Автоматизация энергоблока АЭС с ВВЭР-1000

Метод прогнозирования глушения теплообменных трубок на основе анализа химического состава воды. Особенности применения современных средств автоматизации. Оценка технико-экономических показателей АЭС общей мощностью 4000 МВт (4 энергоблока с ВВЭР-1000).

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 29.05.2010
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, ТПТС53 представляет собой многопроцессорную систему с децентрализованным (или распределенным) управлением. Такое построение обеспечивает существенные преимущества перед традиционными централизованными информационно - управляющими системами.

Концепция автоматизации характеризуется иерархической структурой обработки информации (рис.2.6) и функциональным (технологическим) разделением устройств автоматизации для обработки измеряемых величин, дискретного управления и регулирования по функциональным зонам.

Щит управления подразделяется на две рабочие зоны:

1) управление технологическим процессом (ТП);

2) техническое сопровождение.

Техническое сопровождение процесса

Рисунок 2.6 - Структура АСУ ТП на электростанции

Управление технологическим процессом включает в себя оперативный контроль, управление и мониторинг технологического процесса и устройств автоматизации.

Техническое сопровождение охватывает общий контроль за работой установки со стороны начальника смены и инженеров АЭС, обслуживание АСУ ТП и документирование.

ТПТС53 включает технические и программные средства для реализации всех функций, необходимых для автоматизации процессов на AЭC: сбора и обработки технологических данных, автоматического регулирования и дискретного управления, защит и блокировок, вычисления и оптимизации, а также для контроля, сигнализации, оперативного управления ТП с использованием мониторов операторских станций и, при необходимости, традиционных элементов управления.

В систему заложена возможность проектирования надежности установки. ТПТС53 обеспечивает возможность резервировании аппаратных средств. При этом, в зависимости от предъявленных требований, возможны различные варианты построения резервированных структур. Таким образом, шинная система, системы автоматизации, обслуживания и наблюдения могут быть дополнены резервными системами.

Преимущества ТПТС53 перед традиционными контроллерами:

- увеличение вычислительной мощности системы пропорционально увеличению числа контролируемых параметров;

- наличие микропроцессора в каждом функциональном модуле обеспечивает возможность введения процедур глубокой диагностики модулей и внешних цепей.

Таблица 2.1 - Расширение функциональных возможностей АСУ ТП на базе ТПТС53

Существенное повышение объема автоматизации

Принципиальное изменение функций оператора

Функция

Новое качества:

Основа.

Автоматическое регулирование

Полный охват регуляторов. Любой требуемый алгоритм

Надежность аппаратуры

логическое управление

Пошаговая логика и сложные блокировки для всех узлов с эа

Диагностика периферии

защиты

Автоматический ввод - вывод, всесторонний контроль. Сигнализация и регистрация.

Диагностика и анализ аппаратных и алгоритмических нарушений

Существенное повышение объема автоматизации

Принципиальное изменение функций оператора

Функция

Новое качества:

Основа.

Контроль и сигнализация

Разнообразие и удобство предоставления. Сигнализация и быстрая локализация любого нарушения.

Высокоразвитый и разнообразный интерфейс оператора.

Дистанционное управление через монитор.

Вся эа и привода. Теплотехническое и электротехническое оборудование. Удобство контроля выполнения команд. Блокировка ошибочных действий.

Высокоразвитое базовое программное обеспечение

Расчеты. Регистрация. Архивы. Протоколы.

Быстродействие, точность, широта задач, простота программирования. В оптимально - целесообразном объеме.

Стандартизация решений

2.1.7 Система автоматизации AS 220 EA

Основной частью (ядром) АСУ ТП на базе ТПТС53 является система автоматизации.

AS 220 EA -- система автоматизации со структурируемыми автономными функциональными блоками, предусматривающая гибкое резервирование, при этом допускается полное или выборочное резервирование модулей по схеме «1 из 2, горячий резерв». «Горячее» резервирование подразумевает отслеживание состояния основного модуля резервным, проведение взаимной диагностики и безударное переключение на резервный модуль в случае неполадки основного. Все задачи выполняются в AS 220 EA распределёно автономными функциональными модулями, имеющими свои вычислительные возможности. Это позволяет достичь очень высокого коэффициента готовности и живучести системы.

Основные свойства системы автоматизации AS 220 EA:

- распределённая архитектура системы;

- без центрального процессора,

- без центральной памяти;

- энергонезависимая память;

- отсутствие ограничений по «памяти» за счёт использования распределённой обработки;

- быстрая обработка за счёт децентрализованной структуры;

- высокая готовность вследствие использования горячего резерва по схеме «1 из 2»;

- малое число типов модулей;

- простота программирования и обслуживания с использованием «технологического» языка;

- обеспечение всех функций управления, сбора и обработки информации;

- высокая готовность программного обеспечения для решения задач в энергетике.

2.1.8 Область применения

Система предназначена для решения следующих задач автоматизации процессов:

- измерение и обработка;

- управление;

- регулирование;

- расчет и контроль;

- защита и блокировка;

- сигнализация.

Благодаря гибким схемным решениям система может соответствовать любым требованиям к надежности. Она может быть сконфигурирована как без резервирования, так и с частичным или с полным резервированием.

2.1.9 Структура

AS 220 EA конструктивно представляет собой шкаф, в котором расположены каркасы с функциональными модулями (до 48 модулей в одном шкафу), модулями контроллера шины ввода/вывода (EAS), интегрированной шиной ввода/вывода, элементами резервированного питания и защиты, сетевыми компонентами.

AS 220 EA может иметь внутреннее резервирование (шины ввода/вывода, питания, EAS) или быть не резервированной. Резервирование осуществляется по схеме «1 из 2, горячий резерв», причем секции шин гальванически развязаны и доступны со стороны обоих модулей EAS. Это обеспечивает доступ к любому из модулей, установленному в AS, и надежную связь с шинами SC и CS 275.

Система состоит из:

- одного или двух основных каркасов с EAS и 12 слотами для функциональных модулей;

- до 6 каркасов расширения.

В зависимости от схемного решения могут быть установлены до 108 функциональных модулей. Напряжение питания -- 248 постоянного тока, причём предусмотрена возможность его резервирования.

2.1.10 Принцип работы

Принцип работы системы автоматизации AS 220 EA определяется функциональными и сигнальными модулями. Все задачи автоматизации решаются распределёно функциональными модулями, работающими автономно.

