Моделирования работы поликлиники

Метод имитационного моделирования, построение программа на языке GPSS\PS. Укрупненная схема моделирующего алгоритма. Математическая модель и ее описание. Возможные улучшения в работе системы. Результаты моделирования оптимизации работы поликлиники.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 29.06.2011
Размер файла 148,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3

Размещено на http://www.allbest.ru/

Аннотация

В данной курсовой работе рассмотрено моделирование работы поликлиники. Проведено исследование данной системы с помощью метода имитационного моделирования, построена программа на языке GPSS\PS . Рассмотрен вопрос по оптимизации работы поликлиники, качественные и количественные оценки системы, приведены временная диаграмма работы поликлиники, структурная схема модели системы, результаты моделирования изложены в отчетах по программам. В конце приведен список литературы по данному направлению для понимания рассмотренных вопросов.

Содержание

Введение

1. Основная часть

1.1 Структурная схема модели системы и ее описания

1.2 Временная диаграмма и ее описание

1.3 Q-схема системы и ее описание

1.4 Укрупненная схема моделирующего алгоритма

1.5 Детальная схема моделирующего алгоритма и ее описание

1.6 Математическая модель и ее описание

1.7 Описание машинной программы решения задачи

1.8 Результаты моделирования и их анализ

1.9 Описание возможных улучшений в работе системы

1.10 Окончательный вариант модели с результатами

Заключение

Список литературы

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Введение

Условие задачи:

Больные приходят в поликлинику в среднем каждые 5 мин и обращаются в регистратуру за талоном к врачу или за медицинской карточкой. Регистратор обслуживает посетителя в среднем в течение 3 мин. Врачу выделяется на каждого больного в среднем по 12 мин.

Смоделировать работу поликлиники в течение 8 часов. Определить число врачей, обеспечивающее невозрастание очереди и коэффициент загрузки врачей в этом режиме.

Цель моделирования работы поликлиники состоит в оптимизации работы регистратуры и врачей, оптимального подбора количества врачей, обеспечивающего невозрастание очереди. Данная задача является жизненно актуальной, так как правильное моделирование работы поликлиники позволит врачам обслуживать всех людей, нуждающихся в их помощи. Поэтому данная задача является важной и необходимой.

Возможным методом решения задачи является поиск такого количества врачей, при котором будет обеспечено невозрастание очереди и загрузка врачей будет оптимальной для осмотра каждого пришедшего в поликлинику больного.

При построении модели системы использовались теоретические основы, приведенные в учебных пособиях: Советов Б.Я., Яковлев С.А. «Моделирование систем», Советов Б.Я., Яковлев С.А. «Моделирование систем. Практикум». В данной литературе приведены все необходимые данные, примеры, основные принципы моделирования.

Для построения математической модели воспользуемся формулами и примерами расчетов, рассмотренными в учебнике Вентцель Е.С. «Исследование операций».

1. Основная часть

Из условия задачи следует, что работа системы обслуживания больных в поликлинике построена следующим образом. Больной, приходя в поликлинику обслуживается в регистратуре. По исходным данным из условия задачи видно, что при обслуживании больного в регистратуре очереди не возникает, так как больные приходят в среднем каждые пять минут, а обслуживаются в регистратуре в течение 3 минут. Таким образом, проблема возникновения очереди происходит в момент прохождения больным врача. После обслуживания, больной уходит из поликлиники. Нужно смоделировать работу поликлиники в течение 8 часов.

Так как основная цель курсовой работы смоделировать оптимальный процесс, то для начала смоделируем работу поликлиники при работе двух врачей, и по исходным данным можно будет сделать вывод, какое количество врачей нужно для оптимизации работы поликлиники.

1.1 Структурная схема модели системы и ее описание

На основании описания системы построим структурную схему данной модели.

