Генератор случайных чисел
Способы получения случайных чисел в программировании и их использование для решения ряда задач. Принцип действия и тестирование работы генератора случайных чисел в Borland C++, его преимущества. Генерация одномерной и двумерной случайной величины.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 06.07.2009 |
Размер файла | 105,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
6
2
Кафедра: Автоматика и Вычислительная Техника
Генератор случайных чисел
Содержание
- 1. Способы получения случайных чисел 3
- 2. Характеристики ГСЧ 5
- 3. Применение ГСЧ 6
- 4. Генерирование равномерно распределенных случайных чисел 9
- 5. Генерирование чисел с произвольным распределением 12
- 6. Тестирование ГСЧ 17
- 7. Генератор случайных чисел в Borland C++ 21
- 8. Практические задания 23
- 8.1 Случайные числа в заданном диапазоне 23
- 8.2 Двумерные случайные величины 23
- 8.3 Генерация одномерной случайной величины 23
- 8.4 Оценить вероятность. 23
- 8.5. Медианы треугольника. 24
- 9. Лабораторные задания 25
- 9.1 ГСЧ фон Неймана 25
- 9.2 Случайная матрица 25
- 9.3 Площадь фигуры 26
- 9.4 Случайная величина с заданными свойствами 26
- 10. Дополнительные задания 27
- 10.1 Многомерные случайные величины 27
- 10.2 Быки и коровы 27
- Библиографический список 28
1. Способы получения случайных чисел
В программировании достаточно часто находят применение последовательности чисел, выбранных случайным образом из некоторого множества. В качестве примеров задач, в которых используются случайные числа, можно привести следующие:
- тестирование алгоритмов;
- имитационное моделирование;
- некоторые задачи численного анализа;
- имитация пользовательского ввода.
Для получения случайных чисел можно использовать различные способы. В общем случае все методы генерирования случайных чисел можно разделить на аппаратные и программные. Устройства или алгоритмы получения случайных чисел называют генераторами случайных чисел (ГСЧ) или датчиками случайных чисел.
Аппаратные ГСЧ представляют собой устройства, преобразующие в цифровую форму какой-либо параметр окружающей среды или физического процесса. Параметр и процесс выбираются таким образом, чтобы обеспечить хорошую «случайность» значений при считывании. Очень часто используются паразитные процессы в электронике (токи утечки, туннельный пробой диодов, цифровой шум видеокамеры, шумы на микрофонном входе звуковой карты и т.п.). Формируемая таким образом последовательность чисел, как правило, носит абсолютно случайный характер и не может быть воспроизведена заново по желанию пользователя.
К программным ГСЧ относятся различные алгоритмы генерирования последовательности чисел, которая по своим характеристикам напоминает случайную. Для формирования очередного числа последовательности используются различные алгебраические преобразования. Одним из первых программных ГСЧ является метод средин квадратов, предложенный в 1946 г. Дж. фон Нейманом. Этот ГСЧ формирует следующий элемент последовательности на основе предыдущего путем возведения его в квадрат и выделения средних цифр полученного числа. Например, мы хотим получить 10-значное число и предыдущее число равнялось 5772156649. Возводим его в квадрат и получаем 33317792380594909201; значит, следующим числом будет 7923805949. Очевидным недостатком этого метода является зацикливание в случае, если очередное число будет равно нулю. Кроме того, существуют и другие сравнительно короткие циклы.
Любые программные ГСЧ, не использующие внешних «источников энтропии» и формирующие очередное число только алгебраическими преобразованиями, не дают чисто случайных чисел. Последовательность на выходе такого ГСЧ выглядит как случайная, но на самом деле подчиняется некоторому закону и, как правило, рано или поздно зацикливается. Такие числа называются псевдослучайными.
В дальнейшем мы будем рассматривать лишь программные генераторы псевдослучайных чисел.
2. Характеристики ГСЧ
Последовательности случайных чисел, формируемых тем или иным ГСЧ, должны удовлетворять ряду требований. Во-первых, числа должны выбираться из определенного множества (чаще всего это действительные числа в интервале от 0 до 1 либо целые от 0 до N). Во-вторых, последовательность должна подчиняться определенному распределению на заданном множестве (чаще всего распределение равномерное). Необязательным является требование воспроизводимости последовательности. Если ГСЧ позволяет воспроизвести заново однажды сформированную последовательность, отладка программ с использованием такого ГСЧ значительно упрощается. Кроме того, требование воспроизводимости часто выдвигается при использовании ГСЧ в криптографии.
