Интеллектуальная система автоматизированного управления температурой ферментера

Понятия в области метрологии. Представление знаний в интеллектуальных системах. Методы описания нечетких знаний в интеллектуальных системах. Классификация интеллектуальных систем, их структурная организация. Нечеткие системы автоматического управления.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 16.02.2015
Размер файла 768,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Литературный обзор

1.1 Основные понятия и термины в области метрологии

1.1.1 Предпосылки создания интеллектуальных САУ

1.1.2 Информационные аспекты организации интеллектуальных САУ

1.1.3 Представление знаний в интеллектуальных системах

1.1.4 Методы описания нечетких знаний в интеллектуальных системах

1.1.5 Классификация интеллектуальных систем и структурная организация интеллектуальных САУ

2. Нечеткие системы автоматического управления

2.1 САУ с нечетким контроллером

3. САУ температурой ферментатора

4. Патентный Поиск

1. Литературный обзор

1.1 Основные понятия и термины в области метрологии

1.1.1 Предпосылки создания интеллектуальных САУ

Традиционная теория автоматического управления при построении САУ базируется на следующей последовательности: формальное описание объекта управления и устройства управления > формирование критериев управления объектом > непосредственное проектирование САУ. Очевидно, что при поэтапной реализации описанной цепочки, характер возникающих подзадач и способов их решения всецело определялся выбранной структурой и видом формального описания объекта управления (ОУ) и устройства управления (УУ), образующих управляющую систему. Исторически сложилось так, что специалисты в области ТАУ основное внимание уделяли заключительному этапу, стремясь синтезировать закон управления, обеспечивающий приемлемый либо оптимальный режим работы ОУ. Оптимизация управления всегда была ключевой проблемой классической ТАУ, а при ее решении подразумевалось, что управляющая система описана в точных терминах формальной моделью, адекватно отражающей ее реальное состояние и процесс взаимодействия с внешней средой. Очевидно, что несложная модель управляющей системы вела к сравнительно простым методам решения задачи синтеза САУ данным объектом. Однако, повсеместное упрощение и линеаризация при представлении реальных технологических процессов зачастую приводило к созданию САУ, работоспособных только «на бумаге», т.е. в гипотетическом мире, который описывался выбранной формальной идеализированной моделью управляющей системы. Таким образом, модель управляющей системы является отправной точкой, от выбора которой зависит качество и работоспособность реальной САУ.

Модели управляющих систем создавались и модифицировались по мере ужесточения требований к САУ и усложнения технологических процессов. Зачастую, новый вид модели управляющей системы порождал новые критерии управления и новые методы синтеза САУ. Можно дать множество видов классификаций моделей управляющих систем: по функциональному назначению, по виду математического описания элементов системы, по характеру изменения физических величин и т.д.. Однако, поскольку нас интересует происхождение интеллектуальных САУ, отличительной чертой которых является реализация процедур взаимодействия с внешней средой, имитирующих в той или иной степени человеческие действия и мыслительные процессы, дадим упрощенную классификацию моделей управляющих систем именно с этой точки зрения. Исходя из характера информационного взаимодействия ОУ с внешней средой можно выделить три класса моделей управляющих систем, различаемых по объему используемой в процессе управления информации:

· автономные - системы, не использующие непосредственной информации о реальных внешних возмущающих воздействиях, т.е. системы «замкнутые» относительно внешнего мира;

· формализованные - системы, использующие информацию о реальных внешних возмущающих воздействиях в виде идеализированных формальных математических моделей, т.е. системы, существующие в техническом субъективном внешнем мире;

· информационные - системы, использующие непосредственную информацию о реальных внешних возмущающих воздействиях, т.е. системы, существующие в реальном внешнем мире.

Системы первого типа - это системы, которые послужили основой становления теории автоматического управления (первоначально называвшейся теорией автоматического регулирования). Основной задачей, решаемой в то время, была задача автоматической стабилизации определенных физических величин Y - вектора выходных переменных ОУ, характеризующих режим работы объекта управления. В процессе функционирования систем автоматической стабилизации на человека-оператора (лицо, принимающее решение - ЛПР) возлагались функции определения вектора входных переменных G, задающих режим функционирования объекта (в данном случае в автоматическом режиме - это желаемые значения выходных переменных ОУ, так называемые уставки регуляторов). Поддержание желаемых значений выходных переменных осуществлялось путем подачи на вход ОУ вектора управляющих воздействий U , формируемых устройством управления(рис.1.1,1.2).

С одной стороны, решения ЛПР по определению уставок далеко не всегда являлись оптимальными и оперативными для технологического процесса. С другой стороны, именно участие имеющего опыт ЛПР в технологическом процессе позволяло в определенной степени нивелировать недостаточную адекватность модели управляющей системы. На самом деле такая САУ имеет опосредованную через ЛПР связь с окружающим миром, поскольку человек может воспринимать, анализировать и делать выводы, оперируя любой, в том числе и неформализованной информацией о состоянии как самой управляющей системы, так и процессов ее взаимодействия с реальным внешним миром. Однако, при работе в автоматическом режиме, без участия ЛПР, эта неявная связь утрачивается и управляющая система становится полностью автономной. К данному классу относятся разомкнутые системы (рис.1.1) и замкнутые системы с управлением по отклонению (рис.1.2).

Рис.1.1. Разомкнутая автономная система управления

В основном, САУ данного типа решали проблемы устойчивости и локального оптимального управления, т.е. обеспечения соответствия уставки регулятора и выхода ОУ согласно какому-либо критерию оптимальности (минимизации времени переходного процесса, минимизации максимального перерегулирования в системе, минимизации суммарного квадратичного отклонения уставки и выхода ОУ и т.п.).

