Автоматизация энергоблока АЭС с ВВЭР-1000
Метод прогнозирования глушения теплообменных трубок на основе анализа химического состава воды. Особенности применения современных средств автоматизации. Оценка технико-экономических показателей АЭС общей мощностью 4000 МВт (4 энергоблока с ВВЭР-1000).
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 29.05.2010 |
Размер файла | 3,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
125
Содержание
Введение
Часть 1. Технологическая часть
1.1 Общие сведения
1.1.1 Общие характеристики и типы ПГ АЭС
1.1.2 Требования к ПГ АЭС с реактором ВВЭР-1000
1.2 Прогнозирование повреждений теплообменных трубок парогенератора
1.2.1 Основные положения0
1.2.2 Выбор обобщающих параметров для описания эффектов водно-химического режима
1.2.3 Трубный пучок кипящего теплообменника
1.2.4 Пример для предлагаемой методики
1.2.5 Выводы по разделу
Часть 2. Системы теплотехнического контроля и автоматизации II-го контура АЭС с ВВЭР-1000
2.1 Оборудование и технологические системы второго контура
2.1.1 Общие сведения
2.1.2 Описание объекта управления
2.1.3 Регулирование уровня в регенеративных подогревателях
2.1.4 Автоматическое регулирование деаэраторных установок
2.1.5 Приборы и средства теплотехнического контроля параметров II го контура АЭС с ВВЭР-1000
2.1.6 Описание АСУ ТП на базе ТПТС53
2.1.7 Система автоматизации AS 220 EA
2.1.8 Область применения
2.1.9 Структура
2.1.10 Принцип работы
Часть 3. Разработка методики прогнозирования повреждений теплообменных трубок парогенератора
3.1 Основные положения
3.2 Особенности эксплуатации ТОТ парогенераторов АЭС с ВВЭР
3.2.1. Объект исследования
3.2.2. Критерии глушения ТОТ
3.2.3 Продление ресурса ТОТ парогенераторов
3.3 Методы контроля
3.3.1 Роль и место методов неразрушающего контроля для обеспечения надёжности и долговечности сложных систем с высокой ценой отказа
3.4 Вероятностный подход к управлению сроком службы ТОТ ПГ
3.4.1 Исходные данные и алгоритм расчета
3.4.2 Сравнительный анализ вероятностных законов распределения для описания длительности безотказной работы ТОТ ПГ
3.4.3 Разработка программы прогнозирования глушения и повреждения теплообменных трубок парогенераторов АЭС
3.4.4 Обработка данных эксплуатационного контроля
3.5 Анализ расчетов для ТОТ ПГ ряда АЭС (Нововоронежской, Калининской, Балаковской)
3.6 Выводы по разделу
Часть 4. Эргономический анализ трудовой деятельности оператора АЭС
4.1 Основные положения
4.2 Структура эргономики, основные понятия эргономики
4.3 Психофизиологическая сущность и структура трудовой деятельности
4.4 Факторы деятельности, вызывающие утомление
4.4 Эргономический анализ рабочего места оператора АЭС0
4.4.1 Антропометрический анализ
4.4.2 Физиологические и психофизиологические показатели
4.4.3 Психологические показатели
4.4.4 Социально-психологические требования
4.4.5 Гигиенические требования
4.5 Выводы по разделу
Часть 5. Расчет технико-экономических показателей АЭС
5.1 Основные положения
5.2 Капитальные вложения для АЭС
5.3 Годовой расход природного ядерного горючего
5.4 Годовой расход обогащенного урана
5.5 Годовой расход природного урана
5.6 Удельный расход природного ядерного горючего на выработанные кВт•ч электроэнергии
5.7 Годовые амортизационные отчисления
5.8 Затраты
5.8.1 Годовые затраты на ядерное горючее
5.8.2 Годовые затраты на заработную плату
5.8.3 Годовые затраты на ремонтный фонд
5.8.4 Годовые затраты на прочие расходы
5.9 Определение себестоимости одного отпущенного кВт•ч
5.10 Годовая выработка и годовой отпуск электроэнергии
5.11 Выводы по разделу
Заключение
Список использованной литературы
Введение
Постоянный рост потребности человечества в топливе и электроэнергии, а также уменьшение природных запасов органического топлива способствует росту ядерной энергетики.
Увеличение единичной мощности реактора, унификация оборудования, совершенствование топливного цикла, частичная перегрузка топлива без остановки реактора, улучшение конструкции тепловыделяющих элементов и всей активной зоны, размещение всего радиоактивного контура в специальной камере и многие другие усовершенствования способствуют снижению стоимости электроэнергии, вырабатываемой на АЭС, повышению надежности и безопасности. Технологический процесс на АЭС определяется рядом факторов:
- необходимо координирование работы десятков основных и вспомогательных агрегатов и систем;
- ограниченная доступность ряда помещений;
- большая единичная мощность агрегатов;
- интенсификация процессов.
Современный этап развития промышленного производства характеризуется переходом к использованию передовой технологии, стремлением добиться предельно высоких эксплуатационных характеристик как действующего, так и проектируемого оборудования, необходимостью свести к минимуму любые производственные потери. Все это возможно только при условии существенного повышения качества управления промышленными объектами, в том числе путем широкого применения автоматизированных систем управления. Автоматизированная система управления технологическим процессом (АСУ ТП) - это АСУ для выработки и реализации управляющих воздействий на технологический объект управления в соответствии с принятым критерием управления.
Автоматизированной системе управления свойственны следующие признаки:
- АСУ ТП - это человеко-машинная система, в которой человек играет важнейшую роль, принимая в большинстве случаев содержательное участие в выработке решений по управлению;
- существенное место в АСУ ТП занимают автоматические устройства (в том числе вычислительная техника), выполняющие трудоемкие операции по сбору, обработке и предоставлению информации оператору-технологу;
- цель функционирования АСУ ТП - оптимизация работы объекта путем соответствующего выбора управляющих воздействий.
Кроме того, АСУ ТП осуществляет воздействие на объект в том же темпе, что и протекающие в нем технологические процессы, обеспечивает управление технологическим объектом в целом, а ее технические средства участвуют в выработке решений по управлению.
Имеющийся опыт разработки и эксплуатации автоматизированных систем показывает, что оптимальное решение вопросов автоматизации достигается только при условии рационального соотношения между уровнем автоматизации и совершенством технологического оборудования и средств автоматики. Иными словами, автоматизация целесообразна для высоконадежного технологического оборудования с применением высококачественной аппаратуры автоматики.
Все это требует автоматизации высокой степени, позволяющей небольшому количеству персонала осуществлять оптимальное управление работой АЭС.