Обмен сигналами между модулями осуществляется через шину ввода/вывода, которая центрально управляется контроллером шины ввода/вывода EAS. Через EAS осуществляется также связь с шиной меж контроллерного обмена SC, которая служит для обмена аналоговыми и дискретными сигналами между AS, а также с резервной шинной системой CS 275.

Обмен сигналами структурируется с помощью устройства сопряжения PG 750 или рабочей станции WS 30 на модуле управления шиной ввода/вывода EAS. Данные структурирования записываются в EEPROM данного модуля.

Модули EAS соединены между собой через интерфейс и циклически обмениваются тестовой комбинацией, контролируя таким образом друг друга.

Конфигурирование модулей AS 220 ЕА осуществляется с помощью графических инструментальных средств GEТ/ТМ и ES 680 или непосредственно на входном технологическом языке с использованием программатора PG. Данные о конфигурации заносятся в EEPROM модулей и сохраняются все время, даже пока отключено питание модулей.

Часть 3. Разработка методики прогнозирования повреждений теплообменных трубок парогенератора

3.1 Основные положения

Обеспечение надежной работы теплообменных трубок (ТОТ) парогенераторов (ПГ) является важнейшей задачей для различного типа АЭС как в отечественной атомной энергетике, так и за рубежом.

Тонкостенные теплообменные трубы парогенератора являются важной частью границы первого контура и для того, чтобы исполнять функции эффективного барьера, теплообменные трубы не должны иметь сквозных дефектов или дефектов, требующих глушения ТОТ.

На ПГ российского производства повреждения теплообменного пучка имеют место в различной степени на всех блоках АЭС и являются в настоящее время основным фактором, определяющим остаточный ресурс ПГ.

3.2 Особенности эксплуатации ТОТ парогенераторов АЭС с ВВЭР

3.2.1 Объект исследования

Характерными особенностями парогенераторов АЭС с ВВЭР являются [8]:

- горизонтальный цилиндрический корпус с расположенными внутри горизонтальными змеевиками теплообменных труб, заделанных в вертикальные коллекторы теплоносителя;

- использование верхней части объема корпуса для гравитационной сепарации;

- применение в качестве теплообменной поверхности труб размером 16х1,4 мм (для ПГВ-440) и 16х1,5 мм (для ПГВ-1000) из нержавеющей стали.

В 2001 году был завершен проектный срок службы энергоблоков первого поколения АЭС с ВВЭР-440, к каким относятся блоки №3,4 НВАЭС и №1,2 КАЭС. Эти энергоблоки находились в работоспособном состоянии, когда решался вопрос о том, что замещающих энергетических мощностей в стране не вводилось, и стал актуальным вопрос продления срока службы незаменяемого оборудования указанных блоков. К такому оборудованию относятся и парогенераторы.

Работы по продлению срока службы парогенераторов сверх проектного значения заключались в анализе и оценке их технического состояния по результатам эксплуатационного контроля.

3.2.2 Критерии глушения ТОТ

Коррозионное повреждение теплообменных труб парогенераторов является одним из самых важных факторов, влияющих на ресурс парогенераторов.

Дефектные трубы подвергаются глушению, а сварные швы могут быть отремонтированы. Трубы с дефектами небольших размеров могут находиться в эксплуатации, если возникшая и зафиксированная межконтурная течь не превышает допустимых регламентных пределов.

В последнее время в мире преобладает тенденция установления критерия глушения в зависимости от типа дефекта и его расположения.

В России ведется работа по разработке критериев глушения с учетом параметров дефектов. Так при выборе критериев глушения на ПГ-3 блока НВАЭС принимались во внимание следующие браковочные признаки:

- величина параметра "нехватка материала" (разъедание материала вследствие коррозионного процесса) при обследовании;

- скорость роста дефектов по данным нескольких проверок более 10% за год в диапазоне 60-70 % от толщины стенки;

- близкое расположение нескольких дефектов в критичной зоне (до 15 мм между индикациями);

- появление и интенсивный рост вновь образовавшихся индикаций в критической зоне, т.е. там, где наблюдается интенсивная деградация.

Наиболее часто критерием глушения является предельное значение размера дефекта, определяемое в результате эксплуатационного контроля.

Контроль плотности и поиск неплотных теплообменных труб ПГ ВВЭР производится в период планово-предупредительного ремонта (ППР) гидравлическим или пневмогидравлическим аквариумным способами и собственно гидравлическими испытаниями.

В последнее время для оценки состояния ТОТ широко используется вихретоковый контроль (ВТК), который является основным источником информации о коррозионном состоянии теплообменных труб ПГ. Данные ВТК позволяют получать численные характеристики, связанные с состоянием каждой теплообменной трубы. Применение систем ВТК для обнаружения дефектов в теплообменных трубах и выборочное глушение дефектных труб позволяет повысить надежность работы парогенераторов и блока в целом.

По результатам ВТК производится выборочное глушение дефектных труб, что позволяет избежать во время эксплуатации возможного раскрытия имеющегося дефекта до сквозного и, соответственно, внепланового останова реакторной установки.

Для объективной картины состояния теплообменных труб ПГ блоков целесообразно проведение 100%-ного контроля ТОТ каждого парогенератора блока АЭС, в то время как до последнего времени осуществляется проверка лишь части ТОТ ПГ. Минимальный объем контроля не должен быть меньше 10% (560 труб для ПГВ-440 и 1100 труб для ПГВ-1000). При минимальном объеме контроля трубы должны контролироваться на полную длину.

На основании полученных данных по дефектам ТОТ ПГ необходимо делать анализ состояния ПГ, оценивать их ресурс или принимать меры, позволяющие оперативно влиять на процесс старения ТОТ ПГ.

3.2.3 Продление ресурса ТОТ парогенераторов

Информация о состоянии ТОТ ПГ, полученная с Российских АЭС, собрана в едином банке данных, который регулярно и оперативно пополняется результатами эксплуатационного контроля.

Для снижения отложений на поверхности ТОТ осуществляются химические промывки, что приводит к положительному влиянию на состояние ПГ, замедляется процесс возникновения новых дефектов.