Поскольку псевдослучайные числа не являются действительно случайными, качество ГСЧ очень часто оценивается по «случайности» получаемых чисел. В эту оценку могут входить различные показатели, например, длина цикла (количество итераций, после которого ГСЧ зацикливается), взаимозависимости между соседними числами (могут выявляться с помощью различных методов теории вероятностей и математической статистики) и т.п. Подробнее оценка качества ГСЧ рассмотрена ниже.
3. Применение ГСЧ
Одна из задач, в которых применяются ГСЧ, - это грубая оценка объемов сложных областей в евклидовом пространстве более чем четырех или пяти измерений. Разумеется, сюда входит и приближенное вычисление интегралов. Обозначим область через R; обычно она определяется рядом неравенств. Предположим, что R - подмножество n_мерного единичного куба K. Вычисление объема множества R методом Монте-Карло сводится к тому, чтобы случайным образом выбрать в K большое число N точек, которые с одинаковой вероятностью могут оказаться в любой части K. Затем подсчитывают число M точек, попавших в R, т.е. удовлетворяющих неравенствам, определяющим R. Тогда M/N есть оценка объема R. Можно показать, что точность такой оценки будет довольно низкой. Тем не менее, выборка из 10 000 точек обеспечит точность около 1%, если только объем не слишком близок к 0 или 1. Такой точности часто бывает достаточно, и добиться лучшего другими методами может оказаться очень трудно.
В качестве примера можно рассмотреть вычисление площади фигуры, заданной некоторой системой неравенств. Пусть фигура будет определена следующим образом:
.
Сначала необходимо определить прямоугольную область, из которой будут выбираться случайные точки. Это может быть любая область, полностью содержащая фигуру, площадь которой требуется найти. Возьмем в качестве исходной области прямоугольник с координатами углов (0; -1) - (1; 1). Будем последовательно генерировать точки, равномерно распределенные внутри этого прямоугольника, и для каждой точки проверять неравенства, описывающие фигуру. Если точка удовлетворяет всем неравенствам, значит, она принадлежит фигуре. При достаточно большом числе таких экспериментов отношение числа точек NF, удовлетворяющих неравенствам, к общему числу сгенерированных точек NR показывает долю площади прямоугольника, которую занимает фигура. Площадь прямоугольника SR известна (в нашем случае она равна 2), площадь фигуры SF вычисляется тривиально:
.
Очевидно, что для такой простой области можно легко посчитать область через определенный интеграл. Тем не менее, описанный метод применим и в случае гораздо более сложных фигур, когда рассчитать площадь другим способом становится слишком сложно.
Другим примером приближенного взятия определенного интеграла с помощью ГСЧ является вычисление объема шара в n_мерном пространстве. Объем n_мерного шара выражается формулой:
,
где ?(z) - некоторая гамма-функция, определяемая следующим соотношением:
? (z+1)=z·?(z),
?(1)=1.
Таким образом, для натуральных z гамма-функция равна факториалу z. Для вычисления знаменателя можно воспользоваться известным значением
:
.
Можно показать, что для шара единичного радиуса при увеличении размерности n объем стремится к нулю. Наиболее просто это можно объяснить тем, что числитель растет со скоростью степенной функции, а знаменатель - с факториальной. Таким образом, для больших n метод вычисления через случайные числа будет давать значительные погрешности.
4. Генерирование равномерно распределенных случайных чисел
Почти повсеместно используемый метод генерирования псевдослучайных целых чисел состоит в выборе некоторой функции f, отображающей множество целых чисел в себя. Выбирается какое-нибудь начальное число х0, а каждое следующее число порождается с помощью рекуррентного соотношения:
xk+1 = f(xk)
Число xk часто называется зерном (англ. seed) ГСЧ и полностью определяет текущее состояние ГСЧ и следующее генерируемое значение.