Часть 1. Технологическая часть
1.1 Общие сведения
1.1.1 Общие характеристики и типы ПГ АЭС
Производство рабочего пара на АЭС осуществляется в специальных теплообменных установках -- ПГ.
В ядерных реакторах помимо теплофизических и физико-химических процессов, свойственных обычным теплообменным установкам, протекают и нейтронно-физические процессы, обусловливающие специфичность этих агрегатов и выделяющие их в особый класс теплообменных аппаратов. Одновременное рассмотрение сочетаний реактор -- ПГ и теплообменные устройства -- ПГ нецелесообразно. Однако следует иметь в виду, что основные закономерности теплофизических и физико-химических процессов, протекающих при производстве пара, идентичны как для кипящих реакторов, так и для собственно ПГ. Для кипящих реакторов необходимо уточнение влияния на эти процессы весьма высоких тепловых потоков, больших скоростей теплоносителей и ионизирующего излучения.
Под ПГ АЭС понимают теплообменный аппарат, служащий для производства рабочего пара за счет тепла, вносимого в него охладителем реактора. ПГ -- один из основных агрегатов двухконтурных АЭС. Однако в первый период развития ядерной энергетики он входил в состав и одноконтурных АЭС. Основные характеристики ПГ АЭС, так же как и ПГ ТЭС: паропроизводительность, параметры пара и температура питательной воды. Важным показателем является чистота пара (а для цикла с насыщенным паром -- влажность). В общем случае ПГ АЭС также состоит из подогревательного (водяной экономайзер), испарительного (испаритель) и пароперегревательного (пароперегреватель) элементов. Эти элементы могут быть совмещены в одном теплообменном аппарате, а могут быть и самостоятельными теплообменниками, включенными последовательно в контуры обоих теплоносителей.
Нагреваемый теплоноситель (вода, пароводяная смесь, пар) носит название рабочего тела. Греющий теплоноситель (охладитель реактора) называют первичным теплоносителем. Движение рабочего тела в экономайзере и пароперегревателе всегда однократное и принудительное. По способу организации движения рабочего тела испарители делят на три группы: с естественной циркуляцией, с многократной принудительной циркуляцией и прямоточные. В соответствии с этим различают и типы ПГ в целом. Парогенераторы с естественной циркуляцией характеризуются многократным движением воды в испарителе за счет естественного напора, возникающего из-за разности масс столбов жидкости в опускной системе и пароводяной смеси в подъемной. Испаритель представляет собой в этом случае замкнутый контур. Парогенераторы с многократной принудительной циркуляцией также имеют многократное движение воды в замкнутом контуре испарителя вследствие напора, создаваемого циркуляционным насосом, который включен в опускную систему.
Прямоточные ПГ характеризуются включением всех элементов в одну последовательную цепь с однократным принудительным движением в них рабочей среды вследствие напора питательного насоса.
По виду первичного теплоносителя ПГ делят на две группы: с жидкими теплоносителями и с газообразными. Движение теплоносителя -- принудительное. В дипломном проекте рассматриваются парогенераторы с жидкостным теплоносителем - водой.
Показатель, характеризующий тепловую экономичность ПГ -- КПД. В ПГ имеет место только один вид потери тепла -- в окружающую среду, но он невелик -- 1--2% тепловой мощности ПГ.
1.1.2 Требования к ПГ АЭС с реактором ВВЭР-1000
Теплообменные аппараты широко применяются во многих отраслях промышленности: энергетике, химической и нефтеперерабатывающей промышленности и др.
Поэтому целесообразно рассмотреть требования, предъявляемые к ПГ АЭС.
Основные требования к ПГ АЭС.
Схема ПГ и конструкция его элементов должны обеспечить необходимую производительность и заданные параметры пара при любых режимах работы АЭС. Выполнение этого требования предусматривает наиболее экономичную работу станции как при номинальной, так и при переменных нагрузках.
Единичная мощность ПГ должна быть максимально возможной при заданных условиях. Это требование связано с улучшением технико-экономических показателей при укрупнении мощности единичного агрегата.
Рис. 1.1- Схема поверхностного рекуперативного теплообменника: 1 - корпус теплообменника; 2 - поверхность теплообмена; 3 - камеры (подводящая и отводящая один из теплоносителей); 4 - трубные доски; 5 - патрубки
3. Все элементы ПГ должны обладать безусловной надежностью и абсолютной безопасностью. Поверхность теплообмена в ПГ выполняется из большого количества труб малого диаметра, т. е. в ней сосредоточивается большое количество соединений труб первого радиоактивного контура. В связи с этим надежность работы АЭС в значительной степени определяется надежностью работы ПГ. Необходимо правильно решать вопросы радиационной защиты ПГ и обеспечивать прочность всех элементов конструкции.
Соединения элементов и деталей ПГ должны обеспечивать плотность, исключающую возможность перетечек из одного контура в другой. Сколько-нибудь существенное попадание теплоносителя в рабочее тело недопустимо, так как паротурбинный контур не имеет биологической защиты. Проникновение рабочего тела в первый контур может привести к аварийной ситуации в реакторе.
Возможность интенсификации коррозионных процессов должна быть исключена. Здесь имеется в виду как снижение надежности ПГ, так и загрязнение теплоносителя продуктами коррозии. Чрезмерное их попадание в первый контур приведет к повышению радиоактивности теплоносителя и отложению радиоактивных продуктов коррозии в первом контуре. Наиболее опасны отложения продуктов коррозии на тепловыделяющих элементах. В этом случае может произойти резкое уменьшение теплоотвода.
ПГ должен вырабатывать пар необходимой чистоты, что обеспечит надежность высокотемпературных пароперегревателей, а также надежную и экономичную работу турбины.
Конструкция элементов ПГ должна быть проста и компактна, должна обеспечивать удобство монтажа и эксплуатации, возможность обнаружения и ликвидации повреждений, возможность полного дренирования.
Поверхностные теплообменники, в свою очередь, делят на регенеративные и рекуперативные. В регенеративных теплообменниках теплоноситель и рабочее тело попеременно проходят через теплопередающую поверхность. Во время омывания поверхности теплоносителем она аккумулирует тепло, которое затем передается рабочему телу. Попеременное омывание одной и той же поверхности теплоносителем и рабочим телом, практическая невозможность достижения необходимой плотности разделений контуров приводят к попаданию одной среды в другую, что недопустимо для двухконтурных паротурбинных АЭС.