Как показывает опыт эксплуатации, основным фактором, влияющим на работоспособность трубчатки, является водно-химический режим. Наблюдаются значительные различия фактического состояния трубчатки парогенераторов разных энергоблоков, а в отдельных случаях даже в пределах одного энергоблока.

Теплообменные трубы являются основным фактором, определяющим ресурс парогенератора. Продление ресурса парогенераторов выполняется при значительной неопределенности остаточного ресурса теплообменных труб, т.к. до настоящего времени отсутствует методика определения ресурса ТОТ ПГ с коррозионными дефектами, учитывающая все эксплуатационные факторы. Так, для продления на 15 лет ресурса парогенераторов НВАЭС и КАЭС по решению Главного конструктора ПГ включено обязательное выполнение следующих требований:

- выполнение работ по совершенствованию методики ВТК;

- оптимизация критериев глушения, периодичности и объемов контроля;

- обеспечение водно-химического режима второго контура, в том числе ограничение присосов охлаждающей воды в конденсаторах турбин и недопущение накопления отложений более 150 г/м2 на любом контролируемом участке теплообменной поверхности;

- проведение с участием главного конструктора парогенераторов ежегодного всестороннего анализа (условий эксплуатации ПГ, ведения водно-химического режима второго контура, состояния теплообменных труб и других элементов парогенераторов с выполнением раз в 5 лет расчетно-аналитического обоснования ресурса трубного пучка, выдачей рекомендаций по корректировке условий дальнейшей эксплуатации).

Принятая в атомной энергетике стратегия управления ресурсом трубчатки ПГ базируется на вероятностных методах с учетом исследования динамики повреждаемости ПГ действующих блоков. При этом необходим индивидуальный подход к каждому ПГ. Продление срока службы парогенераторов блоков АЭС с ВВЭР сверх проектного значения напрямую зависит от работоспособности теплообменного пучка ПГ.

Для реализации действующей стратегии управления ресурсом необходимы следующие подходы:

- оптимизации объемов и периодичности контроля;

- внедрения мероприятий, направленных на снижение поступления коррозионно-активных примесей в воду парогенератора;

- совершенствования водно-химического режима второго контура;

- повышение эффективности химических и механических промывок.

- совершенствование и соответствующая аттестация систем неразрушающего контроля;

- мониторинг и прогнозирование процессов деградации при помощи современных статистических методов;

- выработка управляющих рекомендаций, направленных на устранение процесса коррозионного износа и возникновения дефектов ТОТ ПГ.

Для управления ресурсом ПГ важной задачей является разработка методов прогнозирования количества поврежденных и заглушенных теплообменных труб парогенераторов для энергоблоков АЭС с ВВЭР.

Проблемы, возникающие при разработке алгоритмов управления ресурсом ПГ, а также алгоритма прогнозирования повреждений ТОТ ПГ, определяются следующими обстоятельствами:

- имеется ограниченная статистика по количеству заглушенных (поврежденных) труб, которая фиксируется по результатам ВТК ежегодно в период ППР блока ( в среднем 0,2% от суммарного количества ТОТ ПГ);

- отсутствуют данные о химических и физических характеристиках среды, способствующей развитию коррозионных повреждений;

- отсутствуют данные о видах коррозионных повреждений, включая повреждения, вызванные наличием соединений серы, мышьяка, соединений свинца, комплексного воздействия окружающей среды;

- недостатком данных и теоретических исследований о взаимодействии металла с коррозионной средой, содержащей агрессивные элементы.

3.3 Методы контроля

Проблема обеспечения максимально возможного срока службы, "замедления" старения парогенераторов, продления их сроков эксплуатации, в условиях жестко ограниченных средств (финансовых возможностей, технических, человеческих ресурсов и др.), является одной из актуальнейших проблем для ученых, экономистов и технических специалистов различных стран. Последствия возникновения отказов, неисправностей или дефектов в ПГ могут приводить к человеческим жертвам, большим финансовым и материальным потерям. Так, затраты на проведение мероприятий по неразрушающему контролю (НК) и связанных с ним работ во время эксплуатации АЭС составляют не менее 50% всех затрат, связанных с эксплуатацией станции, при потерях около 675000 долларов США в случае простоя одного блока1000 МВт в течение эффективных суток.

3.3.1 Роль и место методов неразрушающего контроля для обеспечения надёжности и долговечности сложных систем с высокой ценой отказа

3.3.1.1 Проблемы выявления дефектов и характеристики методов НК

При проведении мониторинга технического состояния (ТС) сложных систем и агрегатов одной из наиболее актуальных является задача объективного своевременного обнаружения дефектов различной природы и организация контроля за развитием дефектов из-за старения элементов при эксплуатации. Одним из путей предотвращения нежелательных последствий от эксплуатации изделий с дефектами является систематичное использование

методов НК. Дефектом, согласно нормативно-технической документации (НДТ) (ГОСТ 17-102), называется каждое отдельное несоответствие продукции требованиям. Однако в практике применения средств неразрушающего контроля нет полного соответствия понятия "дефект" определению по ГОСТ. Обычно под дефектом понимают отклонение параметра от требований проектноконструкторской документации, выявленное средствами неразрушающего контроля. Связь такого понятия с определением по ГОСТ устанавливается путем разделения дефектов на допустимые требованиям НТД и недопустимые. Обобщая, здесь и далее под дефектом будем понимать физическое проявление изменения характеристик объекта контроля с параметрами, превышающими нормативные требования.

По происхождению дефекты подразделяют на производственно-технологические, возникающие в процессе проектирования и изготовления изделия, его монтажа и установки, и эксплуатационные, возникающие после некоторой наработки изделия в результате процессов деградации, а также в результате неправильной эксплуатации и ремонтов. В дальнейшем, говоря о дефектах, выявляемых средствами и методами НК, будем иметь в виду эксплуатационные и производственно-технологические дефекты, не выявленные при изготовлении и сдаче систем в эксплуатацию. Так, например, (в зависимости от объекта) вся совокупность объектов и систем может быть разбита на группы, для которых характерны однотипные дефекты:

- силовые металлоконструкции (стрелы грузоподъемных машин, установщиков, несущие форменные конструкции, силовые элементы агрегатов обслуживания);

- сосуды, теплообменные аппараты, трубопроводы (сосуды и емкости, влагомасло-отделители и холодильники компрессорных установок, теплообменные аппараты, камеры нейтрализации, магистрали газов и жидкостей и др.);

- механизмы и машинное оборудование (гидроприводы, редукторы, насосы, компрессоры, вентиляторы и приводные электродвигатели, дизельные электростанции);

- трубопроводы, корпуса систем под давлением, парогенераторы, системы жидко-снабжения;

- контрольно-измерительные приборы (КИП) и автоматика, оборудование систем управления;

- кабельное оборудование (силовые кабели, измерительные кабели, кабели систем управления, кабели связи);

- электронное оборудование;

- оборудование электроснабжения (трансформаторы, коммутационная аппаратура);

- объекты, содержащие радиоактивные вещества, активность которых определяется без разрушения исходных матриц;

- конструкции строительных сооружений.

