не одна, а багато паралельно діючих труб, в яких може бути порушений нормальний режим циркуляції. Найчастіші і найнебезпечніші порушення циркуляції бувають у вертикальних і круто нахилених грійних трубах через утворення вільного рівня (застою циркуляції) і перекидання циркуляції.
При утворенні вільного рівня води верхня частина труби буде заповнена парою; оскільки коефіцієнт тепловіддачі до майже нерухомої пари у багато разів менший від коефіцієнта тепловіддачі до води, то температура стінки труби сильно зросте, що може призвести до розриву труби. Це порушення циркуляції може статися не тільки при виводі пароводяної суміші з труби до парового простору барабана, а й при підведенні її під рівень води, хоча такий режим з утворенням парової пробки у верхній частині труби має менш стійкий характер.
Перекидання циркуляції полягає в тому, що вода в підйомній трубі рухається не знизу вгору, як при нормальному режимі, а зверху вниз - назустріч парі. При цьому через гальмування пари можуть утворюватись скупчення парових бульбашок, що повільно рухаються вздовж стінок, стінки гірше охолоджуються їх температура зростає, вони перегріваються, труби деформуються, інтенсивно розвивається корозія, що з часом призводить до розриву труб.
Причина цих порушень циркуляції - нерівномірне нагрівання паралельно включених труб і зменшення теплового навантаження труби до небезпечної величини через шлакування, занос леткою золою, тепловий перекіс (нерівномірність обігріву по ширині агрегату), затінення сусідніми трубами (при розведенні екранних труб у місцях пальникових амбразур) тощо.
Тому під час проектування і експлуатації котельних агрегатів намагаються забезпечити якомога рівномірніше обігрівання паралельно включених труб циркуляційного контура. Зокрема з цією метою екранні труби виділяють в окремі секції, розміщені по кутках топки.
Ненормальним вважається такий режим циркуляції, коли труба працює з граничною, близькою до одиниці, кратністю циркуляції. Цей режим небезпечний тому, що на вихідній ділянці труби інтенсивно відкладаються солі, що може призвести до швидкого перепалу. Щоб запобігти цьому, циркуляційні контури підбирають так, щоб загальна кратність циркуляції їх була не менше від трьох.
У горизонтальних і мало похилених грійних трубах може відбуватись розшарування пароводяної суміші і рух води в нижній частині, а пари - у верхній, що призведе до перегрівання стінки і т.д. При досить високих швидкостях води й пари розшарування не буває (сума зведених швидкостей води й пари повинна бути більшою за певну величину, що залежить від тиску). В опускних трубах для надійності циркуляції не можна допускати пароутворення.
У сучасних агрегатах, якщо не розглядати нестаціонарний режим, що супроводжується спадом тиску в котлі, ця умова витримується, бо опускні труби не обігріваються. Проте треба стежити, щоб у них не виникало кавітації - утворення пари на вхідній ділянці опускних труб через спад тиску в цьому місці, що зумовлюється втратою напору на створення вхідної швидкості.
Розрахунок циркуляції грунтується на тому, що при усталеному режимі рушійний напір дорівнює сумі опорів, що виникають при рухові води й пароводяної суміші. Загальна схема його може бути показана на прикладі найпростішого контура, опір якого складається з опорів підйомної Рпід і опускної Роп труб (опори, що виникають при рухові води в барабанах, дуже малі). Тому
Р = Рпід + Роп кг/м2.
Різницю між рушійним напором і опором підйомної труби називають корисним напором Р - Рпід = Ркор. Отже,
Ркор = Роп кг/м2.
Ркор і Роп - функції кількості циркулюючої води, Ркор = 1(Gц) і Роп = 2(Gц). Мета першого етапу розрахунку циркуляції - визначити корисний напір, при якому працює даний контур. Це завдання зручно розв'язати графоаналітичним способом, взявши кілька значень Gц і побудувавши криві Ркор = 1(Gц) і Роп = 2(Gц).
Визначивши корисний напір, при якому працює контур, що складається з великої кількості паралельно включених грійних труб, порівнюють його з величинами корисних напорів застою і перекидання, знайденими в припущенні погіршеного обігрівання якоїсь труби розрахункового контура. Ці величини (як питомі напори, віднесені до 1 м висоти труби) дістають з номограм, приведених у нормах розрахунку циркуляції води в парових котлах. Якщо робочий корисний напір менший від корисних напорів застою і перекидання, то контурможна вважати надійним. Він витримає перевірку на неможливість утворення вільного рівня і перекидання циркуляції.
3.2 Одержання чистої пари
Для надійної і економічної роботи парових турбін треба підтримувати постійні параметри пари (її тиск і температуру) і забезпечувати високу її чистоту. Постійні параметри вироблюваної котлоагрегатом пари підтримують автоматичним регулюванням температури перегрітої пари, подачі палива, повітря, живильної води та ін.
У прямотокових котлах вода випаровується без залишку, при цьому частина розчинених у ній речовин відкладається на поверхнях нагріву котла і пароперегрівника, друга частина переходить у пару. При надвисоких і надкритичних тисках пара може розчиняти багато кремнекислої і солей натрію і цим перевищуватиме допустиму концентрацію їх у парі.
Основною причиною забруднення солями пари в барабанних котлах з природною циркуляцією є механічне винесення парою краплинок котлової води. Вологість пари залежить від середньої швидкості її надходження через дзеркало випаровування в паровий простір і від висоти парового простору, що характеризується навантаженням дзеркала випаровування
м3/м2 год.