В рекуперативных теплообменниках (рисунок 1.1) обе среды одновременно омывают поверхность теплообмена, и тепло от первичного теплоносителя передается рабочему телу через разделяющую их стенку. Такой способ передачи тепла дает возможность разработать теплообменный аппарат, отвечающий всем требованиям, предъявляемым к ПГ АЭС.
1.2 Прогнозирование повреждений теплообменных трубок парогенератора
1.2.1 Основные положения
Обеспечение надежной работы теплообменных трубок (ТОТ) парогенераторов (ПГ) является важнейшей задачей для различного типа АЭС как в отечественной атомной энергетике, так и за рубежом.
Тонкостенные теплообменные трубы парогенератора являются важной частью границы первого контура и для того, чтобы исполнять функции эффективного барьера, теплообменные трубы не должны иметь сквозных дефектов или дефектов, требующих глушения ТОТ.
На ПГ российского производства повреждения теплообменного пучка имеют место в различной степени на всех блоках АЭС и являются в настоящее время основным фактором, определяющим остаточный ресурс ПГ.
Одной из важнейших в современной технике можно обоснованно полагать проблему точного знания ее состояния - остаточного и технического ресурса деградирующего металла на данный момент времени. Оценка технического и остаточного ресурсов, обоснование продления срока службы металла оборудования, в том числе - оборудования атомной энергетики, обоснование сроков снятия с эксплуатации - все это положительные производные от решения этой проблемы.
Реализация подобной задачи сопряжена как с объективными научно-техническими сложностями, так и с преодолением субъективных, исторически сложившихся подходов и путей ее решения, а именно.
Во-первых - методы вероятностного анализа не предназначены для ресурсных оценок.
Во-вторых - современные детерминированные методы могут это сделать, однако в пределах, как правило, одного повреждающего процесса.
В-третьих - в современных методах расчета на усталостную долговечность и статическую прочность все дополнительно участвующие в повреждении процессы предписано учитывать коэффициентами запаса.
В-четвертых - числовые значения упомянутых коэффициентов запаса определяются только экспертным путем, а нормативные методики их расчета отсутствуют.
В-пятых - обычно расчеты с использованием экспертных числовых значений коэффициентов удовлетворяют практику, но вместе с тем нередки случаи повреждения задолго до исчерпания назначенного ресурса оборудования, металл которого подвергался во время эксплуатации одновременному воздействию сразу нескольких повреждающих процессов.
Безусловно, важнейшее влияние на долговечность конструкционных сплавов оказывает усталость. Уже более 100 лет все конструкции из металла рассчитываются на усталостную долговечность (при условии удовлетворения требованиям статической прочности) [1]. Именно тогда были заложены так называемые коэффициенты влияния на усталостную долговечность коррозионной среды. Причем, числовое значение этого коэффициента не изменялось в течении всех этих лет ( кс=10).
Как правило, влияние рабочих сред на прочностные характеристики металла помимо упомянутых коэффициентов учитываются еще и добавкой к расчетной толщине конструкции (для компенсации убыли металла по причине равномерной коррозии - утонения). Вместе с тем, коррозионные процессы и механизмы их воздействия на служебные свойства металла гораздо разнообразнее, чем это учтено в современных расчетных методах например, коррозия: при постоянном нагружении (КПН); коррозионное растрескивание (КР): транскристаллитное - трещина через тело зерен (ТКР) и межкристаллитное - трещины по границам зерен - коррозионное (МКР) растрескивание; водородное охрупчивание (ВО); коррозионная усталость (КУ) и т.д.. Нередко последствия именно этих локальных процессов и оказывают существенное влияние на долговечность конструкционного сплава в рабочих условиях.
В последнее время появились весьма тревожные факты, свидетельствующие о том, что нельзя одним числовым коэффициентом описать все случаи взаимодействия всех типов и марок сплавов со всеми типами коррозионных сред.
Так, авария на Аляске с продуктопроводом показала, что коэффициент влияния среды может достигать 3600. Досрочная замена парогенераторов: - за рубежом из-за коррозионного растрескивания (КР) трубных пучков (около 80 единиц) и в СНГ - из-за КР коллекторов (32 единицы ) показала, что коэффициент влияния среды может составлять от 200 до 350.
Можно предположить, что одним из перспективных направлений, который приведет к решению обозначенной проблемы является создание математического аппарата, объединяющего частные аппроксимирующие детерминированные методики повреждающих процессов в единый функционал взаимного влияния всех таких процессов без исключения (или их противопоставления друг другу) так, как управление ресурсом есть не что иное, как:
Наличие феноменологического описания каждого частного процесса повреждения металла.
Выявление физически измеряемого признака повреждения металла по каждому частному процессу повреждения.
Выявление физически измеряемого значения критерия предельного состояния металла перед разрушением по каждому частному процессу повреждения.
Наличие детерминированной математической модели кинетики роста относительной меры повреждения как отношение текущего значения физически измеряемых признаков повреждения частных по отдельному частному процессу повреждения к значения критерия предельного состояния.
Наличие алгоритма вычисления общей относительной меры повреждения металла, объединяющего уравнения кинетики роста относительной меры повреждения по частным процессам повреждения.
Факторный анализ и обоснование критерия «отбраковки» - критерия, согласно которому какой либо частный процесс повреждения может быть исключен из рассмотрения.
Обоснование новых числовых характеристик конструкции, а также технологических режимов изготовления и эксплуатации для компенсации негативного воздействия на наработку до отказа отдельных факторов по критерию приращения срока безопасной эксплуатации.
Обоснование технической осуществимости и экономической целесообразности реализации компенсирующих мероприятий.
Реализация конструкторских, технологических и технических мероприятий с целью обоснования:
- срока безопасной эксплуатации металла;
- остаточного ресурса - остаточного срока безопасной эксплуатации металла;
-продолжительности безопасной эксплуатации металла сверх назначенного ресурса;
-технических мероприятий для продления безопасной эксплуатации металла сверх назначенного ресурса.
Одно из направлений исследования причин повреждений коллекторов парогенераторов типа ПГВ-1000м было сформулировано как разработка концепции «Прочность через долговечность»: металл прочен пока сохраняет сплошность, т.е. долговечен и по условиям протекания локализованных повреждающих процессов [2]. На базе математического аппарата этой концепции удалось теоретически обосновать, экспериментально проверить и реализовать на действующих, проектируемых и изготавливаемых парогенераторах новые технологические мероприятия, которые способствуют продлению ресурса коллекторов. Концепция «Прочность через долговечность» не противопоставляется концепции «Течь перед разрушением». В отличие от вероятностного анализа надежности ее математический аппарат - детерминистские уравнения полифакторных повреждающих физико-химических процессов на границе раздела «металл/коррозионная среда» и в объеме металла, одновременно воздействующих на конструкционный сплав.