Рис.1.2. Замкнутая автономная САУ

система автоматический управление интеллектуальный

Расширение круга научно-технических задач, решаемых методами ТАУ, а также стремление к полной автоматизации управления технологическими процессами, породило следящие управляющие системы (системы, у которых вектор выходных переменных соответствует любым, заранее неизвестным изменениям вектора входных переменных) и системы программного управления (системы, у которых вектор входных переменных, представляет функцию времени, синтезируемую неким техническим устройством). Источником входных переменных управляющей системы в этом случае являлось не ЛПР, а техническая схема, технологический процесс, исследуемое физическое явление, принимаемый системой сигнал и т.п., т.е. непосредственно сам окружающий САУ реальный мир. Системы стабилизации также усложнялись, приобретали многоуровневую иерархическую структуру, вследствие чего источником вектора входных переменных в системах стабилизации все чаще становился не человек, а автоматическое устройство верхнего уровня. Таким образом, утрачивалась возможность опосредованного получения и преобразования информации о реальном мире за счет оперативного участия в процессе управления человека - единственного на тот момент «устройства», способного воспринимать и адекватно реагировать на непредсказуемые возмущающие воздействия со стороны внешнего мира. Данного недостатка автономных систем в некоторой мере были лишены разработанные далее формализованные системы.

Системы второго типа - формализованные системы, используют в ходе своей работы информацию о внешнем мире, представленную в виде некоторого формального описания: детерминированного, стохастического, логического и т.п. Таким образом, внешний мир для такой системы представляется в виде некой приближенной формализованной модели. К данному классу относятся разомкнутые и замкнутые системы стабилизации, слежения и программного управления с дополнительной явной и (или) скрытой коррекцией по возмущению (рис.1.3).

Явная коррекция подразумевает наличие датчиков возмущения и дополнительного корректирующего УУ. Под скрытой коррекцией по возмущению следует в данном случае понимать синтез УУ с учетом формального описания реальных возмущений и управляющих систем соответствующими моделями (стохастические САУ, системы оценивания, интервальные САУ, робастные САУ, САУ с нестабильными параметрами, инвариантные САУ).

Такая САУ уже учитывает влияние внешнего мира, но эффективность ее функционирования будет напрямую зависеть от близости формализованной модели взаимодействия управляющей системы и внешней среды к реальному его состоянию. Образно говоря, формализованные системы видят все окружающее в «кривом зеркале» количественного описания явлений, а далеко не все явления и процессы реального мира можно описать количественно с достаточной степенью точности. Поэтому для реальной оценки ситуации во внешнем мире и принятия адекватных решений по прежнему требуется участие ЛПР в процессе управления. Дальнейшее развитие идеи создания управляющих систем, способных приспосабливаться непосредственно к реальному внешнему миру без участия человека привело к построению информационных управляющих систем.

Рис.1.3. Замкнутая формализованная САУ (аналогичная разомкнутая САУ не имеет обратной связи между ОУ и УУ по вектору Y)

Системы третьего типа - информационные управляющие системы используют непосредственную информацию о внешнем мире и на основе получаемых данных автоматически приспосабливаются к изменению внешних условий и свойств ОУ. К данному классу систем относятся адаптивные САУ: самонастраивающиеся - с адаптацией путем изменения параметров УУ, самоорганизующиеся - с адаптацией путем изменения структуры УУ, самообучающиеся - с параметрической и (или) структурной адаптацией совмещенной с коррекцией алгоритмов подстройки. Как разновидность адаптивных САУ можно рассматривать устройства адаптивного оценивания и фильтрации (рис.1.4).

Областью применения информационных САУ является управление объектами, свойства или условия, работы которых недостаточно формализованы или непостоянны. Степень «самостоятельности» таких САУ является наибольшей из всех трех типов управляющих систем. На первый взгляд данные системы уже обладают определенными признаками интеллектуальных САУ - способностью самостоятельно приспосабливаться к изменениям свойств ОУ и внешней среды. Однако, не стоит забывать, что алгоритм адаптации не может скомпенсировать все возможные воздействия со стороны внешнего мира, поскольку реальных ситуаций, возникающих при управлении объектом, может быть бесконечное множество. Информационные САУ, принадлежащие к классу саморазвивающихся адаптивных систем, будут обладать самым широким спектром приспособляемости, но в определенных и не бесконечных пределах, поскольку способов коррекции алгоритмов адаптации существует конечное множество, которое не может охватить все возможные ситуации в процессе взаимодействия управляющей системы с реальным миром. Поэтому было бы излишне самонадеянно оставить такую САУ «наедине» с объектом управления. Всегда возможно возникновение ситуации, с которой информационная САУ не справится. Поэтому периодически ЛПР должно корректировать адаптивные алгоритмы информационной САУ самостоятельно, опираясь на свой опыт и свои наблюдения.

Рис.1.4. Информационная САУ

Таким образом, можно сказать, что развитие ТАУ шло по пути усложнения моделей управляющих систем с целью полного и адекватного описания процессов взаимодействия САУ и реального мира, что позволило бы наиболее эффективно построить процесс управления и максимально разгрузить участвующего в этом процессе человека, взяв на себя определенные функции по управлению объектом. Но даже наиболее совершенные информационные САУ не смогли в полной мере решить эти задачи. Особенно наглядно это проявилось в ходе построения систем управления сложными слабоструктурированными технологическими процессами. Это объясняется тем, что, в отличие от человека, все управляющие системы, созданные методами классической ТАУ, работают с данными (причем данными исключительно количественными, не позволяющими полно описать реальный мир), а не со знаниями. Напротив, человек не только оперирует данными (количественными, описываемыми традиционными математическими методами, и качественными, описываемыми средствами естественного языка), но и обладает базирующимися на их основе знаниями, т.е. может использовать данные для рассуждений и выводов. Это различие и делает человека бесконечно способным к интеллектуальной адаптации - «универсальным управляющим устройством» для любого объекта. Безусловно, в сравнении с любой современной САУ мозг человека имеет определенные преимущества, обусловленные его огромным функциональным диапазоном. Именно поэтому создание интеллектуальных САУ, реализующих элементы мыслительной деятельности человека, связанные с представлением и использованием знаний, позволяет получить системы управления качественно нового уровня - системы, которые, подобно человеку, существуют и работают в реальном мире, оперируя со знаниями об этом реальном мире.