і напругою парового об'єму
м2/м3 год,
де D - витрата пари, кг/год; v» - питомий об'єм насиченої пари, м3/кг; F - площа дзеркала випаровування, м2; U - об'єм парового простору, м3.
При звичайних конструктивних розмірах барабанів і при нормальній роботі внутрішньобарабанного обладнання сучасні котлоагрегати дають пару з дуже невеликою вологістю 0,01-0,03%.
Утворення чистої пари при даній якості живильної води регулюється зниженням концентрації солей у котловій воді, застосуванням ефективного обладнання для сепарації вологи від пари, промиванням пари водою, що містить мало солей.
Під час роботи в котел з живильною водою вносять солі, з яких лише незначна частина виноситься з котла парою. Щоб сольовий баланс не перевищував норми, солі треба видаляти з котла. Це відбувається за допомогою так званого безперервного продування.
Постійна концентрація солей у котловій воді повинна бути нижчою від критичного солевмісту води, при якому різко зростає вологість і солевміст пари.
Ефективно розв'язав це завдання Е. І. Ромм, який запропонував метод східчастого випаровування води в парових котлах. За цим методом котел поділяють на відсіки. Живильна вода подається в перший (чистий) відсік. З нього продукти продування надходять в другий (солоний) відсік. У першому відсіку, таким чином, знижується концентрація солей. При однаковому продуванні котла при двосхідчастому випаровуванні 80% пари утворюється з води, що містить 840 мг/л солей, і лише 20% - з води з солевмістом 4200 мг/л, а без ступеневого випаровування всі 100% пари утворюються з води, що містить 4200 мг/л солей.
Східчасте випаровування має можливість при даній величині продування дістати чистішу пару або при даній якості пари істотно зменшити величину продування.
Сепараційне обладнання призначено зменшити вологість насиченої пари, а разом з тим - і її солевміст. Воно має гасити кінетичну енергію потоку пароводяної суміші, що надходить у барабан, відділяти основну масу води від пари і рівномірно розподіляти пару в барабані для більш ефективної природної сепарації краплинок вологи в паровому просторі барабана.
Сепараційне обладнання ОРГРЕС із зануреним дірчастим листом. Пароводяна суміш, що надходить по трубах, глухим щитом спрямовується у воду. Для рівномірного навантаження дзеркала випаровування і парового простору барабана під водою встановлюється дірчастий лист. Живильна вода подається по трубі над дірчастим листом, що сприяє промиванню пари. Таку схему доцільно застосовувати при помірних концентраціях солей у котловій воді.
При високому солевмісті котлової води і схильності її до піноутворення застосовують внутрішньобарабанні циклони. Пароводяна суміш з коробів 2 підводиться тангенціальне до циклонів 7, плівка виділеної в циклоні води стікає вниз, а пара з циклону надходить у паровий простір барабана. Крім внутрішньобарабанних застосовуються також виносні циклони, які працюють дуже ефективно.
4. Пароперегрівники. Водяні економайзери. Повітропідігрівники
4.1 Пароперегрівники
У пароперегрівнику пара перегрівається до заданої температури. З підвищенням тиску і температури перегрітої пари частина теплоти, передана в пароперегрівник, відносно загального приросту ентальпії води в агрегаті дуже зростає і пароперегрівник стає одним з основних теплосприймальних елементів котельного агрегату.
Для виготовлення труб-пакетів пароперегрівника, що працюють у дуже важких температурних умовах, застосовуються дорогі леговані сталі.
За видом теплообміну пароперегрівники поділяються на конвективні, напіврадіаційні і радіаційні; за розміщенням змійовиків - на вертикальні і горизонтальні.
У старих конструкціях котлів застосовувались конвективні пароперегрівники, розміщені за потужним котельним пучком у ділянці помірних температур газів. Конструктивна схема їх була дуже проста, вони складались з горизонтальних або вертикальних змійовиків, приєднаних до колекторів (камер) насиченої і перегрітої пари розвальцьовкою.
У сучасних агрегатах застосовуються більш складні за схемою і конструкцією комбіновані пароперегрівники, що складаються з радіаційної, напіврадіаційної і конвективної частин.
Характеристика перегрівника - це залежність температури перегрітої пари від міри навантаження котла. У конвективному перегрівнику із зростанням навантаження температура перегрітої пари підвищується, в радіаційному, навпаки, знижується, напіврадіаційний перегрівник має плавну характеристику, температура пари на виході з нього із зміною навантаження змінюється в невеликих (до 10° С) межах.
Розмір поверхні нагріву і умови роботи труб конвективного перегрівника залежать від прийнятої схеми руху пари і димових газів. Перевага протитокової схеми - більш високий середній температурний напір у ділянці перегрівника і через це менша поверхня нагріву його; недолік - важчі умови роботи металу останніх за ходом пари ділянок змійовика. При прямотоковій схемі умови роботи металу полегшуються, але потрібна більша поверхня нагріву перегрівника. Щоб поєднати переваги тієї і другої схем, застосовують змішану схему комбінованої течії.
З барабана, котлоагрегату високого тиску ПК-10 з вертикальними змійовиками, пара по перепускних трубах, розміщених під стельовим перекриттям котла, надходить у колектор насиченої пари, з нього - в змійовики другої за ходом газів частини перегрівника, а потім - у проміжний колектор. У широкому по фронту агрегаті великої потужності треба вживати заходів для того, щоб забезпечити теплову й температурну рівномірність роботи змійовиків перегрівника. З цією метою пару перекидають з колектора в бічні короткі колектори, з яких пара надходить у бічні пакети змійовиків першої за ходом газів частини перегрівника, збирається в змішувальному колекторі, виходять з нього в центральний пакет змійовиків і потім надходить у центральний вихідний колектор перегрітої пари.