Суть этого направления состоит как в использовании уже известных подходов, методик и формул расчета ресурса и долговечности, так и в создании недостающих алгоритмов.
Во-первых это:
- концепция предельного состояния металла (критерий - числовое значение физического признака повреждения металла перед его разрушением - гипотеза академика Российской Академии наук Болотина В.В., изложенная в монографии [2].
- алгоритмы расчета долговечности металла при воздействии отдельных, в том числе и полифакторных, но частных процессов повреждения металла (усталость; ползучесть; радиационная хрупкость).
Во-вторых:
- создание прикладных инженерных методик прогнозных расчетов технического фtech и остаточного фост ресурсов на основе новой и ранее неизвестной архитектуры функции долговечности при одновременном кооперативном воздействии на металл нескольких повреждающих процессов;
- разработка прикладных программных средств «РЕСУРС-К» и «РЕСУРС-Т» применительно к расчетам ресурса коллекторов и трубных пучков парогенераторов типа ПГВ-1000М АЭС на основе алгоритма, детерминированных методик и формул, учитывающих особенности конструкции, технологии изготовления, характеристик технологических режимов эксплуатации (главным образом - типы циклов нагружения по амплитудам термо- и гидро- механических напряжений, а также характеристики водно-химического режима).
При контакте подвергаемого усталости металла с коррозионной средой возникает ситуация, известная под названием «коррозионная усталость» (КУ). Это наиболее распространенный в технике пример совместного повреждающего действия на металл двух процессов усталости и коррозии, Причем, коррозии в ее глубоком понимании происходящих физико-химических процессов как на границе раздела «металл/среда», так и в объеме металла. Известно, что КУ не имеет предела выносливости [3] в отличие от усталости на воздухе (рис. 1).
Из рассмотрения рисунка 1.2 следует, что при использовании рекомендуемого в нормативных документах [4] приема - понижение в 10 раз предельного числа циклов на воздухе (для учета влияния контакта с коррозионной средой) не формируется главное отличие - сохраняется несуществующий предел выносливости (кривая 2), которого в условиях КУ на самом деле нет (кривая 3). Кроме того, известно, что кривая 3 смещается к оси ординат в более кислой среде и вправо - в более щелочной (относительно водородного показателя pH, для которого построена кривая 3).
Рисунок 1.2 - Зависимость предельного числа циклов N0 от Ду - амплитуды механических напряжений: 1 - при испытаниях на воздухе; 2 - пониженное в 10 раз число циклов для учета влияния контакта с коррозионной средой (согласно нормативных документов) при расчетах; 3 - при испытаниях в контакте с коррозионной средой; 4 - предел выносливости при испытаниях на воздухе.
Именно это обстоятельство делает уязвимыми для критики рекомендации по учету влияния среды с помощью деления на кс =10 предельного числа циклов на воздухе N0 и сам способ - использование единого коэффициента для всех случаев многообразия компонентного состава коррозионных сред. Однако этот прием вполне приемлем, если доказан пренебрежимо малый вклад коррозионных повреждающих процессов в общем процессе повреждения конструкционного сплава.
1.2.2 Выбор обобщающих параметров для описания эффектов водно-химического режима
Наибольший масштаб негативных последствий при реализации локальных коррозионных процессов вызывают хлоридо-кислородное коррозионное растрескивание (ХКР) аустенитных хромоникелевых сталей (АХНС), водородное орупчивание углеродистых сталей перлитного и мартенситного классов и коррозионная усталость. В ГОСТ 5272-68 (Коррозия металлов. Термины и определения) утверждается, что КР - это «коррозия металла при одновременном воздействии на металл коррозионной среды и внешних или внутренних механических напряжений растяжения с образованием межкристаллитных или транскристаллитных трещин». Определение коррозии под напряжением (КПН) интерпретируется в том же документе как «коррозия металла при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений». Следует обратить внимание именно на одновременность действия по крайней мере двух независимо протекающих процессов повреждения.
Впервые случай ТКР АНС в публикациях был отмечен в 1920 г. [5]. К настоящему времени число публикаций по проблеме КР близко к 105 с изложением более 50 вариантов моделей, механизмов и математических интерпретаций этого весьма непростого явления природы.
1.2.3 Трубный пучок кипящего теплообменника
Из статистической физики и из экспериментов известно, что распределение отказов однотипных элементов, находящихся в эксплуатации с одинаковыми характеристиками режимов, подчиняется закону нормального распределения (следствие №1 из Центральной предельной теоремы). Следовательно, текущему значению относительного суммарного числа заглушенных теплообменных трубок Pk в парогенераторе будет соответствовать интеграл вероятности Фk на момент наработки tk .
В [6] изложена методика расчета динамики отказов однотипных элементов из стали марки 08Х18Н10Т применительно к трубным пучкам кипящих теплообменников. В этом случае уже вводится критерий отказа уже не для металла, а в целом для теплообменника: его работоспособное состояние продолжается только до исчерпания технологического запаса теплообменных трубок.
В частности, для кинетики числа повреждений стали марки 08Х18Н10Т был выявлен экспериментально и теоретически обоснован нормальный закон распределения. В формулу для вычисления аргумента интеграла вероятности кроме экспозиции входит также концентрация хлорид-иона. Процедура вычисления прогнозируемого числа теплообменных рубок со сквозными повреждениями сводится к следующей последовательности операций.
Относительные величины суммарного числа поврежденных трубок с фиксированными наработками регистрации дефекта рассматриваются как ряд значений интеграла вероятности. Для этого ряда находятся табличные значения аргумента Хi по известным значениям интеграла вероятности Фk. Затем по известным интервалам времени между двумя последовательными отборами проб воды на анализ химического состава, с одной стороны, а также измеренными концентрациями хлорид-иона в каждой пробе формируется система несовместных уравнений типа (1.1)
(1.1)
Эта система решается методом наименьших квадратов относительно средних значений a и b. Прогноз суммарного количества поврежденных трубок парогенератора делается на основе:
- наперед заданного на определенный срок эксплуатации значения концентрации хлорид-иона;
- известных средних значений a и b;
- рассчитанного значения эксплуатационного фактора на дату прогноза
- табличные значения аргумента интеграла вероятности (Фпр)i на дату прогноза.
Полученные коэффициенты a и b используются для построения нового уравнения
(1.1а)
где и - соответственно, интервал времени от даты, когда делается прогноз до даты, на которую желательно знать полное число теплообменных трубок со сквозными дефектами и предполагаемая средняя концентрация хлорид-иона в воде в пределах этого интервала времени.
