Массивы в С/С++

Линейный массив в программе на C++ - упорядоченный набор однотипных переменных, располагающихся в памяти последовательно. Массив как простейшая структура данных, облегчающая работу с большими объемами информации. Использование типизированных констант.

Рубрика Программирование, компьютеры и кибернетика
Вид лабораторная работа
Язык русский
Дата добавления 15.07.2009
Размер файла 33,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Лабораторная работа

На тему: МАССИВЫ в С/С++

Поэлементные операции

1. Одномерные (линейные) массивы

Линейным массивом в программе на C++ называется упорядоченный набор однотипных переменных, которые располагаются в памяти последовательно

Массив является простейшей структурой данных, облегчающей работу с большими объемами информации путем их упорядочения. В случае с массивами, упорядочение происходит за счет индексирования элементов, то есть обращения к каждому из них по порядковому номеру. Показанный на рисунке массив состоит из n элементов с индексами от 0 до n-1, в который записаны числа 5, 21, 0, 12 и т.д.

Любой массив в C++ характеризуется тремя параметрами: именем, типом элементов и размером. Как и обычная переменная, перед использованием массив должен быть объявлен. Общая форма записи объявления:

тип_элементов имя_массива[размер_массива];

Здесь тип_элементов - это любой из известных стандартных типов (int, float, double, char и т.д.), имя_массива - уникальное имя (идентификатор), используемое для обращения к массиву, размер_массива - количество его элементов. В качестве последнего параметра в объявлении может быть использована только целочисленная константа или константное выражение. Примеры объявлений

int A[15]; // массив из 15 целочисленных элементов с именем A

float x[3]; // массив x из 3-х элементов типа float

Объявление массива является командой компилятору на выделение памяти для хранения его элементов. Общее количество выделенной памяти зависит не только от числа элементов, но и от размера каждого элемента, то есть от его типа. Например, текстовая строка из 1000 символов (тип char) займет P = 1000*sizeof(char) = 1000 байтов, а массив из такого же количества вещественных чисел двойной точности (тип double) займет уже в восемь раз больше - P = 1000*sizeof(double) = 8000 байтов.

Нумерация элементов в массиве начинается с нуля. Таким образом, первый элемент массива имеет индекс 0, а последний - индекс n-1, где n - размер массива. Обращение к элементу производится с использованием имени массива и индекса элемента в квадратных скобках. Например, запись “x[0] = 5.5;” означает “присвоить значение 5.5 нулевому элементу массива x”.

Для работы с массивами характерным является использование итерационных циклов for. С их помощью организуется выполнение однотипных операций со всеми элементами массива, в частности, поэлементный ввод-вывод, поэлементные арифметические операции и др. Рассмотрим это на следующем примере.

Пример 1. Напишите программу, запрашивающую у пользователя 10 целых чисел, и выводящую ее на экран их сумму.

Решение. Будем использовать массив с именем A и размером 10 для хранения введенных чисел. Ввод данных и суммирование организуем поэлементно с помощью циклов for.

//----------- Сумма элементов массива -------------

#pragma hdrstop

#include <conio.h>

#include <iostream.h>

#pragma argsused

int main(int argc, char* argv[])

{

int A[10]; // объявляем массив из 10 целых

for(int i=0; i<10; i++) // организуем цикл по i от 0 до 9

{

cout << "input A[" << i << "] = "; // приглашение

cin >> A[i]; // вводим A[i]

}

int sum = 0; // объявляем переменную

for(int i=0; i<10; i++) // организуем цикл

sum = sum + A[i]; // в цикле суммируем элементы

cout << "\nSumma: " << sum; // выводим результат на экран

getch(); // задержка

return 0;

}

//-------------------------------------------------

Наберите код этой программы в среде Turbo C++ и запустите ее на выполнение. Проверьте правильность получаемых с ее помощью результатов. Нарисуйте блок-схему и объясните алгоритм ее работы. Объясните смысл использования дополнительной переменной sum в этой программе.