Рассмотрим некоторые наиболее характерные дефекты приведенных систем. Для силовых металлоконструкций характерны литейные дефекты (рыхлота, пористость, ликвационные зоны, дендритная ликвация, зональная ликвация, подусадочная ликвация, газовые пузыри или раковины, песчаные и шлаковые раковины), металлические и неметаллические включения, утяжины, плены, спаи, горячие, холодные и термические трещины); дефекты прокатанного и кованого металла (трещины, флокены, волосовины, расслоения, внутренние разрывы, рванины, закаты и заковы, плены); дефекты сварных соединений (трещины в наплавленном металле, холодные трещины, микротрещины в шве, надрывы, трещины, образующиеся при термообработке, рихтовочные трещины, непровары, поры и раковины, шлаковые включения), дефекты, возникающие при обработке деталей (закалочные и шлифовочные трещины, надрывы); дефекты, возникающие при эксплуатации изделий (усталостные трещины, коррозионные повреждения, трещины, образующиеся в результате однократно приложенных высоких механических напряжений, механические повреждения поверхности). Для сосудов, теплообменных аппаратов, трубопроводов характерны производственно-технологические и эксплуатационные дефекты, аналогично силовым металлоконструкциям. Помимо этого для данной группы оборудования характерны негерметичности соединений, приводящие к утечкам рабочих сред, уменьшение проходных сечений в результате отложений на стенках продуктов коррозии и накипи. Важнейшим параметром, определяющим долговечность и надежность эксплуатации нефтегазовых труб различных диаметров, является толщина антикоррозийного трехслойного полиэтиленового покрытия. Для механизмов и машинного оборудования характерны износ и поломка деталей, повреждение уплотнений, сопровождающиеся утечкой рабочих жидкостей, местным аномальным нагревом частей оборудования, посторонним шумом, повышенной вибрацией. Для КИП и автоматики, оборудования систем управления характерны выход из строя отдельных блоков и приборов, нарушение электрического контакта, уменьшение сопротивления и пробой изоляции. Для кабельного оборудования характерны уменьшение сопротивления изоляции, старение изоляции, обрыв жил кабеля, возгорание изоляции и др. Для электронного оборудования характерны выход из строя блоков и отдельных элементов. Для оборудования электроснабжения характерны залипания контактов, выход из строя концевых выключателей и приводов межсекционных выключателей. Для конструкций строительных сооружений характерны такие дефекты, как трещины, раковины, несплошности бетона, дефекты армирования бетона, разрушение фундаментов и оснований и т.д. Для объектов с радиоактивными веществами под дефектами можно понимать уровни активности, превышающие допустимые нормы. Таким образом, для каждой из групп оборудования можно составить перечень методов НК и перечень приборов и технологий их применения для реализации этих методов. Выбор метода НК должен быть основан помимо априорного знания о характере дефекта на таких факторах, как:

- условия работы изделия;

- форма и размеры изделия;

- физические свойства материала деталей изделия;

- условия контроля и наличие подходов к проверяемому объекту;

- технические условия на изделия, содержащие количественные критерии недопустимости дефектов и зачастую нормирующие применение методов контроля на конкретном изделии;

- чувствительность методов.

Достоверность результатов определяется чувствительностью методов НК, выявляемостью и повторяемостью результатов и основана на тщательной калибровке. Чувствительность метода контроля является важной его характеристикой.

В таблице 3.1 приведена чувствительность для различных методов определения несплошностей в материале изделий.

Таблица 3.1 - Чувствительность методов неразрушающего контроля при определении несплошностей в металле

Минимальные размеры выявляемых несплошностей, мкм

Метод

Ширина

Глубина

Протяжённость раскрытия

Визуально-оптический

5...100

-

100

Люминесцентный

1...2

10...30

100...300

Магнитопорошковый

1

10...50

30

Вихретоковый

0,5...1

150...200

600...2000

Ультразвуковой

1...30

-

-

Радиографический

100

2...3% толщины изделия

-

Применение каждого из методов в каждом конкретном случае характеризуется вероятностью выявления дефектов. На вероятность выявления дефектов влияют чувствительность метода, а также условия проведения процедуры контроля. Определение вероятности выявления дефектов является достаточно сложной задачей, которая еще более усложняется, если для повышения достоверности определения дефектов приходится комбинировать методы контроля. Комбинирование методов подразумевает не только использование нескольких методов, но и чередование их в определенной последовательности (технологии). Вместе с тем, стоимость применения метода контроля или их совокупности должна быть по возможности ниже. Таким образом, выбор стратегии применения методов контроля основывается на стремлении, с одной стороны, повысить вероятность выявления дефектов и, с другой стороны, снизить различные технико-экономические затраты на проведение контроля. Однако, несмотря на значительные успехи в развитии методов НК и применяемые меры по контролю ТС различных систем, отдельные дефекты остаются не выявленными и становятся причинами и результатами аварийных ситуаций и больших катастроф. Так, методы и средства НК, применяемые на стадиях производства и предэксплуатационного контроля на АЭС, далеки от совершенства и в результате их применения не выявляется значительное число дефектов технологической природы.

3.3.1.2 Эффективность комплексного применения методов НК

Объективный анализ применения различных методов привел к целесообразности применения комплексных систем контроля, которые используют разные по физической природе методы исследования, что, в свою очередь, позволит исключить недостатки одного метода, взаимодополнить методы и реализовать тем самым принцип "избыточности" для повышения надежности контроля систем и агрегатов. Различные методы НК характеризуется разными значениями технико-экономических параметров: чувствительностью, условиями применения, типами контролируемых объектов и т.д. Поэтому при формировании комплекса методов НК разной физической природы возникает проблема оптимизации состава комплекса с учетом критериев их эффективности и затрат ресурсов.