После этого по таблицам по найденному значению аргумента интеграла вероятности находится соответствующее значение интеграла вероятности (Фпр)i+1. Эта относительная суммарная ожидаемая величина поврежденных теплообменных трубок затем умножается на полное число трубок в парогенераторе.
В итоге получаем суммарное число теплообменных трубок на дату прогноза по наперед заданным наработке и средней концентрации хлорид-иона в воде парогенератора.
Экспозицию до наступления предельного состояния трубной системы парогенератора - исчерпания технологического запаса теплообменных трубок - можно найти, решая (1.5а) относительно фост при заданном значении (CCl- )ост.
(1.1б)
Поскольку в выражение для вычисления эксплуатационного фактора входят экспозиция и концентрация хлорид-иона в виде сомножителей, то одинакового приращения аргумента интеграла вероятности можно достичь их разным сочетанием. Это означает, что на всех этапах жизненного цикла трубного пучка существует возможность управления его ресурсом с помощью направленного воздействия техническими средствами на качество воды: малому содержанию хлорид-иона будет соответствовать более длительная эксплуатация. Это общеизвестно. Однако методика позволяет оценить негативные последствия для технического ресурса факт эксплуатации со ступенчатым изменением качества воды, в том числе и для случаев, например, непреднамеренной эксплуатации парогенераторов (сделанных в СССР) при повышенных концентрациях хлорид-ионов, как это имело место на парогенераторах комбината АЭС «Бруно Лейшнер» в 1982 г.
1.2.4 Пример для предлагаемой методики
Для проведения расчета задается тип парогенератора ПГВ-440 (общее количество теплообменных трубок 5500, технологическая защита 20% - 20%*5500=1100 штук) или ПГВ-1000 (общее количество теплообменных трубок 11000, технологическая защита 12% -12%*11000=1320 штук).
Далее выбирается количество интервалов наблюдения: 4. (Данные для расчета этого расчета задавались преподавателем.)
Число заглушенных теплообменных трубок на каждом интервале, штук: 2; 3; 2; 4.
Средняя концентрация Cl-, мкг/кг: 500; 150; 100; 70.
Продолжительность интервалов, год: 8; 1; 2; 0,5.
Остаточная концентрация Cl-, мкг/кг: 100.
Необходимо рассчитать остаточный ресурс (tост) парогенератора и написать программу для автоматического расчета, в основу которого положен метод приведенный в параграфе 1.2.3.
Блок схема работы разработанной для дипломного проекта программы приведена на рисунке 1.3. Программа разрабатывалась на языке Visual C#.
Рисунок 1.3 - Блок схема работы программы
Описание каждого элемента блок-схемы:
- Начало. Запуск программы.
- Загрузка дынных. При наличии исходных данных для программы их можно подгрузить вручную.
- Сохранение данных. Сохраняет введенные данные для последующих расчетов.
- Количество заглушенных ТОТ, Концентрация Cl-, временной интервал. Вводятся исходные для расчета.
- Выбор типа реактора. Выбирается тип реактора: ВВЭР-440, ВВЭР-1000.
- Выбор типа расчета. Выбирается расчет на указанный период времени (пол года, год…) или расчет оставшегося ресурса ПГ.
- Период расчета и концентрация Cl-. Задаются данные для расчета на указанный период.
- Концентрация Cl-. Задаются данные для расчета оставшегося периода работы, до заглушения всех ТОТ технологической защиты.
Внешний вид программы приведен на рисунке 1.4.
- Нажатие кнопки «Расчет». Производится расчет по указанной выше методике и выводятся результаты.
- Конец. Закрытие программы.
Рисунок 1.4 - Внешний вид программы для расчета
В блок 1 вводятся данные по числу заглушенных ТОТ в штуках, средняя концентрация Cl- в мкг/кг и продолжительность интервалов контроля состояния ТОТ в годах (Рис. 1.5).
Рисунок 1.5 - Исходные данные. Блок 1
В блоке 2 выбирается тип реактора и выбирается тип расчета. Для расчета остаточного ресурса выбирается опция «Оставшийся ресурс» вводится остаточная концентрация Cl-. Для предсказания количества заглушенных ТОТ на определенный период выбирается опция «На указанный период» и вводится концентрация Cl- и период расчета (Рис. 1.6).
Рисунок 1.6 - Исходные данные. Блок 2
После нажатия кнопки “Расчет” в блоке 3 выводится результат. Для заданных данных ВВЭР-440 - tост=152,9 года, ВВЭР-1000 - tост=151,2 года. Данный прогноз приведен как пример работы программы. Программа была написана как тренажер, для того что бы показать влияние химического состава воды на долговечность работы ПГ.
1.2.5 Выводы по разделу
Приведенные выше сведения позволяют утверждать, что коррозионная среда влияет на долговечность металла не через свои отдельные характеристики непосредственно, а опосредовано, через самостоятельные коррозионные процессы. Именно отсутствие математического детерминистского описания этих коррозионных процессов в подавляющем большинстве случаев и приводит к преждевременному повреждению металла в реальной конструкции. Способствует такому состоянию дел зачастую отсутствие математического аппарата для расчета долговечности при совместном воздействии на металл нескольких повреждающих процессов, включая коррозионные.
Поэтому ближайшей задачей в дальнейших исследованиях по проблеме оценки долговечности и проблеме управления долговечностью металла в контакте с коррозионной средой становится разработка детерминистских моделей коррозионных процессов и определение числовых значений критериев предельного состояния по этим повреждающим процессам.
Не менее важным и неоднозначным должны быть поиски путей замены так называемого коэффициента влияния коррозионной среды на функцию влияния и построение алгоритма расчета долговечности металла при одновременном повреждающем действии нескольких процессов, включая коррозионные.
В свою очередь, локальные коррозионные процессы, как независимо протекающие, уже должны быть описаны именно через характеристики водной среды. Каждый из них, будь то: коррозионное растрескивание аустенитных сталей, динамика коррозионного растрескивания однотипных элементов из аустенитной стали, образование питтингов, накопление водорода в металле, коррозия под напряжением и коррозионная усталость - должны быть описан детерминистской моделью, в которой уже характеристики водной среды входят непосредственно как влияющие независимые фактор-аргументы.
Программа, разработанная для дипломного проекта, позволяет производить расчеты по описанной выше методике на ЭВМ.