1.1.2 Информационные аспекты организации интеллектуальных САУ

Итак, преимущество интеллектуальной САУ при управлении сложными технологическими процессами обусловлено тем, что данный класс систем работает не с количественными данными, как традиционные САУ, а со знаниями, базирующимися не только на количественной, но и на качественной информации. Это дает возможность достаточно объективно и полно описать окружающий мир и организовать адекватное, в определенной степени «человеческое», поведение управляющей системы в условиях непрерывной изменчивости реальной ситуации, в которой находится интеллектуальная САУ. Чем же отличаются данные от знаний, если это отличие дает такие огромные преимущества интеллектуальным САУ, несмотря на то, что для многих понятия «данные» и «знания» являются едва ли не синонимичными?

Популярно и доступно сформулировать различия между этими двумя понятиями довольно сложно, поскольку в этом случае объяснение будет содержать большей частью философские понятия. На бытовом уровне различия между данными и знаниями хорошо отражает такой известный анекдот.

Двое пилотов-дилетантов впервые летят на самолете. Первый: «Какой у нас курс?» Второй: «Курс - 18!» Первый: «Что - 18?» Второй: «А что - курс?»

Обладают ли эти пилоты данными? Безусловно обладают, и не просто данными, а данными количественными, которые по традиционным понятиям гораздо более ценны, чем данные качественные. Но проку от этих данных никакого, поскольку соответствующих этим данным знаний у пилотов, увы, нет.

Если придерживаться буквального технического смысла терминов, то данные - это комплекс информации, совместимый в рамках некоторой формальной системы, а знания - это базирующиеся на данных способы изменения компонент формальной системы. В зависимости от конкретной предметной области эти формулировки можно конкретизировать и уточнить, т.е. дать более частное определение. Применительно к процессу управления: данные - это информация, характеризующая множество возможных ситуаций, складывающихся при взаимодействии управляющей системы с реальным миром; знания - это информация о причинно-следственных взаимосвязях в каждой конкретной ситуации, о возможном дальнейшем развитии событий в управляющей системе и переходе к другой ситуации в зависимости от предпринятых действий и т.п.

Например, рассмотрим классическую систему стабилизации температуры в помещении, оперирующую количественными данными: сигнал от датчика температуры и сигнал, соответствующий желаемому значению температуры, поступает к блоку сравнения; блок сравнения вычисляет сигнал рассогласования и выдает его на вход регулятора; регулятор по сигналу рассогласования формирует регулирующее воздействие согласно конкретному фиксированному закону управления (алгоритм работы регулятора будет зависеть от его структуры и метода синтеза); регулирующее воздействие поступает на исполнительный элемент, непосредственно влияющий на температуру в помещении (клапан подачи горячей воды в системе отопления, электронагреватель и т.п.); вызванное регулирующим воздействием изменение режима работы исполнительного устройства приводит к изменению температуры в помещении и ее приближению к желаемому значению. Работа такой системы безупречна, если ее взаимодействие с окружающим миром было формально количественно описано на этапе синтеза регулятора и реально никогда не выходит за рамки этого описания. Но реальный мир одними количественными данными описать нельзя - реальный мир описывается количественными, описываемыми математическими терминами, и качественными, описываемыми средствами естественного языка, знаниями. Поэтому работа такой системы на практике в определенных нештатных ситуациях (т.е. ситуациях, не предусмотренных при синтезе регулятора, а предусмотреть все, как известно, невозможно) будет протекать с точки зрения человека нерационально или даже абсурдно. Представим себе, что кто то забыл закрыть наружные двери, а на улице - зима, или на датчик температуры через окно падает солнечный свет, или датчик неисправен, или …(этот список можно продолжать бесконечно).

А теперь представим, что стабильную температуру в помещении пытается поддержать человек, а не вышеописанная САУ. Сидит человек перед термометром, посматривает на него и, в зависимости от его показаний, поворачивает клапан отопительной системы, реостат термонагревателя и т.п. Если термометр выйдет из строя, человек быстро это поймет по своим ощущениям (допустим термометр показывает 20 ° C , а по ощущениям оператора в комнате гораздо жарче). Если кто-то ненадолго открыл дверь и потянуло холодом по термометру, то человек может ничего и не предпринимать, если уверен, что дверь вот-вот закроют. Если дверь забыли закрыть, то вместо того, чтобы включать нагреватель, нужно эту дверь закрыть, иначе энергия будет растрачиваться впустую. Такой список нештатных для САУ ситуаций, в которых человеческое управление предпочтительнее можно продолжать до бесконечности. Почему человек, как «устройство управления», зачастую, оказывается более приемлемым - потому что он обладает не только данными, но и, самое главное, знаниями о данной системе: знает, что термометр может иногда давать ошибочные показания; знает, что, пока возникший интенсивный приток холодного воздуха перекрыть нельзя, то комнату отапливать бесполезно; знает, что кратковременное незначительное охлаждение термометра сквозняком еще не означает охлаждение всей комнаты; знает … знает много чего, а если чего и не знает, то сможет сделать выводы по наблюдаемым данным, и, таким образом, пополнить свои знания. К примеру, если вроде все в порядке, а температура в комнате падает, несмотря на предельные режимы работы отопительных приборов, то человек может предположить, что или прибор нагрева неисправен, или работы этого прибора нагрева недостаточно (снизилась температура в сети отопления, упало напряжение питания электронагревателя, слишком большие потери тепла из-за понизившейся температуры на улице), затем проверить эти гипотезы и предпринять адекватные меры. Следует обратить внимание на то, что в отличие от САУ, человек оперирует не только точной количественной информацией (показаниями термометра), но и качественной информацией: в комнате слишком жарко, а не точной количественной оценкой «температура в комнате 30 ° C »; имеют место ошибочные показания термометра, а не - «погрешность составляет 25%»; кратковременное незначительное охлаждение, а не - «охлаждение в течение трех секунд на 2 ° C »; интенсивный приток холодного воздуха, а не - «поток воздуха с температурой ? 20 ° C и со скоростью 4 м 3 / с » и т.д. Это объясняется тем, что знания об окружающем нас мире далеко не всегда могут быть четко описаны количественными характеристиками. Поэтому для успешного взаимодействия с реальным миром необходимо оперировать не только количественными, но и качественными знаниями, в том числе неопределенными (нечеткими). Например: температура воздуха в комнате 2 ° C (это количественное четкое знание); температура воздуха в комнате значительно выше 2 ° C (это количественное нечеткое знание); температура воздуха в комнате высокая (это качественное нечеткое знание); имеющиеся численные данные соответствуют температуре воздуха именно в комнате, а не на улице, не в коридоре и т.п. (это качественное четкое знание).