Комплексное использование наиболее чувствительных методов не означает, что показатели достоверности будут соответственно наибольшими, а в свою очередь, учет первоочередности технических показателей может привести к противоречиям с экономическими критериями, такими как трудозатраты, стоимость, время контроля и т.д., что, в свою очередь, может привести к тому, что выбранный комплекс методов НК может оказаться с экономической точки зрения неэффективным.

Для реализации различных методов НК разработаны различные приборы: дефектоскопы, толщиномеры, тепловизоры для разных дефектов (трещин, негерметичностей), электронное оборудование (для нахождения ослабления электрических контактов), механическое оборудование, которое имеет различные технико-экономические характеристики и технологии использования для различных типов дефектов и др.

Из анализа имеющихся характеристик вытекает необходимость решения задачи выбора состава (комплекса) методов НК как задачи в оптимизационной постановке.

Комплексное применение методов НК для диагностики и обнаружения дефектов в агрегатах и системах направлено на обеспечение увеличения эффективности и достоверности контроля, продления работоспособности и ресурса.

Задача формирования комплекса различных методов НК для обнаружения совокупности возможных (наиболее опасных дефектов) в системе может быть сформулирована как оптимизационная многоуровневая однокритериальная (многокритериальная) задача дискретного программирования. Решение задачи - оптимальное сочетание различных методов НК, применение которых наиболее эффективно при эксплуатации и анализе ресурса дорогостоящих систем.

Актуальными при проведении НК являются также задачи оптимального распределения объемов контроля на всех этапах жизненного цикла объекта, оптимизации мест и параметров контроля, планирования технического обслуживания системы с учетом экономических показателей.

3.3.1.3 Электромагнитные методы неразрушающего контроля оборудования средства

Задачи, решаемые применением электромагнитных методов неразрушающего контроля, изготовленное из различных марок сталей, перспективным является применение современных высокопроизводительных магнитных и вихретоковых методов неразрушающего контроля, основанных на анализе взаимодействия электромагнитного поля с объектом контроля. Магнитные методы являются наиболее старыми из методов НК, связанных с применением приборов и дефектоскопических материалов. Первичные преобразователи, применяемые для реализации и магнитных и вихретоковых методов, фиксируют изменение только одной составляющей электромагнитного поля - статического или переменного магнитного поля. В дальнейшем, за исключением случаев, когда необходимо выделить существенные особенности магнитных и вихретоковых методов, будем называть их электромагнитными методами неразрушающего контроля (ЭМНК). Электромагнитные методы неразрушающего контроля обладают такими положительными качествами, как бесконтактность, высокая производительность, получение первичной информации в виде электрических сигналов, простота конструкции и высокая надежность первичных преобразователей, способность работать в экстремальных условиях.

Контроль изделий по совокупности изменяемых параметров не встречает затруднений, однако, необходимо применять специальные методы выделения сигнала, характеризующего интересующий показатель качества с одновременным подавлением сигналов от мешающих факторов.

Электромагнитные методы применяются для повышения качества и обеспечения безопасной эксплуатации оборудования на всех жизненных стадиях, включая выплавку стали, прокат листа, изготовление, монтаж, диагностику в процессе эксплуатации и прогнозирование остаточного ресурса.

Крупногабаритность оборудования для переработки нефти и большая протяженность сварных соединений предопределяют возможность широкого применения высокопроизводительных электромагнитных методов неразрушающего контроля для выявления различных видов нарушения сплошности основного металла оборудования и металла сварных швов.

Для дефектоскопии оборудования, изготовленного из ферромагнитных материалов, применяются магнитные методы, позволяющие выявлять поверхностные, подповерхностные и внутренние дефекты.

Магнитные методы успешно применяются для дефектоскопии основных деталей аппаратов: монтажных цапф, основных и крепежных шпилек, линз и обтюраторов, труб и фитингов.

Для дефектоскопии высоконагруженных резьбовых соединений успешно применяется электромагнитный метод, основанный на регистрации поперечной тангенциальной составляющей магнитного поля, обусловленного дефектом. Для выявления поверхностных дефектов в электропроводящих ферромагнитных и неферромагнитных металлах применяются вихретоковые методы.

Вихретоковые методы успешно применяются для выявления в оборудовании, изготовленном из нержавеющих сталей и биметаллов, зон, пораженных межкристаллитной коррозией. Одним из перспективных направлений широкого применения вихретоковых методов является контроль труб теплообменников с помощью внутренних проходных вихретоковых преобразователей.

Электромагнитные методы неразрушающего контроля позволяют не только обнаружить дефекты на поверхности или в толще изделия, но и определить их форму и размеры, а также пространственное положение. Кроме решения задач дефектоскопии электромагнитные методы широко используются для структуроскопии материалов и изделий, контроля размеров изделий, измерения толщины стенок, металлических и неметаллических защитных покрытий, измерения зазоров, перемещений и вибраций в машинах и механизмах.

При контроле электромагнитными методами ферромагнитных материалов задача состоит в том, чтобы на основе анализа электрических и магнитных характеристик проверяемого изделия определить химический состав, прочность, твердость металла, глубину цементированного и азотированного слоев, количества углерода в слое, степень наклепа, остаточные или действующие напряжения, сортировать стали по маркам и осуществлять контроль качества термической и химико-термической обработки и т.д..

3.4 Вероятностный подход к управлению сроком службы ТОТ ПГ

3.4.1 Исходные данные и алгоритм расчета

В отечественной практике сбора и обработки результатов эксплуатационного контроля состояния ТОТ ПГ блоков АЭС с реакторами ВВЭР отсутствуют какие-либо данные по прогнозированию поведения теплообменных трубок. Необходимость разработки методов прогноза по развитию дефектов ТОТ ПГ обусловлена выработкой соответствующих мер по управлению ресурсом парогенераторов АЭС с ВВЭР.

В дипломе за основу исследований принят метод с применением вероятностного подхода к эксплуатационным данным, полученным по результатам ВТК целостности ТОТ ПГ. Использование результатов контроля из формируемой базы данных ВТК позволяет строить экспериментальные функции распределения, обрабатывать их и делать краткосрочный прогноз количества повреждений ТОТ ПГ на различную глубину дефектов, а также прогноз количества ТОТ, подлежащих глушению.