3

Размещено на http://www.allbest.ru/

Рис.1.1. Структурная схема работы поликлиники

Анализ условия задачи и структурной схемы позволяет сказать, что в процессе взаимодействия больных с поликлиникой возможны следующие ситуации:

1. режим нормального обслуживания, когда все больные, которые зарегистрировались в регистратуре, будут обслужены врачом;

2. режим, при котором в очереди останутся больные, не прошедшие осмотр врача.

1.2 Временная диаграмма и ее описание

С помощью временной диаграммы можно более детально представить процесс работы поликлиники (рис.3.1).

На диаграмме:

- ось 1 - момент прихода больных в регистратуру;

- ось 2 - момент обслуживания больных в регистратуре;

- ось 3 - пребывание больных в очереди;

- ось 4 - обслуживание больного у Врача 1;

- ось 5 - обслуживание больного у Врача 2;

Временная диаграмма позволяет выявить все особые состояния системы, которые необходимо учитывать при построении моделирующего алгоритма.

3

Размещено на http://www.allbest.ru/

Рис1.2. Временная диаграмма процесса работы поликлиники

1.3 Q-схема системы и ее описание

Данный этап является переходом от содержательного к формальному описанию объекта исследования. Из анализа содержательного описания следует, что наилучшим способом формального описания является применение непрерывно-стохастческого подхода, с использованием систем массового обслуживания.

По своей сути описанные процессы являются процессами обслуживания потоков партий и комплектов деталей, поэтому для формализации задачи используем аппарат Q-схем [1]. В соответствии с построенной концептуальной моделью структурную схему данной СМО можно представить в виде, показанном на рис. Доэ , где И - источник, Н - накопитель, К - канал.

3

Размещено на http://www.allbest.ru/

Рис.1.3. Структурная схема работы поликлиники в символике Q-схем

При этом источник И имитирует поступление больных в поликлинику. Далее, они поступают в канал К1, имитирующем работу регистратуры. Больные, после обслуживания в канале К1, поступают в накопитель Н1, имитирующего очередь. По мере пребывания в очереди (в накопителе Н1), больные поступают на обслуживание в каналы К2 и К3, имитирующих работу врачей 1-го и 2-го соответственно.

1.4 Укрупненная схема моделирующего алгоритма

Следующим этапом формализации модели является построение моделирующего алгоритма. При разработке алгоритма использован «принцип t» [1].

Обобщенная схема моделирующего алгоритма представлена на рис.4.4.

Рассмотрим работу модели. Первым происходит пуск системы (блок 1) на выполнение или начало эмуляции работы объекта исследования.

Блок 2 осуществляет ввод параметров системы. По условию задания на исследование изменяющимся параметром является время обслуживания больного врачом, и необходимо определить коэффициент загрузки врачей.

Блок 3 выполняет проверку условия: “выполнено ли заданное время моделируемого процесса”. Если да, то управление предается блоку 12 на обработку результатов.

Блок 4. Происходит обслуживание больного в регистратуре.

Блок 5 служит для создания очереди.

Блок 6 выполняет проверку на заполненность очереди к врачу. Если очередь пуста, то больной проходит к врачу. Если же очередь к врачу, то больной ожидает своей очереди в блоке 5.

Блок 7 определяет свободен Врач 1. Если да, то происходит обслуживание больного и он поступает в блок 8, если же Врач 1 занят, то проверяется свободен ли Врач 2. В положительном случае больной обслуживается у Врача 2, если же Врач 2 тоже занят, то больной ожидает своей очереди в блоке 5.

Блок 8 обслуживание больного Врачом 1.

Блок 9 аналогичен блоку 7.

Блок 10 обслуживание больного Врачом 2.

Блок 11 завершает работу процесса моделирования на заданный период времени (8 часов).

Блок 12 обработка результатов. Блок 13 Вывод результатов на печать.

Блок 14 останов работы.