Друга частина перегрівника виконана з труб 38 4,5 мм з вуглецевої сталі, перша частина - з труб 42 6 мм з малолегованої хромомолібденової сталі, змійовики приєднуються до колекторів приварюванням.
Щоб, котла високого тиску, пароперегрівник працював надійно, треба рівномірно розподіляти пару по змійовиках. Цього досягають вибором раціональної схеми підведення пари до колекторів і зміною швидкості пари в колекторах і змійовиках. Швидкість пари в осьовому напрямку в колекторі повинна бути мінімальною, а швидкість пари в змійовиках значною. Для цього розподіляють підведення пари до колектора і доводять швидкість пари в змійовиках котлів високого тиску до 10-15 м/сек. Спад тиску пари в перегрівнику звичайно допускається до 10% від тиску пари в котлоагрегаті.
Для нормальної роботи котлів дуже важливе значення має регулювання температури перегрітої пари за допомогою комбінованих перегрівників з плавною характеристикою, регулювання по газовій стороні (поворотними пальниками, шиберами і т. п.), регулювання по паровій стороні. У сучасних агрегатах як основний і найбільш надійний застосовується швидкий і тонкий метод регулювання по паровій стороні впорскуванням конденсату в потік пари. Це здійснюється в пароохолодниках змішувального типу. В агрегатах надвисокого і надкритичного тиску впорскування провадиться в двох точках парового тракту: в початковій його частині і поблизу вихідного колектора, там, де ентальпія пари на 125-210 кдж/кг менша від кінцевої її ентальпії, що відповідає температурі перегрітої пари у вихідному колекторі.
4.2 Водяні економайзери
Основне призначення водяного економайзера - підігрівання живильної води за рахунок теплоти димових газів. Проте в ряді випадків вода в економайзері не тільки підігрівається, а й частково (до 20% від ваги) перетворюється в пару. Такі економайзери називаються киплячими.
Заміна хвостової котельної поверхні нагріву економайзерною вигідна, бо економайзер працює з вищим середнім температурним напором, ніж котельна поверхня, розміщена в тому самому газоході, оскільки середня температура води в економайзері нижча за температуру води в котлі. Ця температура дорівнює температурі насичення при даному тискові. Тому поверхня нагріву економайзера при тому самому значенні температури димових газів значно менша від температури котельної поверхні нагріву. В той самий час вартість 1 м2 поверхні нагріву економайзера менша, ніж вартість 1 м2 котла.
Водяні економайзери виготовляються з чавунних або стальних труб. Чавунні економайзери виконуються з ребристих труб і застосовуються в установках низького і середнього тиску (у нас - тільки до 22 бар). Розміщення труб горизонтальне, з'єднуються вони між собою зовнішніми чавунними калачами. Чавунні економайзери корозостійкі і порівняно дешеві, але громіздкі і мають багато фланцевих з'єднань. У них, щоб запобігти гідравлічним ударам, які виникають при закипанні води, допускають обмежене підігрівання води (температура води на виході з економайзера повинна бути на 40° С нижчою від температури насичення).
У котельних агрегатах високого тиску застосовують стальні водяні економайзери змійовикового типу, аналогічні за конструктивною схемою до пароперегрівників. Вони можуть бути некиплячими і киплячими.
Котел високого тиску типу ТП-230 Таганрозького котельного заводу з горизонтальним розміщенням труб у шаховому порядку. Труби змійовиків діаметром 32 4 мм виготовлені з вуглецевої сталі. Економайзер складається з трьох пакетів. Живильна вода надходить у нижні колектори і підігріта відводиться з верхнього колектора. Вона проходить по змійовиках знизу вгору, щоб полегшити видалення з економайзера газових і парових бульбашок. Гази рухаються зверху вниз, обмиваючи зовні труби економайзера. Протитокова схема забезпечує високий середній температурний напір. Пакети труб спираються на стальні порожнисті охолоджувані повітрям балки. Колектори економайзера розміщені поза обмурівкою.
Щоб запобігти корозії і розшаруванню пароводяної суміші у вихідних змійовиках, треба стежити, щоб швидкість води в трубах економайзера була в не киплячих пакетах не менш як 0,5 м/сек, а в киплячих - не менш як 1 м/сек.
Для захисту економайзера від зовнішньої корозії температура води, що надходить до нього, повинна бути вища за температуру точки роси димових газів tр. Значення tр коливається при спалюванні вологого палива з незначним вмістом сірки від 20 до 60° С, а при спалюванні сірчистого палива воно досягає 130-140° С.
4.3 Повітропідігрівники
Потреба у повітропідігрівниках у котельних установках зумовлена тим, що при регенеративному підігріванні живильної води не можна глибоко охолодити димові гази у водяних економайзерах, бо вода, що надходить до них, має дуже високу температуру. В той самий час підігрівання повітря, що підводиться в топку, корисне для підвищення ефективності топкового процесу. Воно дає змогу працювати з меншим коефіцієнтом зайвини повітря і меншою неповнотою згоряння. Таким чином, внаслідок підігрівання повітря знижуються основні витрати котельного агрегату (q2, q3, q4).
За способом передачі теплоти повітропідігрівники поділяються, на рекуперативні і регенеративні. В рекуперативних повітропідігрівниках теплота від газу до повітря передається безпосередньо через роздільну стінку. В регенеративних повітропідігрівниках металеві або керамічні насадки обмиваються почергово газом і повітрям. Газ нагріває насадку, в ній акумулюється теплота, яка потім передається повітрю.