В условиях реального мира знания качественного характера обладают не меньшей, а, зачастую, гораздо большей полезностью, чем знания количественные. К примеру, известно, что при нагреве среды в реакторе до 90 ° C выход готового продукта составляет 2 кг / с , при нагреве среды в реакторе до 100 ° C выход готового продукта составляет 5 кг / с , при нагреве среды в реакторе до 110 ° C выход готового продукта составляет 3 кг / с . Безусловно, эти количественные знания ценные, поскольку позволяют выбрать один из трех вариантов режима работы реактора. Но еще ценнее, вытекающее (разумеется, с помощью рассуждений) из приведенных четких количественных знаний нечеткое качественное знание о том, что реактор имеет экстремальную статическую характеристику, следовательно (снова следует нечеткий вывод), можно попытаться достичь наибольшего выхода готового продукта, проведя ряд дополнительных экспериментов или реализовав экстремальную систему регулирования. Более того, большинство проблем человеку приходится решать изначально опираясь только на нечеткие знания. К примеру, известно, что тормозной путь машины зависит от ее скорости, массы, состояния покрышек, дорожного покрытия, погодных условий, состояния водителя. Переходя дорогу, пешеход оценивает ситуацию исключительно в качественных нечетких терминах: машина довольно далеко от пешеходного перехода, едет со средней скоростью, легковая (значит не тяжелая), покрышек не видно (неопределенность полная), дорога не скользкая (хотя зима, но дорога посыпана песком), погода ясная, значит водитель дорогу видит хорошо, если только не усталый и трезвый (это уже знания относительно состояния водителя, и тоже полностью неопределенные). И вот, опираясь на свои исключительно нечеткие знания, пешеход просто переходит дорогу, не зная точно расстояния до машины в метрах, скорость машины в м / с , вес машины в кг , износа покрышек в %, коэффициента трения, видимости в %, скорости реакции водителя и концентрации алкоголя в его крови мг / л . Можно сказать, он рискует своей жизнью, не просчитав все точно на калькуляторе, не подставив данные в формулу, по которой можно точно вычислить тормозной путь автомобиля (хотя такая методика точного расчета существует и бережно хранится в недрах ГИБДД). И, как правило, риск оправдывается - пешеход благополучно переходит дорогу. Такие «чудеса» управления происходят с читателем каждый день. С точки зрения ортодоксального специалиста ТАУ - это настоящее чудо или чистая случайность: система выполнила поставленную задачу, не располагая количественной оценкой ни одного из параметров, характеризующих сложившуюся ситуацию и динамику ее развития. Это легко объясняется тем, что человек в полной мере обладает способностью оперировать всеми видами знаний (количественными и качественными, четкими и нечеткими) благодаря своему естественному языку. Любые знания можно описать средствами естественного языка. Человек мыслит категориями естественного языка, и, как правило, эти категории являются неопределенными и нечеткими.

Таким образом, для того чтобы интеллектуальная САУ обладала близкой к человеческой возможностью работы со знаниями, необходима их формализация и представление в технической системе посредством некоего языка описания знаний, категориями которого система могла бы оперировать так же, как человек словами. Также очевидно, что для достижения большего эффекта интеллектуализации технической системы этот язык должен описывать все возможные виды знаний: количественные и качественные, четкие и нечеткие.

1.1.3 Представление знаний в интеллектуальных системах

Человек одновременно использует самые различные методы представления знаний: языковое описание, графическая информация, математические формулы и т.д. В зависимости от специфики той или иной области деятельности один или несколько видов описания будут превалировать над остальными. Например, в математике формулы и графики будут преобладать над текстовой информацией, в юриспруденции доминирует текстовая информация, в искусствоведении преобладает текстовая и графическая информация. В случае выбора средств представления знаний в технических системах такой универсализм представления знаний невозможен, поскольку потребует аппаратной и программной реализации интеллектуальных функций, недостижимых в настоящее время. Поэтому, существует несколько базовых специализированных машинных языков представления знаний, каждый из которых наиболее предпочтителен для той или иной предметной области.

1) Язык продукционных правил.

Продукционные правила - это правила, имеющие форму: ЕСЛИ «Условие» - ТО «Событие». Продукционные правила описывают знания в виде взаимосвязей типа: «причина» - «следствие», «явление» - «реакция», «признак» - «факт» и.т.п. Конкретизация продукционных правил меняется в зависимости от сущности представляемых знаний.

Например:

· ЕСЛИ «Температура в реакторе превышает 120 ° C » ТО «Снизить подачу топлива на 5%»;

· ЕСЛИ «Вышел из строя вентилятор кондиционера» ТО «Температура в помещении повышается»;

Продукционное представление знаний с человеческой точки зрения является прямым описанием логических выводов при решении конкретных задач. Совокупность знаний о конкретной предметной области в этом случае представляется соответствующим набором продукционных правил, который образует базу знаний. При построении продукционных правил допустимо использование логических операторов И, ИЛИ, например:

· ЕСЛИ «Температура в реакторе превышает 120 ° C » И «Температура хладагента превышает 90 ° C » ТО «Прекратить подачу топлива»;

· ЕСЛИ «Температура в реакторе превышает 90 ° C » ИЛИ «Температура хладагента превышает 60 ° C » ТО «Снизить подачу топлива на 40%».

Недостатком языка продукционных правил можно считать отсутствие явных связей между правилами и целями, к достижению которых необходимо стремится. Таким образом, для активизации одного из продукционных правил необходимо проверка всей продукционной базы знаний, что при больших объемах информации приводит к существенным затратам временных и технических ресурсов интеллектуальной системы. Возможность решения этой проблемы заключается в разработке перспективных продукционных баз знаний, в которых одни продукционные правила могут активировать и дезактивировать другие продукционные правила, влияя на количество перебираемых правил в текущем цикле и, следовательно, на выбор пути достижения цели управления.