Часть 2. Системы теплотехнического контроля и автоматизации II-го контура АЭС с ВВЭР-1000
2.1 Оборудование и технологические системы второго контура
2.1.1 Общие сведения
Второй контур включает в себя турбину К-1000-60/1500-2, генератор ТВВ-1000-4УЗ, систему паропроводов свежего пара, питательной воды, паропроводов низкого давления пароснабжения собственных нужд, систему возврата конденсата и дренажей, парогенератор и т.д. Решение по преобразованию энергии пара базируются на решениях, характерных для классических ТЭС. Пар из четырех ПГ по четырем паропроводам транспортируется в турбоустановку, отработав в цилиндре высокого давления (ЦВД), пар после осушки и перегрева в сепараторах-подогревателях (СПП) поступает в цилиндры низкого давления (ЦНД), а затем в конденсатор. Конденсат из конденсатора, пройдя 100%-ную очистку в блочной обессоливающей установке (БОУ), конденсатными насосами (КЭН) через подогреватели низкого давления подается в деаэратор (0,69 МПа). Из деаэратора двумя питательными турбонасосами питательная вода через подогреватели высокого давления подается в ПГ.
Турбина предназначена для преобразования энергии пара, генерируемого в ПГ, в механическую энергию ротора и непосредственного привода генератора, Турбина предназначена для работы в моноблоке с водо-водяным реактором ВВЭР-1000 на насыщенном паре. Турбина обеспечивает сверх отборов для подогрева питательной воды и на турбоприводы питательных насосов нерегулируемые отборы пара на собственные нужды и на подогрев сетевой воды.
Генератор является основным элементом для выработки электроэнергии и допускает длительную работу с номинальной нагрузкой, а также работу с нагрузкой менее номинальной по активной мощности. Генератор комплектуется выводами с трансформаторами тока и напряжения и бесщеточным возбудителем на одном валу с генератором. Охлаждение обмотки статора генератора осуществляется дистиллированной водой (дистиллятом), а обмотки ротора и активной стали статора -водородом, заключенным внутри газонепроницаемого корпуса.
Система питательной воды в номинальном режиме и режимах частичных нагрузок обеспечивает подачу питательной воды, соответствующую паропроизводительности ПГ и величине продувки из них. Подача питательной воды в ПГ производится через их регулирующие клапана питания. При работающей турбине подача питательной воды производится двумя питательными турбонасосами типа ПТ-3750-75 по двум линиям, соединенным в общий питательный коллектор.
Система основного конденсата предназначена для транспортировки конденсата из конденсатора турбины через БОУ и подогреватели низкого давления в деаэратор. Подача конденсата из конденсатора на БОУ производится тремя конденсатными насосами 1-ой ступени типа КСВ-1850-95У4 (два рабочих, один резервный) по однониточному конденсатному тракту. Перед БОУ конденсат проходит охладители основных эжекторов и эжекторов уплотнений. После БОУ конденсат поступает на всос трех конденсатных насосов II-ой ступени, в качестве которых используются насос ЦН-1850-170. За конденсатными насосами II-ой ступени подключена линия рециркуляции конденсата в конденсатор через дроссельное устройство, встроенное в блочный расширитель. Далее конденсат последовательно проходит через четыре подогревателя низкого давления (соответственно ПНД 1-4). За ПНД-3 и ПНД-1 дренажными насосами производится подача конденсата греющего пара подогревателей (соответственно ПНД-3,4 и ПНД-1,2) в линию основного конденсата. Система основного конденсата включается в работу ко времени подачи пара на эжекторы уплотнения турбины.
2.1.2 Описание объекта управления
Объект управления представляет собой энергоблок АЭС с реактором ВВЭР-1000, в состав которого входят: корпус ядерного реактора, внутрикорпусные устройства (ВКУ) - шахта, выгородка, блок защиты труб (БЗТ); верхний блок (ВБ); приводы для перемещения ПС СУЗ; каналы нейтронного измерения (КНИ); активная зона (комплект ТВС). Также в состав энергоблока входят: турбина К-1000-60/1500-2 ЛМЗ, предназначенная для работы на насыщенном паре, главные циркуляционные насосы, парогенератор ПГВ-1000. Питательно-конденсатный тракт энергоблока включает в себя конденсатор, 4 подогревателя низкого давления, деаэратор питательной воды, 1 подогреватель высокого давления, парогенератор.
На рисунке 2.1 приведена схема барабанного парогенератора энергоблока АЭС с ВВЭР-1000.
Рис. 2.1 - Схема барабанного парогенератора АЭС с ВВЭР-1000
В корпусе парогенератора 1 находится вода второго контура. Нагрев воды осуществляется трубчаткой 8, через которую прокачивается горячий теплоноситель первого контура, поступающий в патрубок 9 и отводимый через патрубок 10. Образующийся в корпусе пар сепарируется от влаги в паровом пространстве 7 и по паропроводам 4 направляется на турбину. Питательная вода подается по паропроводу 6.
Подъем уровня воды в парогенераторе может привести к забросу воды в турбину; снижение уровня здесь менее опасно, чем в реакторах, однако оно приводит к оголению верхней части трубчатки, уменьшению поверхности теплообмена и нежелательному повышению температуры воды первого контура на входе в реактор.
Во всех подобных схемах поддержание уровня осуществляется путем изменения подачи питательной воды. В стационарных условиях подача питательной воды должна быть равна расходу пара (если из регулируемой емкости часть воды забирается на продувку, то расход питательной воды должен быть соответственно увеличен). Регулирование в переменных режимах осложняется из-за наличия так называемого «вспухания». Например, если увеличить приток теплоты к жидкости при постоянном расходе питательной воды Dпв, то это приводит к временному подъему уровня, а затем к его падению. В силу того характера изменения уровня, регулирование уровня одноимпульсным регулятором 2 (рисунок 2.2), увеличивающим расход питательной воды при снижении уровня 3 и уменьшающим расход при подъеме уровня, неэффективно.
Рис. 2.2 - Одноимпульсная схема регулирования уровня
Такой регулятор при увеличении тепловой мощности из-за вспухания уровня в первый момент уменьшит расход воды, что через некоторое время приведет к падению уровня, большему чем без регулирования. С другой стороны при возмущении изменением расхода питательной воды (например, при изменении режима работы насосов) сигнал на вход одноимпульсного регулятора придет со значительным запаздыванием, что также ухудшает динамическую точность АСР.
В значительной мере эти недостатки ликвидируются при использовании трехимпульсной схемы регулирования рисунок 2.3.
Рис 2.3. Трехимпульсная схема регулирования уровня.
В такой схеме исполнительный механизм питательного клапана 1 управляется регулятором 2, на вход которого подаются сигналы по уровню 3, расходу пара 4 и расходу питательной воды 5. Знаки сигналов выбираются так, чтобы открытие клапана происходило при снижении уровня и расхода воды и увеличении расхода пара. Коэффициенты усиления каналов по расходу воды и пара берутся равными. Поэтому в стационарном режиме эти сигналы уравновешиваются и нулевой сигнал на входе регулятора будет только при значении уровня, равном заданному.