Поначалу функции f выбирались как можно более сложные и трудно понимаемые. Например, f(x) определялась как целое число, двоичное представление которого составляет средний 31 разряд 62_разрядного квадрата числа x (модификация метода средин квадратов). Но отсутствие теории относительно f приводило к катастрофическим последствиям. Для метода средин квадратов это уже упоминавшееся зацикливание при обращении очередного числа в нуль. Поэтому уже довольно давно перешли к использованию функций, свойства которых вполне известны. Всякая последовательность целых чисел из интервала (0, 231-1) должна содержать повторения самое большое после 231?109 элементов. Используя теорию чисел, можно выбрать такую функцию f, для которой наперед будет известно, что ее период максимально возможный или близкий к максимальному. Этим избегается преждевременное окончание или зацикливание последовательности. Дальнейшее использование теории чисел может более или менее предсказать характер последовательности, давая пользователю некоторую степень уверенности в том, что она будет достаточно хорошо моделировать случайную последовательность чисел.
Представим генерирование чисел в диапазоне [0; 1] рекуррентым методом графически (см. рис. 1). Очевидно, функция f(x) должна быть определена на всем отрезке [0; 1] и иметь на этом отрезке непрерывную область значений [0; 1], в противном случае генерируемые числа будут составлять лишь несобственное подмножество указанного отрезка.
а) б)
Рис. 1. Графическое представление рекуррентного ГСЧ:
а) с «плохой» функцией f(x); б) с «хорошей» функцией f(x).
Считается, что функция f(x) тем лучше подходит для генерирования случайных чисел, чем более плотно и равномерно ее график заполняет область x[0; 1], y[0; 1]. Например, функция, приведенная на рис. 1, а, будет давать последовательность чисел с сильной корреляционной зависимостью соседних элементов. В случае функции, приведенная на рис. 1, б, эта зависимость будет значительно слабее.
В настоящее время широкое распространение получили линейные конгруэнтные ГСЧ. В таком ГСЧ каждое следующее число получается на основе единственного предыдущего, при этом используется функция f вида:
f(х) = (ах+с) mod m,
где для n_разрядных двоичных целых чисел m обычно равно 2n.
Конгруэнтный ГСЧ выдает псевдослучайные целые числа в интервале (0, m). Параметры x0, a и c - целые числа из той же области, выбираемые исходя из следующих соображений:
x0 может быть произвольно. Для проверки программы возможно x0=1. В дальнейшем в качестве x0 можно брать текущее время, преобразованное в число из интервала (0, m). Такой подход обеспечивает различные последовательности для различных запусков программы.
Выбор a должен удовлетворять трем требованиям (для двоичных машин):
a mod 8 = 5;
;
двоичные знаки а не должны иметь очевидного шаблона.
В качестве c следует выбирать нечетное число, такое, что
.
Более подробные рекомендации по выбору параметров можно найти у Д. Кнута [5].
При использовании конгруэнтного ГСЧ следует помнить, что наименее значимые двоичные цифры xk будут «не очень случайными». Поэтому, если, например, вы хотите использовать число xk для случайного выбора одной из 16 возможных ветвей, берите наиболее значимые разряды xk, а не наименее значимые. Наконец, для большей надежности полезно предварительно испытать случайные числа на какой-либо задаче с известным ответом, схожей с реальным приложением.
5. Генерирование чисел с произвольным распределением
Достаточно часто возникает необходимость сгенерировать последовательность случайных чисел yi, равномерно распределенных на данном конечном интервале [a, b], с помощью ГСЧ, выдающего числа xi на интервале [0, m]. Приведение диапазона ГСЧ к нужному интервалу в этом случае осуществляется простым линейным преобразованием:
.
Распределение чисел после такого преобразования остается равномерным.
Более сложным случаем является генерирование случайных точек из некоторого множества в n_мерном пространстве Rn, например, точек из некоторой области на плоскости. Рассмотрим формирование случайных точек для нескольких простых областей: прямоугольника, окружности и круга.
а) б) в)
Рис. 2. Области, из которых выбираются точки
Для получения равномерно распределенных случайных чисел из прямоугольника, стороны которого параллельны осям координат (см. рис.2, а), достаточно извлекать из ГСЧ последовательно пары чисел, приводить их к нужным интервалам и использовать как координаты точки:
,
где uj - равномерно распределенное случайное число из отрезка [0, m].