3.4.2 Сравнительный анализ вероятностных законов распределения для описания длительности безотказной работы ТОТ ПГ

Длительность безотказной работы энергетического оборудования представляет собой случайную величину, значение которой зависит от большого числа факторов, например, свойств используемых материалов, условий окружающей среды, режимов работы элементов оборудования, водно-химического режима и т.д. Определение вероятностной модели для длительности безотказной работы оборудования и получение оценок ее параметров необходимо для прогнозирования надежности, разработки оптимальной методики начальной приработки, составления календарных графиков ремонта, планирования программ испытаний на надежность и т. д.

Рассмотрим возможность описания времени безотказной работы ТОТ ПГ с помощью некоторых наиболее часто используемых законов (нормального, равномерного, экспоненциального, Вейбулла), описываемых соответствующими плотностями распределения [9]:

(3.1)

где м , у, л, b, tГ , t0 - параметры распределений.

Часто имеет смысл рассматривать функцию, дающую вероятность отказа за очень короткий промежуток времени при условии, что до этого момента отказов не было. Эта функция, называемая интенсивностью отказов (ее называют также условной функцией отказов или интенсивностью выхода из строя), имеет вид:

(3.2)

где F() -- функция распределения длительности безотказной работы, [1_F()] - вероятность безотказной работы.

Интенсивность отказов, свойственная многим явлениям, включая человеческую жизнь, часто имеет «корытообразную» форму. Для начального периода интенсивность отказов h () может быть относительно велика вследствие так называемых приработочных отказов, т.е. ранних отказов, зачастую вызываемых производственными дефектами. Затем интенсивность отказов h() убывает и остается почти постоянной до некоторого момента времени, после которого она возрастает вследствие появления износовых отказов. Интенсивность отказов, соответствующую определенной плотности распределения, можно найти непосредственно с помощью формулы (3.2) по известным выражениям f() (3.1) и F(). На рисунках 3.1, 3.2, 3.3 приведены графики плотностей распределения, функций распределения и интенсивности отказов для различных законов: нормального (для заданных параметров м=5, у = 1); равномерного (на интервале 1=0, 2=10); экспоненциального (с параметром л=0.1); Вейбулла (с двумя вариантами параметров b и г : 1) b=5, г=10, 0=0; 2) b=0.5, г=100, 0=0).

Нормальное распределение может оказаться неприемлемым в качестве статистической модели для времени безотказной работы, поскольку нормально распределенная случайная величина может принимать отрицательные значения; применение равномерного распределения в качестве статистической модели ограничено, поскольку существует определенный верхний предел, до которого должен произойти отказ оборудования (на рисунке 3.3 это время равно 10 лет).; экспоненциальное распределение не позволяет учитывать реальное изменение интенсивности отказов, которая остается постоянной на всем интервале времени. Кроме того, экспоненциальное распределение совпадает с распределением Вейбулла при b=1.

Рисунок 3.1 - Плотность распределения длительности безотказной работы для различных законов

Рисунок 3.2 - Функции распределения длительности безотказной работы

Рисунок 3.3 - Интенсивность отказов для различных законов распределения

Из работы [10] на основании экспериментальных данных повреждений теплообменных труб парогенераторов АЭС с реакторами PWR следует, что наиболее приемлемым законом распределения вероятностей для описания времени безотказной работы оборудования является распределение Вейбулла, позволяющее при различных значениях параметров Г и b учитывать «корытообразную» форму интенсивности отказов, что хорошо видно на рисунке 3.3. Следует отметить, что параметр b - это параметр формы, определяющий наклон функции распределения, а Г - пространственный параметр или характеристическое время, соответствующее повреждению допускаемого количества ТОТ ПГ (63.2% от общего количества ТОТ).

Для распределения Вейбулла справедливы выражения:

(3.3)

(3.4)

Для определения параметров распределения b и Г запишем выражения функции распределения Вейбулла для двух значений времени безотказной работы 1 и 2:

(3.5)

(3.6)

После преобразования (3.5 и 3.6) и логарифмирования выражения вероятности безотказной работы (1-Fi(i)) получим:

Определим параметр Г из выражений (3.7) и приравняем их:

(3.8)

откуда получим

(3.9)

Для определения параметра формы распределения b прологарифмируем выражение (3.9):

(3.10)

Из выражения (3.7) для конкретного интервала времени и соответствующего значения F(i) можно получить параметр Г с учетом ранее определенного параметра b:

(3.11)

Воспользуемся выведенными выражениями для параметров распределения Вейбулла b и Г для статистических данных, приведенных в [10]. На рисунке 3.4 приведены графики вероятности повреждения ТОТ ПГ на АЭС с PWR, где по оси ординат фиксируется оценка вероятности повреждений ТОТ ПГ, рассчитываемая в соответствии с выражением:

(3.12)

Здесь - длительность эксплуатации ТОТ ПГ; Nзтот - количество заглушенных ТОТ после эксплуатации в течение лет; Nсум - суммарное количество ТОТ в парогенераторе.

При допущении, что t=Г и t0=0 получим из формулы 3.3 и:

, (3.13)

то есть, параметр масштаба представляет собой время, при котором функция распределения достигает значения вероятности 0,632.

После преобразования функции Вейбулла (3.13) получим:

. (3.14)

Двойной логарифм от преобразованной функции распределения Вейбулла:

(3.15)

представляет собой линейную зависимость от функции времени, зависящую от параметров распределения b и Г.

Выражение (3.15) с учетом рассчитанных по данным ВТК значений F*(ti) и оценок параметров распределения b* и Г* запишется в виде:

. (3.16)

Выражение (3.16) используется далее для проверки применимости закона Вейбулла для аппроксимации экспериментальной интегральной функции и определению временного интервала, на котором необходимо определять параметры распределения.

Разработан алгоритм формализованного определения оценок параметров b* и Г* по результатам контроля ТОТ ПГ, используемых далее для прогнозирования поврежденных (заглушенных) трубок [11,12].

Прогноз количества повреждений ТОТ ПГ с использованием распределения Вейбулла сводится к: определению оценок параметров b* и Г* на интервале времени (t0, t), расчету количества поврежденных (заглушенных) ТОТ ПГ внутри выбранного временного интервала и за его пределами, оценки точности результатов прогноза.