Рассмотрим работу трехимпульсного регулятора при различных возмущениях. При мгновенном изменении расхода питательной воды сигнал на входе в регулятор появляется практически мгновенно и будет отработан регулятором еще до того, как заметно отклонится уровень. Аналогично при возмущении тепловой мощностью на входе в регулятор сразу же появляется сигнал увеличения расхода пара, требующий уже в первый момент увеличения расхода воды.
Настройка трехимпульсного регулятора уровня начинается с настройки контура регулирования питательной воды при отключенных сигналах 4 и 5. Оптимальные настройки регулятора 2 в этом режиме сильно зависят от конкретных особенностей объекта (инерции расходомера, люфтов в исполнительном механизме и т.п.) трудно поддающихся расчету. Поэтому обычно этот контур настраивается непосредственно на объекте, без предварительных теоретических расчетов. После определения коэффициента усиления канала по расходу воды устанавливается равный ему коэффициент по расходу пара. Контур регулирования расхода воды мало инерционен, и при определении коэффициента усиления по уровню можно считать, что расход воды мгновенно устанавливается равным суммарному значению расхода пара отклонения уровня. Тогда регулятор 2 при подаваемом ему на вход сигнале 5 можно рассматривать как пропорциональный регулятор, изменяющий расход воды пропорционально отклонению уровня 3 от его заданного значения.
2.1.3 Регулирование уровня в регенеративных подогревателях
В регенеративных подогревателях происходит нагрев конденсата и питательной воды паром, поступающим из нерегулируемых отборов турбины. В подогреватели, расположенные дальше по ходу питательной воды, пар поступает от отборов турбины с более высоким давлением, что и обеспечивает постепенный подогрев воды по мере ее продвижения от конденсатора к парогенератору. Дренаж (конденсат) греющего пара либо отводится самотеком в паровое пространство предыдущего по ходу воды подогревателя, либо подается насосом в питательную линию.
Снижение уровня конденсата в подогревателях недопустимо, так как при оголении дренажных патрубков в них может появится пар («проскок» пара). Если дренаж подается самотеком в другой подогреватель, проскок снижает термодинамический КПД цикла, так как увеличивается расход пара из отборов более высокого давления. При отводе дренажа насосом появление проскока может вывести насос из строя. При повышении уровня конденсат закрывает часть трубчатки подогревателя, что ухудшает теплообмен. Кроме того, большой запас воды в корпусе подогревателя может вызвать ее вскипание и аварийный заброс пароводяной смеси в паровую турбину в случае, если при резком снижении нагрузки турбины недостаточно быстро закроют клапана на паропроводе отбора.
Уровень во всех подогревателях поддерживается регуляторами 1 (рисунок 2.4), получающими импульс от уровнемеров 2 и Бездействующими на регулирующие дроссельные клапаны 3. Динамика этого контура достаточно проста и обычно не вызывает трудностей в настройке.
Рис. 2.4 - Регулирование уровня в регенеративных подогревателях
2.1.4 Автоматическое регулирование деаэраторных установок
Деаэратор является смешивающим подогревателем и предназначен для деаэрации питательной воды - удаление растворенного в ней кислорода. В нижнюю часть деаэраторной головки, установленной над аккумуляторным баком питательной воды, подводится греющий пар. Поток пара стремясь к выходу в атмосферу, расположенному в верхней части головки, нагревает до температуры кипения движущуюся навстречу ему питательную воду. Выделившийся из воды в процессе кипения кислород вместе с излишками пара сбрасывается в атмосферу или расширитель. Для непрерывного нагрева и удаления кислорода из воды в деаэраторе поддерживается избыточное давление пара Рд соответствующая ему температура насыщения tд = ts и уровень Нд.
Регулирование давления в деаэраторах.
Оно необходимо для обеспечения нормальной деаэрации питательной воды и правильного режима питательных насосов и осуществляется путем подачи пара в головку деаэратора через дроссельный регулирующий клапан (схема "после себя"). При этом вода нагревается до температуры насыщения и, растворенные в ней газы переходят в пар, удаляемый в выпар деаэратора (деаэрация). Пар на деаэратор подается из отбора турбины, давление в котором при номинальной мощности превышает давление в деаэраторе не менее чем на 40--50% (т. е. при давлении в деаэраторе 0,6 МПа номинальное давление в отборе должно быть не менее 0,8 МПа). Так как давление в отборах турбины пропорционально ее мощности, при снижении мощности до 50--70% номинальной давление в отборе становится недостаточным для питания деаэратора и пар начинает подаваться из другого источника. В качестве такого источника может быть использована магистраль собственных нужд 0,9 или 1,2 МПа.
Система регулирования давления, обеспечивающая плавный переход с одного источника на другой как при снижении, так и при увеличении мощности турбины, показана на рисунке 2.5. Нормально магистраль питания деаэраторов 1 снабжается паром из отбора турбины. Давление в магистрали поддерживается регулятором 3, получающим импульс от манометра 4 и Бездействующим на дроссельный клапан 5. Кроме регулятора 3 имеется регулятор 7, получающий импульс от манометра 6 и воздействующий на дроссельный клапан 8. Клапан 8 регулирует подачу пара от магистрали собственных нужд 9. Уставка регулятора 7 выбирается несколько ниже, чем у регулятора 3, поэтому при подаче пара от отбора 2 через клапан 5 давление в магистрали 1 выше уставки регулятора 7 и клапан 8 полностью закрыт. При снижении давления в отборе 2 приблизительно до уставки регулятора 7 он вступает в работу и открывает клапан 8, после чего поддерживает давление заданном уровне (несколько менее номинала). Во избежание обратного перетока пара из магистрали 7 в отбор турбины устанавливается обратный клапан 10. При повышении мощности турбины давление в отборе 2 поднимается, обратный клапан 10 открывается, пар из отбора 2 начинает поступать в магистраль 1 и давление в ней поднимается выше уставки регулятора 7. Регулятор 7 закрывает клапан 8, и система переходит на снабжение паром из отбора.
Рис. 2.5 - Регулирование уровня и давления в деаэраторе
Регулирование уровня в деаэраторах.