Рекуперативні повітропідігрівники бувають чавунні і стальні. У великих установках застосовують стальні повітропідігрівники. Вони можуть бути пластинчастими й трубчастими. В наших енергетичних котельних агрегатах застосовуються трубчасті повітропідігрівники, які виготовлені з тонкостінних труб ( = 1,25 1,5 мм) із зовнішнім діаметром 25-40 мм. Із зменшенням діаметра труб збільшується коефіцієнт теплопередачі і підігрівник стає компактнішим.
Трубчастий повітропідігрівник складається з багатьох розміщених у шаховому порядку труб, приєднаних до трубних дощок. Проміжні перегородки поділяють повітропідігрівник на дві половини. Газ рухається всередині труб зверху вниз. Повітря подається вентилятором праворуч у нижню половину повітропідігрівника, обмиває поперечним потоком труби повітропідігрівника зовні, надходить у перепускний короб, а з нього - в міжтрубний простір верхньої половини повітропідігрівника. При цьому повітряний потік повертає на 180° і рухається у верхній половині повітропідігрівника зліва направо.
Останнім часом у потужних котельних агрегатах стали широко застосовувати регенеративні повітропідігрівники. Вони значно компактніші і легші від рекуперативних і менш чутливі до корозійних поразок.
Регенеративний обертовий повітропідігрівник - це циліндр, заповнений насадкою у вигляді тонких гофрованих залізних листів, що обертається навколо вертикальної осі із швидкістю 2 об/хв. При цьому насадку поперемінно обмиває то газовий, то повітряний потік. Рух газу й повітря протитокові. Газова й повітряна сторони розділені секторною плитою. Для зменшення перетікання повітря до газу передбачено ущільнене обладнання.
Помірне підігрівання повітря застосовують водносхідчастих повітропідігрівниках. При високому повітропідігріванні (320-420° С) застосовують двосхідчасті повітропідігрівники з установкою водяного економайзера в розсічку між першим і другим східцем повітропідігрівника, бо підігрівання повітря до високої температури при односхідчастій схемі або економічно не вигідне, або взагалі неможливе.
4.4 Основи теплового розрахунку конвективних елементів
Конвективні поверхні нагріву виконуються здебільшого (за винятком регенеративних повітропідігрівників) у вигляді трубних пучків або пакетів, установлених упоперек або вподовж руху обмиваних димових газів. Пучки можуть бути двох типів: з коридорним і з шаховим розміщенням труб.
Існує два види теплового розрахунку конвективних елементів (аналогічно до розрахунку топки): конструктивний і перевірний. Конструктивним розрахунком визначають розміри потрібної тепло-сприймальної поверхні елемента. При перевірному розрахунку за відомою поверхнею нагріву елемента (або пакета) визначають температури газів і робочої речовини (води, газу і повітря) на виході з елемента. Перевірний розрахунок виконують не тільки під час перерахунку агрегату на інший вид палива або відмінне від номінального навантаження і т. п., але й під час проектування нових агрегатів. При цьому поверхня нагріву елементів намічається на основі загальних компоновочних міркувань, а перевірним розрахунком уточнюють їх теплосприймання.
Для теплового розрахунку конвективних елементів користуються рівняннями теплообміну і теплового балансу.
Рівняння конвективного теплообміну записуємо у вигляді закону охолодження Ньютона:
Qгод = kHt кдж/год, (1)
з якого виходить, що кількість переданої за одиницю часу теплоти пропорційна температурному напорові і розмірові поверхні нагріву; k - коефіцієнт теплопередачі, вт/м2 град.
Поверхня нагріву обчислюється по стороні максимального термічного опору; в котельних, перегрівальних і економайзерних поверхнях нагріву - по газовій стороні. В тих випадках, коли термічний опір з обох сторін одного порядку, як, наприклад, у повітропідігрівниках, у розрахунок вводиться середня по повітрю і по газовій стороні величина H.
Коефіцієнт теплопередачі (теоретичний) для незабрудненої поверхні нагріву
вт/м2 град. (2)
Коефіцієнт тепловіддачі від газів до стінки 1 = (3070); cm = (52-для вуглецевої сталі, 15-для аустенітової); cm - порядку кількох тисячних (0,0030,006); коефіцієнт віддачі 2 від стінки до води для економайзерних і паротвірних поверхонь нагріву - порядку кількох тисяч і десятків тисяч (3000-30000). Тому для чистих економайзерних і котельних поверхонь нагріву інтенсивність теплопередачі практично цілком визначається інтенсивністю тепловіддачі від газів до стінки:
km 1 (3)
Для пароперегрівників, де 2 - порядку кількох сотень (580-2320), і особливо для повітропідігрівників, де 2 такого ж порядку, як і 1, нехтувати величиною - не можна. Для них
. (4)
4.5 Визначення 1, 2, k і t
Величину 1 знаходять з формули:
1 = k + n вт/м2 град, (5)
де - коефіцієнт обмивання, який ураховує зменшення тепло-сприймання поверхні нагріву внаслідок неповного обмивання її газами; для сучасних котельних агрегатів близький до одиниці; k - коефіцієнт тепловіддачі конвекцією, вт/м2 град; n - коефіцієнт тепловіддачі випромінювання, вт/м2 град.
Критеріальні рівняння для тепловіддачі конвекцією до одиничної труби при примусовому рухові має вигляд:
Nu = соnst RemPrn. (6)
У випадку газового теплообміну рівняння (IV-6) спрощується, бо Рr є функцією атомності газів, а склад димових газів коливається в невеликих межах. Тому Рrn можна ввести в константу, і рівняння (IV-6) може бути записане так:
Nu = CRem.