Отличительной чертой и основным преимуществом продукционной базы знаний является простота анализа, дополнения, модификации и аннулирования определенных продукционных правил. Помимо этого, представление знаний в таком синтаксически однотипном виде существенно облегчает техническую реализацию системы использования знаний. Вследствие этого в настоящее время продукционные базы знаний получили наибольшее распространение в интеллектуальных технических системах.

2) Язык семантических сетей.

Знаниями можно назвать описания отношений между абстрактными понятиями и сущностями, являющимися конкретными объектами реального мира. Изначально семантические сети разрабатывались как модели долговременной человеческой памяти в психологии, но впоследствии эта модель перекочевала в инженерию знаний. В семантической сети абстрактные понятия и отношения между ними описываются в виде узлов и дуг. Сущности и понятия в такой сети являются узлами, а отношения между ними - дугами. Атрибуты семантических сетей можно разделить на лингвистические (объект, условие, место, инструмент, цель и т.п.), атрибутивные (форма, размер, цвет и т.п.), характеристические (род, время, наклонение и т.п.), логические (да, нет, отрицание, объединение и т.п.).

Рис.1.5. Семантическое представление знаний биолога

Допустим, фрагмент знаний ихтиолога о биологии рыб можно описать следующей семантической сетью (рис.1.5). В качестве другого примера рассмотрим представление знаний, содержащихся в высказывании: «Робот сверлит отверстие в детали с помощью сверла 10» (рис.1.6).

Рис.1.6. Семантическое представление технического знания

Недостаток семантических сетей - дублирование информации при построении сетей и смешение групп знаний, относящихся к различным ситуациям. Например, семантическая сеть, представленная на рис.1.5, имеет дубляж понятия «море», а отношение «температура» может использоваться не только для описания среды обитания животных. Выходом из данной ситуации стала наметившаяся в последнее время тенденция к построению разделенных семантических сетей.

Основным преимуществом семантических сетей является то, что они имитируют понимание и использование человеком естественного языка, что позволяет применять их при техническом моделировании рассуждений, доказательстве теорем, построении незаданных явно причинно-следственных связей и лингвистических конструкций, т.е. семантические сети позволяют реализовать устройства, имитирующие мыслительные акты более высокого уровня по сравнению с продукционными правилами. Представление знаний в виде семантических сетей широко используется в интеллектуальных системах интерпретации естественного языка и автоматического машинного перевода, в диалоговых вопросно-ответных системах естественного человеко-машинного общения, в блоках логической интерпретации систем технического зрения.

3) Язык логики предикатов.

Логика предикатов является разделом математики - математической логикой, имеющей большую историю. Данная область математики традиционно составляла математический фундамент, закладываемый в основу формального описания систем. В качестве примера построения и вывода знаний на языке логики предикатов достаточно привести известный силлогизм Сократа: Все люди - смертны, человек - один из людей, Сократ - человек, следовательно Сократ - смертен.

Основные положения логики предикатов заключаются в следующем. Допустим, имеется некоторое множество объектов, составляющих предметную область, знания о которой необходимо описать. Произвольные элементы этого множества называются предметными переменными x i , а конкретные элементы этого множества, называются предметными константами y i . Выражение P x 1 , x 2 , … , x n , зависящее от предметных переменных и принимающее значение «0»-(ложь) или «1»-(истина), называется логической функцией или предикатом. Выражение P y 1 , y 2 , … , y m , зависящее от предметных констант и принимающее значение «0»-(ложь) или «1»-(истина), называется элементарной формулой. Из элементарных формул с помощью логических связок « ? »-(И), « ? »-(ИЛИ), « ¬ »-(отрицание), « > »-(импликация), « - »-(эквивалентность) строятся предикатные формулы. Помимо логических связок в рассмотрение вводят квантор общности « ? » и квантор существования « ? ». Знания о конкретной предметной области будут описываться предикатами и предикатными формулами. Для организации логического вывода « ? »-(символ выводимости) на языке логики предикатов используются различные правила. Например, правило Moduspones ( A > B , A ? B ) - если из A следует B и если A является логически непротиворечивой предикатной формулой, то B также является логически непротиворечивой предикатной формулой. В качестве примера рассмотрим основной набор базовых действий и производных правил поведения транспортного робота-тележки, записанные на языке исчисления предикатов:

A - «накопитель готовых деталей около станка пуст»;

B -«тележка транспортного робота пуста»;

C -«освободить накопитель готовых деталей около станка»;

D -«перейти к следующему станку»;

E -«отвезти детали на склад, освободить тележку робота»;

F -«вернуться к текущему станку»;

A > D ;

¬ A ? B > C ? D ;

¬ B > E ? F .

Основной недостаток языка логики предикатов при представлении знаний состоит в ограниченной выразимости, поскольку существует множество фактов и взаимосвязей, которые тяжело или даже невозможно выразить средствами математической логики. Например, такое логичное с точки зрения человека умозаключение, как «Человек колет дрова топором, топор - острый, следовательно человеку колоть дрова легко», на языке логики предикатов непредставимо, поскольку содержит так называемый сценарный, а не логический вывод.

Преимущество логики предикатов при представлении знаний заключается в том, что данный способ обладает хорошо развитым и понятным математическим аппаратом. Логика предикатов всесторонне исследована как формальная система. Синтаксис и интерпретация логических функций, элементарных и предикатных формул, правил логического вывода образуют единую стройную теорию математической логики. Это позволяет легко программировать различные операции над знаниями, в том числе логический вывод новых знаний на основе имеющихся знаний. Язык логики предикатов почти так же популярен в технических системах, как и язык продукционных правил, который можно рассматривать как упрощенный язык логики предикатов. Действительно, базовая конструкция языка продукционных правил: ЕСЛИ «причина»/«условие» ТО «следствие»/«действие», по сути является всего лишь одной из логических связок языка логики предикатов - импликацией A > B (из A следует B ). Однако, в отличие от языка логики предикатов, язык продукционных правил обладает одним существенным преимуществом - полной независимостью элементов базы знаний, поскольку отдельные продукционные правила логически не связаны между собой. Это, несмотря на некоторые осложнения при обработке знаний, обусловленные опасностью нарушения их целостности и непротиворечивости, позволяет языку продукционных правил охватить больший круг различных предметных областей за счет возможности описания знаний, опирающихся не на логические, а на традуктивные и сценарные выводы. Поэтому по частоте использования в интеллектуальных системах язык логики предикатов на данный момент все таки немного уступает языку продукционных правил.