Параметры функции распределения Вейбулла можно рассчитать по выражениям 3.10 и 3.11.

По найденным параметрам Вейбулла рассчитываются суммарные значения заглушенных или поврежденных ТОТ Nрасч(t) в каждый момент времени ti по формуле:

. (3.17)

Значения параметров Вейбулла b* и г* существенно зависят от выбора конкретного интервала времени (t1, t2), входящего в уравнение (3.10).

Относительные погрешности отклонения данных эксплуатационного контроля N птот(ti) от результатов аппроксимации с помощью функции Вейбулла N расч(ti) определятся по выражению:

. (3.18)

Принято допущение, что максимальная погрешность из рассчитанных погрешностей (3.18) не должна превышать некоторого заранее заданного значения. Если это условие не выполняется, то следует скорректировать интервал времени, на котором осуществляется расчет. Предлагаемый подход позволяет в процессе обработки данных эксплуатационного контроля уточнять время отсчета для прогнозирования количества заглушенных или поврежденных труб.

Прогноз суммарного количества заглушенных ТОТ ПГ для фиксированного времени эксплуатации ПГ можно рассчитать с использованием ранее обоснованных оценок параметров распределения по выражению (3.17).

Критерием точности рассчитанных значений (3.17) является доверительный интервал с шириной ДN:

. (3.19)

Рисунок 37 - Общий вид прогнозирования глушения ТОТ ПГ

Таким образом, для оценки точности прогноза используется доверительный интервал, ширина которого зависит от ряда факторов (среднего квадратического отклонения, объема экспериментальных данных, заданной доверительной вероятности, закона распределения).

3.4.3 Разработка программы прогнозирования глушения и повреждения теплообменных трубок парогенераторов АЭС

Описанный выше алгоритм положен в основу программы прогнозирования глушения и повреждения теплообменных трубок парогенераторов АЭС. Блок-схема работы программы приведена на рисунке 3.6. Программа написана на языке Visual C#.

В программу вводятся данные о глушении ТОТ (рис. 4, блок 1), год запуска ПГ и общее количество ТОТ (рис 4, блок 2). Далее строятся графики распределения (рис. 4, блок 5) в обычных координатах и в логарифмических (двойной логарифм) согласно формуле 6.11. Выбирается линейный участок для аппроксимации (рис. 4, блок 3) и вводится год, для предсказания глушения ТОТ (рис. 4, блок 4). По предсказанному числу заглушенных ТОТ можно судить о режиме функционирования ПГ (показывает, есть ли необходимость вводить коррективы в работу ПГ). Все введенные данные, графики и расчеты можно сохранить для дальнейшего предоставления отчетов на станции. Программа может быть рекомендована для внедрения на рабочие места операторов АЭС.

С помощью программы произведена обработка данных по поврежденным (заглушенным) на разную глубину дефектов теплообменным трубкам парогенераторов. Приведены графики аппроксимации, значения коэффициентов b и tг. Построены доверительные интервалы и дан прогноз на 3 года работы ПГ.

Описание каждого элемента блок-схемы:

- Начало. Запуск программы.

- Загрузка данных из файла. Загрузка раннее сохраненных данных для последующего расчета.

- Сохранение данных. Сохранение введенных данных.

- Год, Количество заглушенных ТОТ, Временной интервал. Вводятся исходные данные, необходимые для проведения расчета.

- Исходные данные > 5 значений. Проверяется минимальное количество значений исходных данных для расчета.

- Год начала работы ПГ. Вводится год запуска ПГ.

Рисунок 3.6 - Блок-схема программы прогнозирования глушения и повреждения теплообменных трубок парогенераторов АЭС

- Год запуска ПГ < минимального значения в исходных данных. Проверка правильности ввода года запуска ПГ.

- Nсумм. Вводится суммарное значение ТОТ для ПГ. Для ВВЭР-1000- это 11000 штук, для ВВЭР-440- это 5500 штук.

- Нажатие кнопки «Рассчитать». Рассчитываются данные для построения графика функции распределения.

- График (Вид 1). Строится график функции распределения.

- График (Вид 2). Строится график функции распределения в двойных логарифмических координатах. Это необходимо для выбора линейного участка для аппроксимации.

- Начальная точка для аппроксимации. Вводится начальная точка линейного участка для аппроксимации.

- Начальная точка > Минимального значения в исходных данных. Выполняется проверка правильности выбора начальной точки для аппроксимации.

- Конечная точка для аппроксимации. Вводится конечная точка линейного участка для аппроксимации.

- Конечная точка > Максимального значения в исходных данных. Выполняется проверка правильности выбора конеченой точки для аппроксимации.

- Нажатие кнопки «Параметры Вейбулла». Запуск расчета параметров распределения Вейбулла.

- Расчет B, tг. Производится расчет параметров распределения Вейбулла и вывод их значений на экран.

- Год предсказания. Вводится год в формате «количество лет от запуска ПГ», для которого выполняется предсказание на основе распределения Вейбулла при рассчитанных значениях b и tг.

- Перевод года предсказания в формат ГГГГ. Переводится год предсказания в формат ГГГГ. (Например, примем год запуска ПГ 1980. Год предсказания 30 лет переводится в формат 2010 год.)

- Pдов. Вводится значение доверительной вероятности для дальнейшего построения доверительного интервала.

- Нажатие кнопки «Предсказать». Выводится значение количества заглушенных ТОТ на указанный год предсказания, при рассчитанных ранее значениях параметров b и tг.

- Нажатие кнопки «Дов. интвервал». Запуск построения доверительного интервала.

- Расчет математического ожидания, дисперсии, коэффициента Стьюдента, погрешности в трех последних точках, вывод графика. Рассчитываются параметры необходимые для построения доверительного интервала. Строится доверительный интервал на предсказанное значение.

- Конец. Выход их программы.

3.4.4 Обработка данных эксплуатационного контроля

В настоящее время существуют базы данных, содержащие информацию по парогенераторам на атомных станциях. В них собираются данные по глушениям, дефектам ТОТ, местам расположения дефектов. Внешний вид такой базы представлен на рисунке 3.6.

Рисунок 3.6 - Внешний вид базы данных по парогенераторам АЭС

Информация по глушениям предоставляется и в графическом виде. Картограмма для первой петли третьего блока Нововоронежской АЭС представлена на рисунке 3.7.