Беручи до уваги, що , а , можна дістати формулу для k:
. (7)
За цією формулою можна простежити вплив на k основних факторів. Стала С і показник ступеню т визначаються з дослідів. Величина т менша за одиницю; для поперечного обмивання m 0,60,65. З формули (IV-7) видно, що із зростанням швидкості газів коефіцієнт тепловіддачі конвекцією k зростає, з ростом зовнішнього діаметра d труби k зменшується. Крім того, k залежить від фізичних властивостей газу, його теплопровідності і кінематичної в'язкості .
При перпендикулярному або косому обмиванні пучків k залежить від типу пучка (коридорний, шаховий), його геометричної конфігурації, яка характеризується відносним кроком труб s1/d і відносним повздовжнім кроком s2/d, і від числа рядів труб z по глибині пакета.
При повздовжньому зовнішньому обмиванні пучків труб треба вводити в розрахунок еквівалентний діаметр.
Практично k визначають не за формулами типу (IV-7), а за складеними з цією метою номограмами.
Коефіцієнт тепловіддачі випромінюванням продуктів згоряння ураховує випромінювання триатомних газів (СО2, SО2, Н2O) і частинок леткої золи. Це кількість теплоти, переданої випромінюванням Qn вт/м2, віднесена до різниці температур газів і стінки - tcm.
Визначення n, можна провести за формулою:
вт/м2 град, (8)
де аст = 0,82 - міра чорноти стінок променесприймальних поверхонь; а = 1 - е-kps - міра чорноти запиленого газового потоку; kps = (krrn + kn) ps - сумарна сила поглинання потоку; kr і kn - коефіцієнти ослаблення променів триатомними газами і пилом золи, що визначаються за емпіричними формулами; - сумарна об'ємна частка Н2О і RО2; - концентрація частинок золи у продуктах згоряння, г/м3; р - тиск продуктів згоряння, бар; s - ефективна товщина випромінювального шару, м, що визначається для пучків з формули , де а і b - числові коефіцієнти, різні для густих і рідких пучків.
При розрахунках для визначення n і допоміжних величин також користуються номограмами.
Знайшовши k і n, з формули (IV-5) дістанемо значення 1; 2 для повітропідігрівників і пароперегрівників знаходимо так само, як і k.
У загальному випадку для діючого котельного агрегату
. (9)
Величина мала настільки, що при обчисленні її не враховують. Для котельних агрегатів середнього і високого тисків, що працюють при безнакипному режимі, також не враховують величину . Коефіцієнт забруднення оцінюється на підставі рекомендацій, що наводяться в нормах теплового розрахунку котельних агрегатів.
Коефіцієнт теплопередачі з урахуванням зовнішнього забруднення для котельних і економайзерних поверхонь нагріву
вт/м2 град, (10)
а для пароперегрівників
вт/м2 град. (11)
Для повітропідігрівників вводять загальний коефіцієнт використання поверхні нагріву :
вт/м2 град. (12)
Середній температурний напір t залежить від взаємного напрямку руху середовищ. Для найчастіше вживаних схем прямотоку і протитоку температурний напір визначається як середньо-логарифмічна різниця температур за формулою (III-63).
За цією формулою розраховується t не тільки для чистого прямотоку й протитоку, але й для схем східчастого прямотоку й протитоку, що найчастіше зустрічаються в пароперегрівниках і водяних економайзерах. Для схем, відмінних від прямотоку й протитоку (перехресний потік теплоти), t визначають на основі спеціальних розрахункових рекомендацій і номограм.
4.6 Загальна схема розрахунку конвективних елементів
Звичайно, при тепловому розрахунку користуються рівняннями теплообміну і теплового балансу, записаними не в кдж на годину, a в кдж на 1 кг палива.
Рівняння теплообміну:
кдж/кг. (13)
Рівняння теплового балансу:
Q = (I - I + Iпрс) кдж/кг (14)
де Q - теплота, сприйнята розраховуваним елементом, віднесена до 1 кг палива; Вр - розрахункова витрата палива, кг/год; - коефіцієнт збереження теплоти, що враховує втрату теплоти в навколишнє середовище ( 1); I і I - ентальпії продуктів горіння на вході і виході з елемента, кдж/кг; Iпрс - кількість теплоти, що вноситься присмоктуваним повітрям, кдж/кг.
У загальному випадку перевірного розрахунку теплосприймального елемента рекуперативного типу відома (намічена) величина поверхні нагріву Н, і з попереднього розрахунку відомі температура і ентальпія газів (, І) і робочої речовини (t1, i1) перед розраховуваною поверхнею нагріву.
Величина Н намічається на підставі компоновочних і техніко-економічних міркувань. Зокрема, беруться до уваги рекомендовані значення швидкостей газів і коефіцієнтів теплопередачі в конвективних елементах. При дуже малих значеннях k елемент набуває великих розмірів, стає громіздким і дорогим. При дуже великих значеннях k зростає вартість енергії, що витрачається на перемагання опорів елементів. При виборі швидкостей ураховується також необхідність запобігати золовому зносові i заносові поверхні нагріву. Значення швидкостей газів звичайно коливається в межах від 7 до 15 м/сек.