4) Язык фреймов.

Фреймовая система представления знаний является моделью описания человеческих знаний в виде связанной совокупности крупных структурных единиц, каждая из которых содержит данные, описывающие определенную ситуацию. Во фреймовой системе единицей представления является объект, называемый фреймом. Фрейм содержит совокупность некоторых понятий и сущностей, с помощью которой можно описать конкретную ситуацию. Фрейм имеет уникальное имя и внутреннюю структуру, состоящую из множества упорядоченных элементов - слотов. Каждый слот имеет уникальное в пределах своего фрейма имя и содержит определенную информацию. Таким образом, каждый фрейм это структура данных, описывающая определенную ситуацию, место, объект и т.п. Структура данных внутри фрейма может иметь различный вид: граф, таблица и т.п., а также может представлять комбинацию различных способов представлений данных. Фреймы могут быть связаны между собой посредством своих слотов и образовывать иерархические структуры. Например, в системе технического зрения, имеющей три пары независимо пространственно ориентированных датчиков, составная арка может быть представлена в виде следующего фрейма (рис.1.7):

Рис.1.7. Фрейм, описывающий различные ракурсы обзора арки.

Описание арки таким фреймом, позволяет распознавать арку и ее ориентацию в системах технического зрения. Допустим, система технического зрения оценивает панораму арки при виде сверху. Результат оценки - «А». Далее система начинает сличать оценку «А» со значениями различных слотов в различных фреймах и составлять список фреймов- кандидатов на идентификацию детали. Результатом отбора будут описывающие различные конструкции фреймы, содержащие слот со значением «А». Системе остается изменить угол зрения, оценить новую панорамную картину и сузить список фреймов, проверяя на соответствие новому значению слоты первоначально отобранных фреймов. К примеру, фрейм - балка выпадет из списка после первой же процедуры отсева, поскольку как балку не крути, результат оценки панорамы всегда будет - «А». Последовательно повторяя этот процесс, можно идентифицировать деталь абсолютно точно (по всем шести ракурсам) или с определенной степенью вероятности (если ракурсов анализа меньше). Машина может идти и по другому пути анализа: не составлять список фреймов-кандидатов, а остановиться на первом попавшемся подходящем фрейме и провести сравнительную оценку всех ракурсов детали с соответствующими слотами фрейма. Если хотя бы один из слотов текущего фрейма противоречит оценке панорамы, то анализу подвергается фрейм-аналог и т.д., пока при движении по цепочке фреймов не будет достигнуто совпадение всех ракурсов, или их наибольшего числа.

Недостатком фреймовой системы является то, что иерархическая сеть знаний с перекрестными ссылками пригодна для решения сравнительно простых проблем, поскольку при расширении проблемной области фреймовая сеть имеет свойство разрастаться до значительных размеров. Проблемы поиска решения в таких сетях становятся трудноразрешимыми, поскольку связи между фреймами в сетях, описывающих объемные знания, как правило, неоднозначны и устанавливаются по нескольким слотам. Кроме того, фреймовые сети менее приспособлены к адаптации, так как внесение новых фреймов и измерение слотов в имеющихся фреймах может повлечь противоречия и зацикливания в ссылках при движении по иерархической структуре фреймовой сети.

Достоинством фреймового языка представления знаний является то, что он предоставляет пользователю большую свободу при описании знаний, так как допускает различные способы описания данных в пределах одного фрейма. Благодаря этому, фреймовые системы можно отнести к самым универсальным системам описания знаний. Однако ограничение сложности решаемых на основе таких систем проблем пока не позволяет фреймовым системам доминировать при разработке интеллектуальных систем.

1.1.4 Методы описания нечетких знаний в интеллектуальных системах

Читатели, вероятно обратили внимание на то, что понятие качественный и нечеткий отнюдь не являются синонимами. Знания могут характеризоваться количественными и качественными показателями, быть четкими, имеющими математическое описание, и нечеткими, представленными лингвистическим конструкциями естественного языка, и эти пары признаков являются независимыми. Знание, оцениваемое качественно, т.е. не описанное цифрами и формулами, отнюдь не всегда является нечетким. Например: «это моя ручка» - четкое качественное знание; «это, похоже, моя ручка» - нечеткое качественное знание. Поэтому все базовые языки представления знаний могут описывать как знания четкие (что и было проиллюстрировано приведенными выше примерами), так и знания нечеткие. Следует обратить внимание еще и на то, что теперь речь идет не о новых базовых языках описания знаний, в данном случае знаний нечетких, а о способах описания нечеткости знаний, которые можно ввести в любом из описанных выше базовых языков. Например, может иметь место язык четких и нечетких продукционных правил, четких и нечетких семантических сетей и т.д. Итак, каким же образом трактуется понятие нечеткость и какие способы описания нечеткости знаний могут быть? К наиболее употребительным методам описания нечётких знаний относятся: методы теории многозначной логики, теории вероятностей, теории ошибок (интервальные модели), теории интервальных средних, теории субъективных вероятностей, теории нечетких множеств, теории нечетких мер и интегралов.