Рисунок 3.7 - Картограмма ПГ-3 для Нововоронежской АЭС

В дипломном проекте будут обрабатываться данные по дефектам ПГ на Нововоронежской, Калининской и Балаковской АЭС.

1. Парогенератор ПГ-1 третьего блока Нововоронежской АЭС

В таблице 3.4 представлены данные эксплуатационного контроля парогенератора ПГ-1 третьего блока Нововоронежской АЭС в виде суммарных значений заглушенных ТОТ ПГ, а также результаты обработки данных контроля. Рассчитаны оценки параметров Вейбулла, погрешность прогноза. Присутствие случайной погрешности при проведении эксплуатационного контроля по заглушенным и поврежденным ТОТ ПГ является неизбежным фактором любого эксперимента на работающем объекте. Ширина доверительного интервала ДN (3.19) позволяет учесть случайную погрешность в результатах эксплуатационного контроля. Ширина ДN зависит от следующих факторов: принятой доверительной вероятности (в расчетах 0,95); среднего квадратического отклонения; средневзвешенного значения суммарного количества заглушенных (поврежденных) ТОТ ПГ на интервале времени (t1, t2).

Таблица 3.4 - Статистические данные по отказам ТОТ ПГ-1 блока №3 с реактором ВВЭР Нововоронежской АЭС. Год запуска ПГ 1971

Время t, Год

Интервал времени, лет

Nзтот, шт

1976

5

2

1977

6

3

1978

7

5

1979

8

7

1982

11

12

1983

12

21

1985

14

23

1986

15

24

1987

16

41

1988

17

50

1989

18

60

1991

20

63

1992

21

79

1993

22

80

1995

24

314

1996

25

321

1997

26

330

1999

28

332

2001

30

349

2002

31

350

2003

32

492

2004

33

516

В программе прогнозирования строим график в двойных логарифмических координатах и выбираем интервал для дальнейшего расчета на интервале 31-33 (см. рисунок 3.8). Количество лет в выбранном интервале времени n=3. Параметры распределения b= 6,51, tг= 46,755 лет. Расчетное значение Nзтот с данными параметрами распределения Вейбулла и погрешность расчета приведены в таблице 3.6, построение доверительного интервала приведено (Pдов=0,95) на рисунке 3.9. Ширина доверительного интервала составляет 55 штук.

Рисунок 3.8 - График функции распределения для 3ПГ-1 Нововоронежской АЭС

Таблица 3.6 - Расчетное значение Nзтот и погрешность расчета для 3ПГ-1 Нововоронежской АЭС

Время t, Год

Nзтот, шт

Расчетное Nзтот, шт

Погрешность, %

1976

2

-

-

1977

3

-

-

1978

5

-

-

1979

7

-

-

1982

12

-

-

1983

21

-

-

1985

23

-

-

1986

24

-

-

1987

41

-

-

1988

50

-

-

1989

60

-

-

1991

63

-

-

1992

79

-

-

1993

80

-

-

1995

314

-

-

1996

321

-

-

1997

330

-

-

1999

332

-

-

2001

349

-

-

2002

350

366

4,57

2003

492

446

9,35

2004

516

540

4,65

2005

-

649

-

2006

-

774

-

2007

-

916

-

2008

-

1077

-

Рисунок 3.9 - Построение доверительного интервала на данные эксплуатационного контроля для 3ПГ-1 Нововоронежской АЭС

2. Парогенератор ПГ-3 первого блока Калининской АЭС

В таблице 3.7 представлены данные эксплуатационного контроля парогенератора ПГ-3 первого блока Калининской АЭС в виде суммарных значений заглушенных ТОТ ПГ, а также результаты обработки данных контроля. Рассчитаны оценки параметров Вейбулла, погрешность прогноза и ширина доверительного интервала.

Таблица 3.7 - Статистические данные по отказам ТОТ ПГ-3 блока №1 с реактором ВВЭР Калининской АЭС. Год запуска ПГ 1986

Время t, Год

Интервал времени, лет

Nзтот, шт

1987

1

10

1988

2

72

1989

3

95

1990

4

113

1991

5

121

1992

6

125

1993

7

129

1994

8

131

1995

9

132

1996

10

136

1997

11

160

1998

12

167

1999

13

175

2000

14

175

2001

15

175

В программе прогнозирования строим график в двойных логарифмических координатах и выбираем интервал для дальнейшего расчета на интервале 11-15 (см. рисунок 3.10). Количество лет в выбранном интервале времени n=5. Параметры распределения b=0,30, tг=13,5•106 лет. Расчетное значение Nзтот с данными параметрами распределения Вейбулла и погрешность расчета приведены в таблице 3.8, построение доверительного интервала приведено (Pдов=0,95) на рисунке 3.11. Ширина доверительного интервала составляет 19 штук.

Рисунок 3.10- График функции распределения для 1ПГ-3 Калининской АЭС

Таблица 3.8 - Расчетное значение Nзтот и погрешность расчета для 1ПГ-3 Калининской АЭС

Время t, Год

Nзтот, шт

Расчетное Nзтот, шт

Погрешность, %

1987

10

-

-

1988

72

-

-

1989

95

-

-

1990

113

-

-

1991

121

-

-

1992

125

-

-

1993

129

-

-

1994

131

-

-

1995

132

-

-

1996

136

-

-

1997

160

162

1,25

1998

167

167

0,00

1999

175

170

2,86

2000

175

174

0,57

2001

175

178

1,71

2002

-

181

-

2003

-

185

-

2004

-

188

-

2005

-

191

-

Рисунок 3.11 - Построение доверительного интервала на данные эксплуатационного контроля для 1ПГ-3 Калининской АЭС

3. Парогенератор ПГ-4 Балаковской АЭС

В таблице 3.9 представлены данные эксплуатационного контроля парогенератора ПГ-4 третьего блока Балаковской АЭС в виде суммарных значений поврежденных на глубину ТОТ ПГ, а также результаты обработки данных контроля. Рассчитаны оценки параметров Вейбулла, погрешность прогноза и ширина доверительного интервала.

Таблица 3.9 - Статистические данные по отказам ТОТ ПГ-4 блока №3 с реактором ВВЭР Балаковской АЭС. Год запуска ПГ 1988


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.