Попередньо оцінивши кінцеву температуру і ентальпію i газів, можна з рівняння теплового балансу дістати кінцеву ентальпію i2 і температуру t2 робочої речовини. Наприклад, для водяного економайзера (або його пакета) при відомій витраті води D кг/год
(I - I + Iпрс) = (і2 - і1) = Qб кдж/кг. (15)
Тепер можна визначити середній температурний напір t (температури г, г, t1, t2 відомі) і коефіцієнт теплопередачі k, бо всі дані для цього є. Геометричні розміри газоходу, його ширина b і глибина або висота h і конструктивні характеристики пучка d, s1, s2 відомі. Швидкість газів
м/сек. (16)
Живий переріз газоходу
F = bh - n1 l d м2, (17)
де n1 - число труб в ряду; l - довжина труб, м.
Решту величин беруть з відповідних номограм і раніше поданих співвідношень.
Після цього з рівняння (IV-13) визначають теплосприймання поверхні нагріву Qm, яке порівнюють з величиною Qб, одержаною з теплового балансу (IV-14). При розходженні до 2% розрахунок не уточнюється. При більшому розходженні треба задатись новим значенням г. Ув'язати розрахунки можна методом послідовного наближення або, простіше, за допомогою графічної інтерполяції, задавшись двома значеннями: г(1 і 2).
Розрахункові значення шуканої температури газів p, визначають (наближено, але з достатньою точністю) по проекції на вісь абсцис точки перетину прямих Qт і Qб.
5. Допоміжне обладнання котельних установок. Водопідготовка
5.1 Тягодуттьове і живильне обладнання
Процес горіння палива можливий при безперервному підведенні в топку повітря і видалянні продуктів згоряння. Подавати повітря і видаляти димові гази можна або природною тягою димової труби (димаря), або примусово за допомогою вентиляторів і димососів. Природна тяга створюється димовою трубою внаслідок того, що густина газів, які в ній знаходяться, менша від густини атмосферного повітря. Її застосовують лише в невеликих установках, в яких температура відхідних газів висока, а опір котла невеликий (10-15 мм вод. ст.).
В установках середньої і великої видатності опір котлоагрегату становить 200300 мм. вод. ст., а температура відхідних газів - 115140° С. За таких умов димова труба не зможе створити потрібного розрідження і треба застосовувати штучну тягу.
Повітря, потрібне для горіння, подається вентилятором 2, що перемагає опір повітропідігрівника і пальників при камерному спалюванні або шару палива при шаровому спалюванні. Продукти згоряння відсмоктуються димососом 1 і видаляються в атмосферу крізь димову трубу на висоту, що визначається санітарними нормами.
У верхній частині топки підтримується лише невелике розрідження, що обчислюється кількома мм вод. ст. Таку схему називають зрівноваженою тягою.
Тягодуттьова установка може складатися з кількох вентиляторів і димососів. У димососах, на відміну від дуттьових вентиляторів, передбачається водяне охолодження підшипників, а іноді й вала, покриття кожуха всередині бронею і зносостійка конструкція ротора.
Для вибору вентиляторів і димососів визначають гідравлічні опори, що виникають під час руху повітря і газів в установці, враховуючи опір тертя, місцеві опори, запиленість газового потоку, можливі зовнішні забруднення поверхні нагріву.
Вибирають вентилятор або димосос виходячи з повного його напору h в н/м2 і годинної видатності Q в м3/год при номінальному навантаженні агрегату. Потужність на валу димососа або вентилятора визначається за формулою:
квт, (1)
де 1,1 - коефіцієнт запасу; - к. к. д. димососа, який у сучасних конструкцій дорівнює 0,750,85.
Витрата електроенергії на тягодуттьову установку становить 1,53% від видатності котельного агрегату і залежить як від к. к. д. вентиляторів і димососів, так і від способу регулювання їх видатності при зміні навантаження котельного агрегату. Таке регулювання можна здійснювати за допомогою напрямних апаратів (лопаток), що закручують потік газів перед надходженням його на лопатки вентилятора, а також гідромуфтами і зміною числа обертів електродвигуна. Останнім часом набуває поширення регулювання шиберами язикового типу, встановленими на всмоктувальному патрубку вентилятора.
Воду в паровий котел подають поршневими і відцентровими насосами. Для безпечної експлуатації котлів потрібна висока надійність роботи живильного обладнання, в зв'язку з чим установлюються резервні живильні прилади.
Поршневі насоси мають високий к. к. д., надійні в роботі, придатні для дуже високих тисків. Проте при великій видатності вони стають громіздкими і тому застосовуються, головне, в невеликих котельних установках.
У котельних установках середньої і великої видатності застосовують відцентрові насоси з електричним або паротурбінним приводом. Вони компактні і придатні для будь-якого тиску і видатності.
Сучасні котли мають невеликий водяний об'єм. Щоб забезпечити їх безперервне живлення відповідно до навантаження котла, передбачається автоматичне живлення. У нас поширені двоімпульсні регулятори живлення (системи інж. Трубкіна та ін.). Кількість подаваної води регулюється живильним клапаном за первинним імпульсом від рівня води в барабані і за вторинним - від витрати пари.
5.2 Золовидалення і золовловлювання
У невеликих котельних установках при шаровому спалюванні палива застосовують вагонеткове або механічне золовидаляння (за допомогою скребкового транспортера).
У котельних установках середньої і великої видатності широко застосовують низьконапірне гідравлічне золовидаляння. Зола і шлак змиваються струминою води і з бункерів надходять у канал, по якому рухається вода, що виносить золу за межі котельної. Потім зола транспортується до золовідвалу в закритому трубопроводі. Суміш води, шлаку і золи перекачується або багерними насосами, або гідроапаратами системи інж. Москалькова.
Багерні насоси - це відцентрові насоси, призначені для роботи на дуже забрудненій воді. В їх конструкції передбачається можливість пропуску через них кусків шлаку розміром до 100 мм.