Следует отметить, что тот или иной способ описания нечеткости в разной степени совместим с тем или иным базовым языком представления знаний с точки зрения сложности описания и полноты возможностей получаемой формальной модели. А поскольку представление знаний является средством описания знаний человека, желательно, чтобы описательные возможности выбранного языка в конкретной предметной области были как можно выше. С этой точки зрения решение о форме представления знаний, принимаемое на одном из первых этапов проектирования, в значительной степени влияет на эффективность разрабатываемой интеллектуальной технической системы. Зачастую, возможностей одного даже самого подходящего языка оказывается недостаточно. Поэтому некоторые интеллектуальные системы имеют комплексное представление знаний, основанное на нескольких базовых языках представления знаний. С другой стороны, если форма представления знаний чрезмерно усложняется, то затрудняется техническая реализация такой интеллектуальной системы и возникает опасность потери достоверности выполняемых ею действий. В конечном итоге, выбор метода представления знаний представляет собой некий компромисс между универсальностью системы и возможностью ее технической реализации, с учетом конкретных прикладных задач, составляющих специализацию будущей интеллектуальной технической системы.

Интеллектуальная САУ должна обладать, в определённой степени, такими возможностями человека, как способностью к обучению, адаптации, накоплению и систематизации знаний об объекте управления. Кроме того, изначально при создании интеллектуальной САУ система практически всегда содержит базовый набор знаний, полученных от специалистов в данной предметной области - экспертов и представленных в соответствии с выбранным языком представления знаний и методом описания их нечеткости. Так как знания и опыт человека имеют, в основном, вербальный характер, и едва ли не все рассуждения человека по своей природе являются приближенными, то наиболее перспективными являются интеллектуальные САУ, использующие для представления знаний человека о свойствах и принципах управления объектом лингвистические переменные и аппарат нечетких множеств. Целесообразность и перспективность именно этого подхода к описанию и представлению нечетких знаний в интеллектуальных САУ обоснованна тем, что вышеупомянутый математический аппарат оперирует с лексическими категориями оценок, восприятия и способов рассуждения человека, т.е. с нечеткими лингвистическими категориями, а согласно аксиоматике управления сложными слабоструктурированными объектами всю информацию об объекте управления и способах управления им можно выразить средствами обычного естественного языка. Кроме того, такой подход к представлению нечетких знаний существенно облегчает первоначальное «обучение» создаваемой интеллектуально системы группой экспертов, так как аппарат нечетких множеств, оперирующий лингвистическими переменными, позволяет наиболее точно реализовать машинную интерпретацию знаний экспертов. Это является немаловажным фактором при выборе методов представления нечетких знаний в интеллектуальных САУ, поскольку эксперты - это люди, которые обладают эмпирическими знаниями по управлению сложным объектом и, как и свойственно людям, оперируют лексическими категориями естественного языка при описании сложных объектов и правил управления этими объектами.

Поэтому, несмотря на то, что каждый из упомянутых выше четырёх наиболее общеупотребительных способов описания нечетких знаний заслуживает отдельного подробного описания (чего невозможно сделать в пределах данного учебного пособия), целесообразно рассматривать принципы и методы построения интеллектуальных САУ, основанных на представлении знаний методами теории нечетких множеств. Разумеется, не все проектируемые в настоящее время интеллектуальные САУ базируются на методах теории нечетких множеств при представлении знаний. Однако, как показывает анализ тенденций развития интеллектуальных оперирующих знаниями САУ, большинство интеллектуальных систем автоматизации, использующихся в промышленности при управлении слабоструктурированными объектами, базируются на нечетком представлении знаний методами теории нечетких множеств. Именно эту категорию интеллектуальных регуляторов принято в научно-популярной литературе относить к системам «FuzzyLogic».

1.1.5 Классификация интеллектуальных систем и структурная организация интеллектуальных САУ

Основная функция интеллектуальных САУ, качественно отличающая их от других САУ - это реализация определенных «разумных», человекоподобных рассуждений и действий, направленных на достижение определенной цели в соответствующей предметной области. В большинстве случаев, выполняя какие-то действия, человек сам точно не осознает, как он это делает. Ему неизвестен алгоритм происходящих в его мозге процессов понимания текста, узнавания лица, доказательства теоремы, выработки плана действий, решения задачи и т.д. Таким образом, всякая задача, для которой неизвестен алгоритм решения, относится к области применения систем искусственного интеллекта. При решении этих задач человек действует, не имея точного метода решения проблемы. Данный тип задач обладает двумя характерными особенностями:

· использование информации в символьной форме (слова, знаки, рисунки), что отличает системы искусственного интеллекта от традиционных компьютерных систем, обрабатывающих только числовые данные;

· наличие возможности выбора - отсутствие алгоритма решения означает только то, что необходимо делать выбор между многими вариантами в условиях неопределенности.

По кругу решаемых задач системы искусственного интеллекта можно подразделить на следующие группы:

· системы распознавания образов;

· математические системы и системы автоматического доказательства теорем;

· игровые системы;

· системы решения технических задач, связанных с целенаправленным движением в пространстве и времени;

· системы понимания естественного языка;

Данная классификация была введена на заре становления систем искусственного интеллекта и быстро себя исчерпала, поскольку дальнейшее развитие интеллектуальных систем привело к своеобразному «сращиванию» отдельных задач в одно целое в рамках решаемой системой глобальной технической задачи. К примеру, мобильные робототехнические системы должны решать и задачи распознавания образов, и технические задачи по позиционированию, обходу препятствий и т.д. Экспертные системы должны обладать возможностью понимания естественного языка, обладать способностями математических систем, реализовывать прогностические возможности игровых систем. Таким образом, с развитием интеллектуальных систем росла их сложность и многофункциональность, да это и понятно - в идеале интеллектуальная система должна воспроизводить мыслительную деятельность человека, а человек, как известно, самое многофункциональное интеллектуальное устройство.

Возник закономерный вопрос, как классифицировать, структурно упорядочить и организовать все многообразие интеллектуальных систем, которые были созданы и продолжали конструироваться со все возрастающими темпами (что связано с бурным развитием микроэлектроники в течение последнего десятилетия)? Ни по кругу решаемых задач, ни по конструктивно-техническим признакам, ни по принципам построения (а собственно о каких принципах и методах может идти речь, если сама методология разработки интеллектуальных систем по сию пору находится на этапе становления) классифицировать принципиально новый класс технических систем - интеллектуальные системы, не представлялось возможным.