2. Многомерные массивы

Массивы в программах C++ могут быть не только линейными. Довольно частым является использование двух - (и более) -мерных структур. К примеру, прямоугольная матрица - типичная структура, представимая с помощью двумерного массива; а 3D-тензор может быть записан как соответствующий трехмерный массив.

Многомерный массив в C++ организован по принципу «массива массивов». Общий формат его объявления

тип имя[N1][N2]…[NM];

Здесь M - число индексов (или размерность) массива. Индексы изменяются в пределах от 0 до N1 - 1, от 0 до N2 - 1, от 0 до N3 - 1, ..., от 0 до NM - 1, соответственно.

К примеру, запись int G[5][4]; означает объявление двумерного массива целых чисел с именем G и размерами 54. На рис. справа такой массив представлен в виде таблицы. Здесь первый индекс является номером строки, второй - номером столбца таблицы, с диапазонами изменения от 0 до 4, и от 0 до 3, соответственно.

Доступ к элементам многомерного массива в программе производится так же, как и в одномерном случае, то есть путем указания имени массива и набора индексов в квадратных скобках. Например, операция присваивания значения 0 последнему элементу будет записана как G[4][3] = 0.

При работе с многомерными массивами удобно использовать вложенные циклы for. С их помощью можно выполнить заданное действие с каждым из элементов массива путем перебора всех значений индексов. Приведенный ниже фрагмент программного кода выводит на экран все элементы массива G.

for(int i=0; i<5; i++) // цикл по строкам i

{

for(int j=0; j<4; j++) // цикл по строкам j

cout << G[i][j] << “\t”; // выводим G[i][j]

cout << endl; // перевод на новую строку

}

Алгоритм работы этого фрагмента иллюстрируется следующей блок-схемой

Здесь внешний цикл по I последовательно пробегает все значения от 0 до 5. При каждом i запускается внутренний цикл по j от 0 до 4. В теле этого цикла на экран выводятся значение элемента G[i][j] и знак табуляции (горизонтальный отступ). Внутренний цикл продолжается до тех пор, пока не будут перебраны все значения j, то есть не будет выведена вся i-я строка. По завершении внутреннего цикла, экранный курсор перемещается на новую строку манипулятором endl, и далее внешний цикл продолжает свою работу, последовательно выводя на экран другие строки массива.

Пример 2. Имеется вещественная квадратная матрица размером 44. Напишите программу, вычисляющую произведение элементов в каждой ее строке. Матрица вводится с клавиатуры.

Решение. Условимся использовать для хранения матрицы массив float X[4][4]. Расчет произведения реализуем согласно следующему алгоритму. Введем вспомогательную переменную (к примеру, float P). Заметим, что в i-й строке расположены элементы X[i][j], где j меняется от 0 до 3, включительно. Организуем цикл по j, внутри которого будем домножать P на X[i][j]. Тогда на выходе из цикла P будет содержать искомое произведение. Выведем его на экран и продолжим расчеты для следующей строки. Для правильной работы алгоритма перед началом расчетов в каждой строке матрицы необходимо присвоить P значение 1.

//-------- Произведение элементов строки ----------

#pragma hdrstop

#include <conio.h>

#include <iostream.h>

#pragma argsused

int main(int argc, char* argv[])

{

float X[4][4]; // объявляем массив 44

for(int i=0; i<4; i++)

for(int j=0; j<4; j++)

{

cout << "input X[" << i <<

"," << j << "] = ";

cin >> X[i][j]; // вводим элементы матрицы

}

cout << "\n Results:\n";

for(int i=0; i<4; i++) // цикл по строкам

{

float P = 1.0; // вспомогательная переменная

for(int j=0; j<4; j++) // цикл по элементам в строке

P = P * X[i][j]; // домножаем P на X[i][j]

cout << "\n proizvedenie " << i

<< "-i stroki = " << P; // выводим результат на экран

}

getch();

return 0;

}

//-------------------------------------------------

Наберите и откомпилируйте код этой программы в Turbo C++. Проверьте результаты, выдаваемые программой.