3

Размещено на http://www.allbest.ru/

Рис. 1.4. Укрупненная схема моделирующего алгоритма

1.5 Детальная схема моделирующего алгоритма и ее описание

На данном этапе мы можем с помощью языка GPSS перейти непосредственно к разработке блок-диаграммы, которая, сохраняя в основном структуру модели, использует графические аналоги соответствующих операторов GPSS. Это существенно упрощает этап алгоритмизации модели и ее программирования, так как дальнейшие действия сводятся к формальной перекомпоновке пространственной блок-диаграммы GPSS в линейную форму GPSS-программы.

Блок-диаграмма модели процесса работы поликлиники представлена на рис.1.5, где А, В - очереди накопителей; АВ и ВС - каналы передачи пакетов данных. За единицу системного времени выбираем 1 мс, так как согласно технической документации GPSS/РС при этом обеспечивается наилучшее качество псевдослучайных последовательностей [2].

Рис.1.5. Блок-диаграмма процесса моделирования работы поликлиники.

1.6 Математическая модель и ее описание

Запишем переменные и уравнения модели процесса функционирования работы поликлиники в течение 8 часов:

Т - общее время моделирования;

t1 - время обслуживания больного у Врача 1;

t2 - время обслуживания больного у Врача 2;

N0 - количество больных, прошедших за время моделирования Т;

p1 - количество больных, прошедших Врача 1;

p2 - количество больных, прошедших Врача 2;

Кз1- коэффициент загрузки Врача 1;

Кз2- коэффициент загрузки Врача 2;

N1- число пользователей, получивших отказ.

Уравнения модели:

(1.1)

(1.2)

(1.3)

Основными показателями системы являются коэффициенты загрузки врачей, и вероятность отказа в обслуживании (Ротк). Для оптимизации работы поликлиники необходимо определить вероятность отказа в обслуживании, при котором все поступившие больные должны быть обслужены врачом. Основное соотношение заключается в том, что при определенном количестве врачей вероятность отказа в обслуживании будет наименьшей. Поэтому необходимо увеличивать количество врачей и при этом измерять коэффициент отказа. Для этого на первом этапе смоделирована работа поликлиники с двумя врачами.

1.7 Описание машинной программы решения задачи

Разработав блок-диаграмму модели, перейдем непосредственно к программированию данного процесса. Как уже отмечалось выше, для реализации машинной модели будем использовать язык GPSS/PC. Текст программы приведен в приложении 1, комментарий - в приложении 2.

Опишем используемые блоки.

Прогон модели, т.е. собственно моделирование, выполняется с помощью специальной управляющей программы, которую называют симулятором. Оператор SIMULATE (моделировать) устанавливает предел реального времени, отводимого на прогон модели.

Для создания транзактов, входящих в модель, служит блок GENERATE (генерировать). В данном случае он генерирует поступление больных в регистратуру с интервалом в 5 мин.

В результате входа транзакта в блок SEIZE устройство, указанное в этом блоке, будет занято. Оно останется занятым, пока тот же транзакт не пройдет соответствующий блок RELEASE.

Блок ADVANCE задает среднее время задержки транзакта.

Блок ENTER обеспечивает вхождение транзакта в блок TRANSFER

Блок TRANSFER изменяет направление движения транзакта (на занятии устройства VRACH 1 или VRACH 2).

Блок SEIZE определяет занятие устройства VRACH 1(VRACH 2).

Блок LEAVE освобождает очередь на 1 элемент.

Блок ADVANCE задерживает транзакт на время обслуживания.

Блок RELEASE освобождаетустройство VRACH 1 (VRACH 2).

Блок TERMINATE уничтожает транзакт.

Блок START запускает программу.

1.8 Результаты моделирования и их анализ

Статистика получена при проведении имитационного моделирования с использованием исходной модели, приведенной в приложении 1, и графиком в приложении 3.