Компенсация потерь рабочего тела в пароводяном контуре производится подпиткой химически очищенной водой (ХОВ), которая обычно осуществляется в конденсатор турбины. Сигналом уменьшения массы воды в контуре является снижение уровня в деаэраторе, так как масса рабочего тела поддерживается практически постоянной. Регулятор уровня в деаэраторе 11 (рисунок 2.5.) получает сигнал от уровнемера 12 и воздействует на клапан 73, регулирующий подачу ХОВ в конденсатор турбины. При этом регулирующее воздействие задерживается, так как увеличение расхода ХОВ сначала приводит к увеличению уровня в конденсаторе, что воспринимается регулятором 6 (рисунок 2.5), и только в результате его работы увеличивается подача воды в питательную линию 9. Однако жестких технологических требований к динамическим отклонениям уровня в деаэраторе не предъявляются. Изменение уровня в допустимых пределах происходит за длительное время (даже при полном прекращении подачи питательной воды в деаэратор падение уровня продолжается не менее 5 мин). Поэтому описанная схема регулирования, несмотря на ее невысокое быстродействие, получила всеобщее распространение.
Для получения характеристик системы регулирования уровня в парогенераторах ПГВ-1000 необходимо получить вид передаточных функций системы по каналам регулирования «расход питательной воды -уровень в парогенераторе» и «расход пара - уровень в парогенераторе». Для этого необходимо построить математическую модель объекта регулирования по заданным каналам.
2.1.5 Приборы и средства теплотехнического контроля параметров II_го контура АЭС с ВВЭР-1000
Основными контролируемыми параметрами, рассматриваемыми в проекте являются: давление пара в отборах, давление в деаэраторе, давление питательной воды и конденсата, температура питательной воды, температура конденсата, расход питательной воды, расход пара на турбину, уровень в подогревателях низкого давления, уровень в деаэраторе, уровень в подогревателях высокого давления и уровень в парогенераторе. Для измерения данных технологических параметров применяются различные средства измерений. Для регулирования температуры, используются термопары, имеющие НСХ типа ХК (хромель-капель), диапазон измерения -50..+400 С0. Для измерения давления применяются датчики измерения избыточного давления «Сапфир 22ДИ». Для измерения расхода питательной воды используется диафрагма, совместно с измерительным преобразователем разности давлений «Сапфир 22ДД». Для измерения уровня в парогенераторе, ПНД, ПВД и деаэраторе, применяются стандартные уравнительные сосуды, однокамерные совместно с измерительными преобразователями разности давлений «Сапфир 22ДД». Данное оборудование изготавливается на ЗАО «Манометр», располагающийся в городе Москве. Сигналы от термопар обрабатываются непосредственно Ремиконтом-310. При этом нет необходимости для применение промежуточных преобразователей. Сигналы от датчиков измерения избыточного давления и разности давлений, через преобразователи «Сапфир 22ДД» и «Сапфир 22 ДИ» заводятся в программируемые микропроцессорные контроллеры. Спецификация на средства измерений приведена в Приложении 1.
2.1.6 Описание АСУ ТП на базе ТПТС53
В проекте рассматриваются вопросы АСУ ТП энергоблока на базе ТПТС53 (TELEPERM ME). 3а счет новой производственной технологии «монтаж на поверхность» в ТПТС53 реализована самая перспективная структура контроллерных систем - структура «интеллектуальных» модулей. Её смысл состоит в том, чтобы основные функции обработки и управления передать микропроцессорам, установленным в каждом модуле. Фактически, отдельные функциональные модули, обладают способностью принимать и обрабатывать разнообразные сигналы, выдавать как аналоговые, так и дискретные воздействия, и осуществлять автоматическое управление технологическим процессом. Кроме того, обеспечена возможность связи между функциональными модулями через информационные шины в пределах одного шкафа, между шкафами и с внешними устройствами через несколько различных системных шин.
Подобные документы
Основные характеристики района сооружения атомной электростанции. Предварительное технико-экономическое обоснование модернизации энергоблока. Основные компоновочные решения оборудования 2-го контура. Расчет процессов циркуляции в парогенераторе.
дипломная работа [1,5 M], добавлен 29.01.2014Описание АЭС с серийными энергоблоками: технологическая система пара собственных нужд, цифровые автоматические регуляторы системы, расчётная оценка материального баланса и его состояние при нарушении работы. Анализ переходных процессов энергоблока.
курсовая работа [797,6 K], добавлен 15.10.2012Особенности конструкции основного и вспомогательного оборудования Ростовской атомной электрической станции, принципы его действия. Тепловая схема энергоблока АЭС, контуры циркуляции. Технические характеристики реактора ВВЭР-1000, системы парогенератора.
отчет по практике [1,5 M], добавлен 26.09.2013Тепловая схема энергоблока. Параметры пара в отборах турбины. Построение процесса в hs-диаграмме. Сводная таблица параметров пара и воды. Составление основных тепловых балансов для узлов и аппаратов тепловой схемы. Расчет дэаэратора и сетевой установки.
курсовая работа [767,6 K], добавлен 17.09.2012Общие характеристики и конструкция тепловой части реактора ВВЭР-1000. Технологическая схема энергоблоков с реакторами, особенности системы управления и контроля. Назначение, состав и устройство тепловыделяющей сборки. Конструктивный расчет ТВЕЛ.
курсовая работа [1,4 M], добавлен 25.01.2013Назначение вентиляционных установок и воздуховодов атомных электростанций. Основы проектирования и примерная схема специальной технологической вентиляции реакторного отделения. Обеспечение допустимых температур воздуха в производственных помещениях.
курсовая работа [939,0 K], добавлен 25.01.2013Основные технико-экономические показатели энергоблока атомной электростанции. Разработка типового оптимизированного и информатизированного проекта двухблочной электростанции с водо-водяным энергетическим реактором ВВЭР-1300. Управление тяжелыми авариями.
реферат [20,6 K], добавлен 29.05.2015Ядерный реактор ВВЭР-1000 - водо-водяной энергетический реактор с водой под давлением, без кипения в активной зоне. Регулирование мощности, топология локальной вычислительной сети. Коррекция базы данных конфигурации. Обмен данными между ОБД и ЛВС.
дипломная работа [1,3 M], добавлен 11.09.2011Оценка влияния течей второго контура на эксплуатационные режимы работы реакторной установки. Определение дополнительных признаков и их использование для составления процедуры управления и диагностики течей контура. Управление запроектными авариями.
дипломная работа [2,3 M], добавлен 19.03.2013Характеристика водо-водяного энергоблока №1 реактора ВВЭР-1000 АЭС. Функции главного циркуляционного трубопровода. Обоснование и выбор СКУ элементов и узлов. Распределение температур в горячих нитках петель, стратификация теплоносителя контуров.
курсовая работа [3,1 M], добавлен 23.12.2013