3. Типизированные константы

В рассмотренном выше примере текст программы содержит явные выражения, задающие размеры массива X. Он объявлен как float X[4][4], то есть с явным указанием размерности, и далее везде по ходу программы цифра 4 используется явно при записи циклов for.

Такая техника программирования является допустимой и даже часто используемой, однако создает некоторые трудности в плане масштабируемости программы. В данном случае под масштабируемой мы будем понимать программу, которая может быть легко перестроена для работы с массивами других размеров. В рассмотренном выше примере при изменении размера массива X нам придется просмотреть весь код программы, заменяя 4 на другое целое число.

Этого можно избежать, если ввести типизированные константы, которые будут использоваться для указания размеров массива. Так же, как и переменная, типизированная константа имеет уникальное имя и тип, однако ее значение не может быть изменено по ходу выполнения программы. Это дает право использовать ее в объявлении массива.

Типизированная константа должна быть объявлена с ключевым словом const, вслед за которым указывается ее тип (int, float, double, char, и т.д.), далее, через пробел, - ее имя и инициализирующее выражение

const тип имя = выражение;

Например, запись const int N = 4; означает объявление целочисленной константы с именем N и значением 4. В рассмотренном выше примере N могла быть использована как при объявлении массива float X[N][N], так и везде далее вместо 4. Такая программа будет легко масштабируемой в силу того, что в ней достаточно изменить значение N работы с массивами других размеров.

Типизированная константа может быть объявлена в любом месте программы до момента своего первого использования. Однако хорошим стилем считается объявление всех констант в самом начале программного файла, после подключения библиотек директивами #include.

4. Инициализация элементов массива

В рассмотренных выше примерах начальные значения элементов массива задавались пользователем с клавиатуры. Можно поступить иначе и каждому из элементов присвоить начальное значение с помощью оператора «=». Это потребует довольно большого количества записей - по отдельному оператору для каждого из элементов. C++ дает программисту еще один, более удобный, способ. Массив может быть инициализирован при объявлении. Для этого в строке объявления сразу вслед за указанием типа элементов, имени массива и его размеров, записывается знак присваивания, и далее в фигурных скобках задаются значения элементов через запятую

тип имя[размерN] = { знач1, знач2, знач3, ..., значN };

Запись означает, что сразу после размещения массива в оперативной памяти каждому из элементов должно быть присвоено соответствующее значение из списка. Если список значений в фигурных скобках короче, чем размер массива, то оставшиеся элементы будут инициализированы значением по умолчанию, то есть обнулены.

В следующем примере

float mark[5] = { 7.3, 4.0, 2.2, 12.1, 8.9 };

создается массив с именем mark, состоящий из 5 чисел типа float, которые инициализируются значениями 7.3, 4.0, 2.2 и т.д. Это эквивалентно следующему набору операторов

float mark[5]; mark[0]=7.3; mark[1]=4.0; mark[2]=2.2 и т.д.

Многомерный массив также может быть инициализирован в строке объявления. Для этого достаточно помнить о том, что многомерный массив в C++ - это «массив массивов», о чем уже говорилось выше. Пример

int F[3][3] = { {3, 0, 2} , (1, 9, 8}, {5, 7, 4} };

Здесь создается двумерный массив с именем F и размерами 33, элементы которого получают начальные значения F[0][0] = 3, F[0][1] = 0, F[0][2] = 2, F[1][0] = 1 и т.д.

Пример 3. Пусть и - две квадратные матрицы размером 33. Требуется написать программу, рассчитывающую их произведение

Решение. Искомое произведение - это также матрица 33, элементы которой рассчитываются по формуле (). Аналогично Примеру 1, организуем суммирование с помощью вспомогательной переменной s и цикла по k. Для перебора всех используем два дополнительных вложенных друг в друга цикла по i и по j. Эти циклы будут внешними по отношению к циклу по k.