START_TIME END_TIME BLOCKS FACILITIES STORAGES FREE_MEMORY

0 480 20 3 1 15696

LINE LOC BLOCK_TYPE ENTRY_COUNT CURRENT_COUNT RETRY

20 1 GENERATE 96 0 0

30 2 SEIZE 96 0 0

40 3 ADVANCE 96 1 0

50 4 RELEASE 95 0 0

60 5 ENTER 95 0 0

70 AGAIN TRANSFER 95 16 0

80 METKA1 SEIZE 39 0 0

90 8 LEAVE 39 0 0

100 9 ADVANCE 39 1 0

110 10 RELEASE 38 0 0

120 11 TRANSFER 38 0 0

130 METKA2 SEIZE 40 0 0

140 13 LEAVE 40 0 0

150 14 ADVANCE 40 1 0

160 15 RELEASE 39 0 0

170 16 TRANSFER 39 0 0

180 VIX TRANSFER 0 0 0

190 WENT TERMINATE 77 0 0

200 19 GENERATE 1 0 0

210 20 TERMINATE 1 0 0

FACILITY ENTRIES UTIL. AVE._TIME AVAILABLE OWNER PEND INTER RETRY DELAY

REGISTRATO 96 0.593 2.97 1 97 0 0 0 0

VRACH1 39 0.970 11.95 1 81 0 0 0 7

VRACH2 40 0.983 11.80 1 72 0 0 0 9

STORAGE CAP. REMAIN. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY

OCHERED 100 84 0 16 95 1 7.73 0.077 0 0

Проанализируем полученную статистику. Из отчета следует: значение системного времени изменялось от 0 до 480.

За это время через устройство REGISTRATO прошло 96 больных. VRACH 1 и VRACH 2 обслужили соответственно 39 и 40 больных. Регистратура загружена на 59,3%, VRACH 1 - 97,0%, VRACH 2 - 98,3%.

Среднее время занятости VRACH 1 - 11,95; VRACH 2 - 11,80.

Максимальное содержимое очереди составило 16.
Согласно формулам (1.1), (1.2) и (1.3) исходным и полученным данным имеем:

имитационный моделирование программа язык

По расчетам видно, что загрузка врачей велика: и , и вероятность отказа .

1.9 Описание возможных улучшений в работе системы

В результате моделирования работы поликлиники при работе двух врачей вероятность отказа на обслуживание равна . Из рассмотренной статистики выполненного процесса моделирования ясно, что поступило 96 больных в регистратуру, а врачами, в общей сумме, было обслужено 79. То есть, на момент окончания времени моделирования не обслуженными оказались 16 больных. Для улучшения работы поликлиники добавим еще одного. Этим постараемся разгрузить работу двух имеющихся врачей, тем самым попробуем уменьшить вероятность отказа на обслуживание, для того, что бы все пришедшие в регистратуру больные были обслужены.

1.10 Окончательный вариант модели с результатами

Рассмотрим статистику, полученную при проведении имитационного моделирования с использованием улучшенной модели работы поликлиники (исходная программа приведена в приложении 2):