Гідроапарат інж. Москалькова обладнаний соплом з насадкою. В апарат подається вода під тиском 40-50 бар. Вона виходить з насадки з великою швидкістю і дробить та ежектує шлак.
Багерні насоси можуть перекачувати суміш води й золи на відстань до 1 км, напорні гідроапарати - до 2 км.
У відхідних димових газах міститься сірчистий ангідрид і багато леткої золи. Щоб знизити концентрацію пилу в атмосферному повітрі, димові гази очищають у золовловниках. Крім того, встановлюють високі димові труби (у великих установках 100-150 м) для розвіювання сірчастого ангідриду і леткої золи, залишеної після золовловників, на значну відстань. Золовловлювання провадиться у золовловниках різних типів: механічних, жалюзійного і циклонного типів (циклони, батарейні циклони), мокрих (скруберні, пруткові) і в електрофільтрах.
У жалюзійних золовловниках ВТІ запилений потік газів розподіляється на паралельні струмини, напрямок руху яких різко змінюється. При цьому вловлюються крупні фракції золи. Такі золовловники використовують для захисту димососів, а також: хвостових поверхонь нагріву від швидкого зносу.
Циклони виконуються у вигляді вертикальних циліндрів з конічним днищем. Запилений газ підводиться до циліндра тангенціальне і набуває обертового руху. Золові частинки під впливом відцентрової сили відкидаються до стінок і по них спускаються в нижню частину циклона, а очищений газ виходить у трубу, розміщену в верхній частині циклона по його осі. Міра вловлювання пилу в циклоні залежить від конструкції циклона і розмірів частинок пилу і становить в середньому 6070%.
К. к. д. циклона можна збільшити до 7080%, зменшивши його діаметр. Тому останнім часом установлюють батарейні циклони, що складаються з багатьох циклонів малого діаметра (200250 мм).
Мокрі відцентрові скрубери ВТІ належать до комбінованих систем золовловлювачів. Димові гази підводяться до скруберів тангенціальне через горизонтальний патрубок. Стінки скрубера, облицьовані керамічними плитками, зрошуються водою. Частинки золи, що відкидаються до стінок відцентровою силою, стікають разом з водяною плівкою вниз і видаляються в каналізацію. Коефіцієнт вловлювання золи в мокрих скруберах становить 85 - 88%.
Пруткові золовловники ВТІ (інж. Деркачова) відрізняються від мокрих скруберів тим, що на них установлені у вхідному патрубку решітки із зрошуваних водою прутків для кращої очистки газу.
В електрофільтрах пилові частинки, діставши негативний заряд, летять до позитивно зарядженого осаджувального електрода і осаджуються на ньому, видаляючись у золовий бункер під час періодичного струшування електрода. Міра вловлювання золи в електрофільтрах становить 95%.
При виборі типу золовловників беруть до уваги не тільки міру вловлювання золи, а й вартість і складність спорудження, металомісткість і витрату енергії. При достатньо високому к. к. д. найекономічніші за вартістю очистки 1 м3 газу мокрі відцентрова скрубери.
5.3 Водопідготовка
Щоб теплові електростанції працювали надійно й економічно, треба правильно організувати водний режим котельних агрегатів. Для цього слід запобігати утворенню відкладень на стінках поверхонь нагріву пароводяного тракту агрегату, їх корозії, добувати пару високої частоти.
Для живлення котельних агрегатів електростанцій застосовують турбінний конденсат. Проте частина цього конденсату на станціях втрачається, і ці втрати на великих конденсаційних електростанціях становлять 13%, а на теплоелектроцентралях через неповертання конденсату з виробничих апаратів - до десятків процентів. Ці втрати поповнюють додатковою водою.
Природна вода містить механічні домішки, різні розчинені солі й гази, тому, потрапляючи в котел, розчинені речовини, що містяться у воді, утворюють накип і шлам, а розчинені корозоактивні гази (кисень і вуглекислий газ) викликають корозію стінок котлів.
До накипотвірних солей належить кремнекислота, сірчанокислі і вуглекислі солі кальцію і магнію. Сумарна концентрація у воді катіонів кальцію і магнію визначає її загальну жорсткість. Вона поділяється на карбонатну (тимчасову), зумовлену наявністю бікарбонатів кальцію і магнію, і некарбонатну, зумовлену наявністю в воді інших солей кальцію і магнію. Жорсткість виражають у міліграм-еквівалентах або в мікрограм-еквівалентах на літр (мг екв/л або мкг екв/л).
Накип відкладається у вигляді міцного шару на стінках поверхонь нагріву, а шлам - у вигляді дрібних завислих у воді частинок. У ряді випадків відбувається вторинне накипоутворення внаслідок прикипання шламу до поверхні нагріву. Із солей жорсткості найнеприємніші щодо накипоутворювання: силікат СаSіО3 і сульфат СаSO4 кальцію, що дають твердий і щільний накип.
Через відкладання накипу і прикіпання шламу на поверхнях нагріву знижується надійність і економічність роботи котельних установок, бо шлам і накип мають дуже низьку теплопровідність. Такі відкладення на стінках труб, що працюють у ділянці високих температур димових газів, можуть спричинити недопустиме перегрівання цих стінок, що супроводиться зниженням міцності металу, деформацією і розриванням труб. Внутрішнє забруднення поверхонь нагріву призводить до погіршання теплопередачі, підвищення температури відхідних газів і зниження к. к. д. котельного агрегату, створюючи великий додатковий термічний опір.