Окружность можно представить одномерным множеством точек с угловой координатой ?, принимающей значения на интервале (0, 2?). Таким образом, декартовы координаты очередной точки можно вычислить следующим образом:
.
где uj - равномерно распределенное случайное число из интервала (0, m); r - радиус окружности.
В случае круга первое, что приходит в голову - воспользоваться полярной системой координат (?, ?), в которой данное множество фактически представляет собой прямоугольник (а для него способ генерации чисел известен). Однако при переходе от полярных координат к декартовым нарушается распределение случайных чисел: оно становится неравномерным; плотность распределения в центре круга выше, чем по краям.
Существует несколько способов получения равномерного распределения по кругу. Рассмотрим один из них. Будем генерировать случайные пары (x, y) и для каждой из них ставить внутри круга соответствующую точку, заполняя таким образом эту область. Исходя из представлений о равномерном распределении можно предположить, что при достаточно большой длине сгенерированной последовательности на единицу площади круга будет приходиться примерно одно и то же количество точек вне зависимости от их расположения (другими словами, при равномерном распределении плотность точек по кругу будет одинакова).
Воспользуемся полярной системой координат для генерирования точек. При этом будем выбирать угол ? равномерно распределенным на интервале (0; 2?), а распределение ? построим следующим образом:
,
где x - равномерно распределенная на отрезке [0; 1] случайная величина. Можно показать, что при таком способе формирования координат случайные точки будут равномерно распределены по всей площади круга.
Помимо выбора из произвольного множества, часто требуется формировать числа с распределением, отличным от равномерного. Распределение обычно задается функцией плотности распределения f(x) либо функцией распределения F(x). Функция распределения в произвольной точке x показывает вероятность того, что случайная величина X окажется меньше данного значения x:
F(x)=P (X<x).
Функция плотности распределения представляет собой производную F(x):
.
Функция F(x) для любой случайной величины является неубывающей на всем интервале (-?; +?), стремится к 0 при x> -? и к 1 при x> +?. Для получения случайных чисел с заданным распределением F(x) необходимо найти функцию, обратную к F(x), т.е. такую функцию G, что для всех y=F(x) выполняется G(y)=x. Это можно пояснить следующим образом. Предположим, что мы многократно выбираем число y, равномерно распределенное на интервале [0; 1]; каждому y мы ставим в соответствие некоторое x=G(y). Выбору 50000 игреков соответствует выбор 50000 иксов. Таким образом, доля выбранных y, лежащих между двумя фиксированными значениями, скажем y1 и y2, в точности равна доле x, лежащих в интервале [x1; x2]. Но вероятность первого из названных событий равна | y2 - y1 |, если y распределено равномерно; следовательно, верна цепочка равенств:
доля чисел в интервале [x1; x2] = доля чисел в интервале [y1; y2] = y2 - y1 = F(x2) - F(x1) = ,
которая и показывает, что в случае равномерного распределения игреков x имеет распределение с плотностью f(?). Сложной проблемой в этом подходе является достаточно быстрое и точное формирование обратной функции распределения G(y).
Рассмотрим в качестве примера получение случайного числа с экспоненциальным распределением. Это распределение характеризуется одним параметром ?>0 и имеет следующие функции распределения и плотности распределения:
, x?0;
.
Для этого распределения легко получить F-1 (y), т.е. разрешить уравнение F(x)=y. Решение имеет вид
.
Для получения x с искомым распределением нужно сгенерировать y, равномерно распределенное на (0,1), и применить эту формулу. Если говорить о практической стороне дела, то существуют более эффективные способы, в которых не используется медленная операция вычисления логарифма для каждого случайного числа. Данный способ продемонстрирован лишь как пример более общего подхода с использованием обратной функции распределения.
6. Тестирование ГСЧ
Качество ГСЧ в значительной мере влияет на результаты работы программ, использующих случайные числа. Поэтому все применяемые генераторы случайных чисел должны пройти перед моделированием системы предварительное тестирование, которое представляет собой комплекс проверок по различным стохастическим критериям, включая в качестве основных тесты на равномерность, стохастичность и независимость (рассматриваются только ГСЧ с равномерным распределением).