START_TIME END_TIME BLOCKS FACILITIES STORAGES FREE_MEMORY

0 480 26 4 1 15648

LINE LOC BLOCK_TYPE ENTRY_COUNT CURRENT_COUNT RETRY

20 1 GENERATE 96 0 0

30 2 SEIZE 96 0 0

40 3 ADVANCE 96 1 0

50 4 RELEASE 95 0 0

60 5 ENTER 95 0 0

70 AGAIN TRANSFER 95 1 0

80 METKA1 SEIZE 30 0 0

90 8 LEAVE 30 0 0

100 9 ADVANCE 30 1 0

110 10 RELEASE 29 0 0

120 11 TRANSFER 29 0 0

125 METKA2 TRANSFER 64 0 0

130 METKA3 SEIZE 29 0 0

140 14 LEAVE 29 0 0

150 15 ADVANCE 29 1 0

160 16 RELEASE 28 0 0

170 17 TRANSFER 28 0 0

200 18 GENERATE 1 0 0

210 19 TERMINATE 1 0 0

230 METKA4 SEIZE 35 0 0

240 21 LEAVE 35 0 0

250 22 ADVANCE 35 1 0

260 23 RELEASE 34 0 0

270 24 TRANSFER 34 0 0

280 VIX TRANSFER 0 0 0

290 WENT TERMINATE 91 0 0

FACILITY ENTRIES UTIL. AVE._TIME AVAILABLE OWNER PEND INTER RETRY DELAY

REGISTRATO 96 0.593 2.97 1 97 0 0 0 0

VRACH1 30 0.737 11.90 1 92 0 0 0 1

VRACH2 29 0.714 11.93 1 95 0 0 0 0

VRACH3 35 0.860 11.89 1 94 0 0 0 0

STORAGE CAP. REMAIN. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY

OCHERED 10 9 0 4 95 1 1.50 0.150 0 0

Проанализируем полученную статистику. Из отчета следует: значение системного времени изменялось от 0 до 480.

За это время через устройство REGISTRATO прошло 96 больных. VRACH 1, VRACH 2 и VRACH 3 обслужили соответственно 30, 29 и 35 больных. Регистратура загружена на 59,3%, VRACH 1 - 73,90%, VRACH 2 - 71,16%, VRACH 3 - 86,1%. Для более наглядного представления можно рассмотреть график, приведенный в приложении 4.

Среднее время занятости VRACH 1 - 11,90; VRACH 2 - 11,93; VRACH 3 - 11,89.

Максимальное содержимое очереди составило 4 транзакта.
Согласно формулам (1.1), (1.2) и (1.3) исходным и полученным данным по улучшенной модели работы поликлиники имеем:

По данным расчета следует, что все приняты в регистратуре больные были обслужены, . То есть при данном количестве врачей (3) вероятность отказа практически равна 0, а также загрузка врачей не высокая.

Заключение

В результате поиска оптимального решения для моделирования работы поликлиники, было рассмотрено два вида решения. По математическим расчетам определено, что наиболее оптимальным вариантом для работы поликлиники является совместная работа трех врачей. При этом вероятность отказа больному практически равна 0, загрузка врачей оптимальна. То есть с качественной точки зрения загрузка каждого врача оптимальна и в результате все больные пришедшие в регистратуру, обслуживаются одним из врачей.

При моделировании процесса работы поликлиники, затраты требуемого объема памяти ЭВМ при моделировании с двумя врачами составила 15696 байт, а при количестве трех врачей составила 15648 байт, что говорит о наименьших затратах машинного времени.

Данное решение оптимально и актуально только для заданного интервала времени и определенных условий, при воздействии внешней среды изменятся воздействующие параметры, которые скажутся на моделировании процесса работы поликлиники, поэтому для других параметров следует разрабатывать процесс моделирования более тщательно, с учетом большего количества параметром.

Список литературы

Советов Б.Я., Яковлев С. А. Моделирование систем. - М.: Высш. шк.,1995.

Советов Б.Я., Яковлев С.А. Моделирование систем. Практикум. - М.: Высш. шк.,1999.

Вентцель Е.С. Исследование операций. - М.: Радио и связь,1972.