Чим вищий тиск вироблюваної пари, тим вищі вимоги до якості живильної води. Особливо високі вимоги ставлять до якості живильної води для прямотокових котлів надкритичних параметрів. З підвищенням тиску стає все важче дістати чисту пару, бо при переході до високих тисків пара забруднюється не тільки внаслідок виносу солей з краплями води, а й внаслідок здатності її розчиняти деякі домішки - кремнекислоту і сполучення натрію (хлористий натрій, гідроокис натрію тощо). Наявні в парі домішки утворюють відкладення в арматурі паропроводів, у клапанах і в проточній частині турбін. Це призводить до нещільності арматури, зниження економічності і потужності турбін.
Запобігти утворюванню накипу в паровому котлі можна, лише видаливши розчинені у воді солі або перевівши їх у легкорозчинні сполуки, що не випадають з розчину навіть при високій концентрації в ньому солей.
Мета обробки вихідної води - або пом'якшення, тобто зменшення вмісту в воді кальцієвих і магнієвих солей, що визначають її жорсткість, або знесолення води.
Застосовують такі способи пом'якшення води, зменшення її жорсткості: термічні, реагентні, іонного обміну, комбіновані.
Термічний спосіб пом'якшення води полягає в нагріванні води. При цьому розкладається бікарбонат кальцію і утворюється вуглекислий газ, вода і карбонат кальцію, що випадає в осад:
Ca (НСО3)2 СаСО3 + СО3 + H2O.
Якщо у воді є бікарбонат магнію, то спочатку утворюється бікарбонат натрію, що дає при кип'ятінні осад малорозчинного гідроокису магнію. Глибокого пом'якшення даним способом досягти не можна і для енергетичних установок він не придатний.
Реагентні способи пом'якшення води, що називаються також методами осаджування накипоутворювачів, ґрунтуються на випаданні в осад карбонату кальцію і гідроокису магнію внаслідок дії багатьох реагентів, що добавляються в оброблювану воду. Як реагенти застосовують вапно, їдкий натр, соду як роздільно, так і комбіновано.
Нині як передочистку в поєднанні з методом іонного обміну застосовують вапнування, це дає можливість різко зменшити карбонатну жорсткість вихідної води, видалити розчинений у воді вуглекислий газ, а також магнієву жорсткість, зменшити сухий залишок води:
Са (НСО3)2 + Са (ОН)2 2СаСО3 + 2Н2O;
СО2 + Са (ОН)2 СаСО3 + Н2О;
Мg (НСО3)2 + 2Са (ОН)3 Мg (ОН)2 + 2СаСО3 + 2Н2О.
Подобные документы
Впровадження автоматизації в котельних установках та оцінка його економічного ефекту. Основні напрямки автоматизації систем теплопостачання. Характеристика БАУ-ТП-1 "Альфа", його функціональні особливості, принцип роботи та основні елементи пристрою.
реферат [1,4 M], добавлен 05.01.2011Фізичні основи процесу епітаксія, механізм осадження кремнію з газової фази. Конструкції установок для одержання епітаксійних шарів кремнію. Характеристика, обладнання молекулярно-променевої епітаксії. Легування, гетероепітаксія кремнію на фосфіді галію.
курсовая работа [2,6 M], добавлен 29.10.2010Проектування систем теплопостачаня житлових кварталів. Визначення витрат теплоти в залежності від температури зовнішнього повітря. Модуль приготування гарячої води та нагріву системи опалення. Система технологічної безпеки модульних котельних установок.
курсовая работа [1,7 M], добавлен 18.01.2014Способи та джерела отримання біогазу. Перспективи його виробництва в Україні. Аналіз існуючих типів та конструкції біогазових установок. Оптимізація їх роботи. Розрахунок продуктивності, основних параметрів та елементів конструкції нової мобільної БГУ.
дипломная работа [2,6 M], добавлен 21.02.2013Підвищення ефективності спалювання природного газу в промислових котлах на основі розроблених систем і технологій пульсаційно-акустичного спалювання палива. Розробка і адаптація математичної моделі теплових і газодинамічних процесів в топці котла.
автореферат [71,8 K], добавлен 09.04.2009Особливості конструкції та технології виготовлення джерела світла ЛБ-20Е. Лампи, розраховані на роботу в стандартних мережах змінного струму без трансформації напруги. Контроль якості, принцип роботи. Нормування трудових та матеріальних витрат.
курсовая работа [315,1 K], добавлен 25.08.2012Основні принципи проектування ГЕС. Склад головного обладнання. Номенклатура, типи і параметри гідротурбін, їх головна універсальна характеристика. Вибір типу турбіни і кількості агрегатів ГЕС. Співставлення і вибор турбін за результатами випробувань.
реферат [63,2 K], добавлен 19.12.2010Кристалічна структура води, її структурований стан та можливість відображати нашу свідомість. Види і характеристики води в її різних фізичних станах. Досвід цілющого впливу омагніченої води. Графіки її початкового й кінцевого потенціалів за зміною в часі.
курсовая работа [1,6 M], добавлен 26.03.2014Схеми, конструкції розподільчих пристроїв, основне устаткування підстанції. Облаштування і конструктивне виконання повітряних ліній. Організація оперативного керування і робіт з експлуатаційного і ремонтного обслуговування магістральних електричних мереж.
отчет по практике [1,0 M], добавлен 15.03.2015Залежність коефіцієнт теплового розширення води та скла від температури. Обчислення температурного коефіцієнту об'ємного розширення води з врахуванням розширення скла. Чому при нагріванні тіла розширюються. Особливості теплового розширення води.
лабораторная работа [278,4 K], добавлен 20.09.2008