Принципиально новую структурную организацию интеллектуальных систем, опираясь на теорию искусственного интеллекта, исследования операций и автоматического управления, разработал в 1989 г. Дж. Саридис (один из создателей нового научного направления - теории интеллектуальных машин, представляющей общесистемный подход к решению задач проектирования интегрированных интеллектуальных систем).

Интеллектуальная САУ структурно подразделяется на три обобщенных уровня, упорядоченных в соответствии с фундаментальным принципом IPDI (IncreasingPrecisionwithDecreasingIntelligence) теории интеллектуальных машин: по мере продвижения к высшим уровням иерархической структуры повышается интеллектуальность системы, но снижается ее точность, и наоборот. Под «интеллектуальностью» системы подразумевается ее способность работать с базой событий с целью выявления неких специальных знаний, позволяющих уточнить предложенную задачу и наметить пути ее решения. Под «неточностью» подразумевается неопределенность в выполнении операции по решению задачи. Общий вид архитектуры интеллектуальной САУ, отвечающей этому базовому принципу, приведен на рис.1.8.

Рис.1.8. Иерархическая структура интеллектуальной САУ

Каждому из уровней (которые сами могут быть многоуровневыми) соответствует специальная подсистема, реализующая функции, отвечающие определенным ниже пяти принципам организации интеллектуальных управляющих систем.

1. Наличие взаимодействия управляющих систем с реальным внешним миром с использованием информационных каналов связи. Первый принцип подчеркивает непосредственную связь интеллектуальных управляющих систем с внешним миром. Находясь в непрерывном взаимодействии с внешним миром, интеллектуальные системы получают из него всю необходимую информацию в виде извлеченных знаний. Более того, управляющая система может оказывать на внешний мир целенаправленное активное воздействие. Модель знаний о внешнем мире, используемая интеллектуальной системой, должна предполагать не только уточнение описания внешней среды, которое происходит за счет получения дополнительных знаний о внешнем мире, но и изменение состояния внешней среды вследствие реализации активного поведения интеллектуальной системы. Таким образом, интеллектуальная система может воздействовать на внешнюю среду не только в рамках инициализируемого системой процесса получения знаний, но и исключительно с целью изменения внешнего мира в соответствии с целью функционирования системы. Выполнение принципа взаимодействия системы с внешним миром позволяет организовать каналы связи для извлечения необходимых знаний с целью организации целесообразного поведения.

2. Принципиальная открытость систем с целью повышения интеллектуальности и совершенствования собственного поведения. Открытость систем обеспечивается наличием таких уровней высшего ранга в иерархической структуре, как самонастройка, самоорганизация и самообучение. Система знаний интеллектуальной управляющей системы состоит из двух частей: постоянных (проверенных) знаний, которыми система обладает и постоянно пользуется, и временных (проверяемых) знаний, в которых система не уверена, с которыми она экспериментирует в процессе обучения. В зависимости от результатов анализа своего поведения во внешнем мире система может либо отбрасывать знания второго типа, либо переводить их в знания первого типа. В свою очередь проверенные знания могут быть переведены в разряд проверяемых, если условия функционирования и результаты работы системы во внешнем мире становятся неадекватными определенной области постоянных знаний. Выполнение второго принципа позволяет организовать в интеллектуальной системе процесс приобретения, пополнения и верификации знаний.


Подобные документы

  • Понятие искусственного интеллекта и интеллектуальной системы. Этапы развития интеллектуальных систем. Модели представления знаний, процедурный (алгоритмический) и декларативный способы их формализации. Построение концептуальной модели предметной области.

    презентация [80,5 K], добавлен 29.10.2013

  • Синтаксис логики предикатов. Преобразование унарных предикатов в бинарные. Функции, выполняемые экспертной системой. Правила "если-то" для представления знаний. Разработка оболочки в экспертных системах. Рассуждения, использующие логические формулы.

    курс лекций [538,1 K], добавлен 16.06.2012

  • Понятие базы знаний для управления метаданными. Особенности баз знаний интеллектуальной системы. Языки, используемые для разработки интеллектуальных информационных систем. Классические задачи, решаемые с помощью машинного обучения и сферы их применения.

    реферат [16,9 K], добавлен 07.03.2010

  • Инструментальные средства проектирования интеллектуальных систем. Анализ традиционных языков программирования и представления знаний. Использование интегрированной инструментальной среды G2 для создания интеллектуальных систем реального времени.

    контрольная работа [548,3 K], добавлен 18.05.2019

  • Экспертная система - компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Структура, режимы функционирования, классификация экспертных систем, этапы разработки. Базы знаний интеллектуальных систем.

    реферат [32,2 K], добавлен 04.10.2009

  • Построение баз знаний для семантической сети. Цели создания и язык представления онтологий. Структура исследований в области многоагентных интеллектуальных информационных систем, архитектура агента. Экономическое обоснование разработки базы знаний.

    дипломная работа [1,6 M], добавлен 29.09.2013

  • Разработка методов дихотомической оценки нечетких моделей знаний операторов информационной системы о государственных и муниципальных платежах. Механизмы и принципы управления базами нечетких моделей знаний операторов, методика и этапы их идентификации.

    диссертация [2,0 M], добавлен 30.01.2014

  • Основные виды и технологии интеллектуальных информационных систем. Аспекты представления знаний. Функциональная структура использования ИИС. Интеллектуальная поддержка дистанционного образования и экстерната. Электронные учебники и тесты.

    контрольная работа [93,8 K], добавлен 29.11.2006

  • Разработка и внедрение автоматизированной системы управления дорожным движением. Специфика применения программы интеллектуальных транспортных сетей, использующей принцип нейронных схем, в городе Хабаровске на языке программирования Turbo Pascal 7.0.

    дипломная работа [1,7 M], добавлен 19.06.2012

  • Роль интеллектуальных информационных систем в развитии общества. Проблемы концептуального классификационного моделирования для систем, основанных на знаниях. Иерархическая структура универсума. Интенсиональность и параметричность классификации, структура.

    реферат [15,4 K], добавлен 19.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.