Приложение 1

Листинг программы

10 SIMULATE

15 OCHERED STORAGE 100

20 GENERATE 5

30 SEIZE REGISTRATOR

40 ADVANCE 3

50 RELEASE REGISTRATOR

60 ENTER OCHERED

70 AGAIN TRANSFER 0.5,METKA2,METKA1,VIX

80 METKA1 SEIZE VRACH1

90 LEAVE OCHERED

100 ADVANCE 12

110 RELEASE VRACH1

120 TRANSFER ,WENT

130 METKA2 SEIZE VRACH2

140 LEAVE OCHERED

150 ADVANCE 12

160 RELEASE VRACH2

170 TRANSFER ,WENT

180 VIX TRANSFER ,AGAIN

190 WENT TERMINATE

200 GENERATE 480

210 TERMINATE 1

220 START 1

Приложение 2

Листинг улучшенной программы

10 SIMULATE

15 OCHERED STORAGE 10

20 GENERATE 5

30 SEIZE REGISTRATOR

40 ADVANCE 3

50 RELEASE REGISTRATOR

60 ENTER OCHERED

70 AGAIN TRANSFER 0.33,METKA2,METKA1,VIX

80 METKA1 SEIZE VRACH1

90 LEAVE OCHERED

100 ADVANCE 12

110 RELEASE VRACH1

120 TRANSFER ,WENT

125 METKA2 TRANSFER .5,METKA3,METKA4,VIX

130 METKA3 SEIZE VRACH2

140 LEAVE OCHERED

150 ADVANCE 12

160 RELEASE VRACH2

170 TRANSFER ,WENT

230 METKA4 SEIZE VRACH3

240 LEAVE OCHERED

250 ADVANCE 12

260 RELEASE VRACH3

270 TRANSFER ,WENT

280 VIX TRANSFER ,AGAIN

290 WENT TERMINATE

200 GENERATE 480

210 TERMINATE 1

220 START 1

Приложение 3

График загрузки врачей

Приложение 4

График загрузки врачей (оптимизированная модель)

Размещено на Allbest.ru


Подобные документы

  • Структурная схема модели системы, временная диаграмма, блок-схема моделирующего алгоритма, математическая модель, описание машинной программы решения задачи, результаты моделирования. Сравнение имитационного моделирования и аналитического расчета.

    курсовая работа [209,7 K], добавлен 28.06.2011

  • Концептуальная модель процесса обслуживания покупателей в магазине. Описание системы моделирования GPSS. Разработка моделирующей программы на специализированном языке имитационного моделирования в среде AnyLogic. Результаты вычислительных экспериментов.

    курсовая работа [906,9 K], добавлен 12.07.2012

  • Программные средства системного моделирования. Разработка программы процесса работы кладовой на фабрике с использованием языка имитационного моделирования GPSS. Сравнение результатов моделирующего алгоритма и аналитического расчета характеристик.

    дипломная работа [757,1 K], добавлен 21.06.2011

  • Описание моделируемой системы. Структурная схема модели системы. Q-схема системы и её описание. Математическая модель и укрупнённая схема моделирующего алгоритма. Сравнение результатов имитационного моделирования и аналитического расчета характеристик.

    курсовая работа [46,7 K], добавлен 02.07.2011

  • Моделирование работы вычислительной системы из двух процессоров и общей оперативной памяти. Структурная схема модели системы. Укрупненная схема моделирующего алгоритма. Результаты моделирования и их анализ. Машинная программа объекта исследования.

    курсовая работа [1,0 M], добавлен 21.06.2011

  • Моделирование системы массового обслуживания (СМО) для транспортного цеха с использованием языка GPSS Wоrld. Детальная схема и блок-схема моделирующего алгоритма и их описание. Математическая модель и ее описание. Анализ результатов моделирования.

    реферат [330,6 K], добавлен 28.06.2011

  • Процесс моделирования работы САПР: описание моделирующей системы, разработка структурной схемы и Q-схемы, построение временной диаграммы, построение укрупненного моделирующего алгоритма. Описание математической модели, машинной программы решения задачи.

    курсовая работа [291,6 K], добавлен 03.07.2011

  • Автоматизация технологических процессов. Написание имитационных моделей систем с дискретными событиями. Модели систем массового обслуживания в общецелевой системе GPSS. Логическая схема алгоритмов и схема программы. Математическая модель и ее описание.

    курсовая работа [1,4 M], добавлен 29.06.2011

  • Применение метода имитационного моделирования с использованием генератора случайных чисел для расчета статистически достоверных переменных. Создание программы на языке GPSS. Результаты моделирования диспетчерского пункта по управлению транспортом.

    курсовая работа [399,9 K], добавлен 28.02.2013

  • Описание моделируемой системы, структурная схема, описание временной диаграммы и Q-схема системы. Описание машинной программы решения задачи. Сравнение результатов имитационного моделирования и аналитического расчета характеристик, возможные улучшения.

    курсовая работа [260,0 K], добавлен 28.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.