//-------------- Перемножение матриц --------------

#pragma hdrstop

#include <conio.h>

#include <iostream.h>

#pragma argsused

const int N = 3; // используем константу N=3

int main(int argc, char* argv[])

{

float A[N][N] = { {1, 1, 1},

{2, 2, 2},

{3, 3, 3} }; // исходная матрица A

float B[N][N] = { {1, 2, 3},

{1, 2, 3},

{1, 2, 3} }; // исходная матрица B

float C[N][N]; // матрица произведения С

for(int i=0; i<N; i++) // цикл по строкам С

{

for(int j=0; j<N; j++) // цикл по столбцам С

{

float s = 0.0; // вспомогательная переменная

for(int k=0; k<N; k++) // цикл суммирования по k

s += A[i][k]*B[k][j]; // добавляем к s новое слаг-ое

C[i][j] = s; // записываем s в C[i][j]

}

}

cout << " Results: \n"; // далее выводим C на экран

for(int i=0; i<N; i++)

{

for(int j=0; j<N; j++)

cout << C[i][j] << "\t";

cout << endl;

}

getch();

return 0;

}

//-------------------------------------------------


Подобные документы

  • Описание особенностей работы с массивами на С/С++. Образование адресного выражения с использованием имени массива или указателя на массив. Написание программы, которая объединяет два упорядоченных по возрастанию массива в один упорядоченный массив.

    лабораторная работа [114,2 K], добавлен 25.03.2019

  • Массив как пронумерованная последовательность величин одинакового типа, обозначаемая одним именем. Расположение в последовательных ячейках памяти, обозначение именем массива и индексом, инициализация. Передача одномерных и двумерных массивов в функцию.

    лабораторная работа [32,6 K], добавлен 06.07.2009

  • Широкое использование компьютерных и информационных технологий. Концепции типов данных. Алгоритмы сортировки одномерных массивов. Описание двумерного массива Паскаля. Методы доступа к элементам массивов. Индексные, динамические и гетерогенные массивы.

    курсовая работа [66,3 K], добавлен 07.12.2010

  • Спецификатор класса памяти в объявлении переменной, ее область действия как часть программы или исходного модуля. Определение видимости переменных и функций в программе. Продолжительность жизни, виды моделей памяти. Передача параметров и массивов.

    лабораторная работа [62,2 K], добавлен 06.07.2009

  • Простейшая программа на языке С++. Вывод данных на экран. Реализация функций в тексте программы. Создание программ для выполнения в среде MS DOS, Windows. Знакомство с операторами языка. Оператор цикла в форме for. Одномерные и многомерные массивы.

    курс лекций [264,8 K], добавлен 27.07.2010

  • Массив - это коллекция переменных, которые имеют общее имя и базовый тип. Функциональные возможности, виды массивов и их характеристика. Основные требования к входным и выходным данным массива. Использование IF THEN для перехвата всех возможных ошибок.

    реферат [22,6 K], добавлен 01.12.2010

  • Объявление, выделение, освобождение памяти под динамические массивы. Обращение к элементам. Решение задач с использованием динамических массивов на языке C++. Разработка и реализация программы для формирования и обработки динамического двумерного массива.

    курсовая работа [813,4 K], добавлен 13.06.2014

  • Создание приложения, предлагающего задать размер линейного массива, заполняет этот массив случайными целыми числами. Разработка приложения, выводящего двумерный массив случайных целых чисел и определяющего минимальный и максимальный элементы в нем.

    лабораторная работа [19,0 K], добавлен 15.07.2009

  • Анализ различных способов хранения информации: одномерный массив, типизированный файл и динамический список. Сортировка только положительных чисел. Словесное описание алгоритма. Блок-схема процедуры обработки данных с помощью одномерного массива.

    контрольная работа [319,7 K], добавлен 29.05.2014

  • Особенности строковых типов данных и их обработка. Записи как совокупность поименованных компонентов различных типов, основные принципы работы с ними. Массивы - элементы и массивы структур. Понятие и свойства объединений. Файлы и работа с ними в языке СИ.

    презентация [73,1 K], добавлен 09.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.