Проверка равномерности последовательностей псевдослучайных равномерно распределенных чисел {xi} может быть выполнена по гистограмме с присваиванием косвенных признаков. Суть проверки по гистограмме сводится к следующему. Выдвигается гипотеза о равномерности распределения чисел (0, 1). Затем интервал (0, 1) разбивается на m равных частей, тогда при генерации последовательности {xi} каждое из чисел xi c вероятностью , , попадет в один из подынтервалов. Всего в каждый j_й подынтервал попадает Ni чисел последовательности {xi}, , причём . Относительная частота попадания случайных чисел из последовательности {xi} в каждый из подынтервалов будет равна Nj/N. Очевидно, что если числа xi принадлежат псевдослучайной квазиравномерно распределенной последовательности, то при достаточно больших N экспериментальная гистограмма (ломаная линия на рис.3, а) приближается к теоретической прямой 1/m. Оценка степени приближения, т.е. равномерности последовательности {xi}, может быть проведена с использованием критериев согласия.
Рис. 3. Проверка равномерности последовательности
Существуют и другие способы проверки равномерности распределения.
Проверка стохастичности последовательности псевдослучайных чисел {xi} наиболее часто проводится методами комбинаций и серий. Сущность метода сводится к определению закона распределения длин участков между единицами (нулями) или закона распределения (появления) числа единиц (нулей) в n-разрядном двоичном числе Xi.
Теоретически закон появления j единиц в l разрядах двоичного числа Xi описывается, исходя из независимости отдельных разрядов, биномиальным законом распределения:
,
где P (j, l) - вероятность появления j единиц в l разрядах числа Xi;
p(1) = p(0) = 0,5 - вероятность появления единицы и нуля в любом разряде числа Xi;
.
Тогда при фиксированной точке выборки N теоретически ожидаемое число появления случайных чисел Xi с j единицами в проверяемых l разрядах будет равно .
После нахождения теоретических и экспериментальных вероятностей P (j, l) или чисел nj при различных значениях l n гипотеза о стохастичности проверяется с использованием критериев согласия, которые подробно рассматриваются в курсе математической статистики.
При анализе стохастичности последовательности чисел {xi} методом серий последовательность разбивается на элементы первого и второго рода (a и b), т.е.
где 0 < p < 1.
Серией называется отрезок последовательности {xi}, состоящий из идущих друг за другом элементов одного и того же рода. Число элементов в отрезке (a или b) называется длиной серии.
После разбиения последовательности {xi} на серии первого и второго рода будем иметь, например, серию вида
…..aabbbbaaabbbaabbab….
Так как случайные числа a и b в данной последовательности независимы и принадлежат последовательности {xi}, равномерно распределённой на интервале (0, 1), то теоретическая вероятность появления серии длиной j в N опытах (под опытом здесь понимается генерация числа xi и проверка условия xi < p) определится формулой Бернулли:
, , .
В случае экспериментальной проверки оцениваются частоты появления серий длиной j. В результате получаются экспериментальная и теоретическая зависимости P (j, l), сходимость которых проверяется по известным критериям, причем проверку целесообразно проводить при разных значениях l и р, 0 < р < 1.
7. Генератор случайных чисел в Borland C++
В языке C, как и во многих других языках высокого уровня, существует встроенная поддержка генератора случайных чисел. Для формирования чисел используется программный ГСЧ, существующий в программе в единственном экземпляре. Таким образом, с его помощью нельзя параллельно генерировать несколько независимых случайных последовательностей без специальных ухищрений. Тем не менее, одного ГСЧ достаточно для большинства прикладных задач.
В Borland C++ (как и во многих других реализациях C/C++) используется линейный конгруэнтный ГСЧ. Длина периода этого ГСЧ составляет 232 числа.
Для работы с ГСЧ в языке C предусмотрены следующие функции:
1) int rand()
Возвращает случайное целое число в диапазоне от 0 до RAND_MAX, где RAND_MAX - некоторая константа, зависящая от конкретной реализации ГСЧ. В Borland C++ значение RAND_MAX=32767.
2) int random (int max)
Возвращает случайное целое число в диапазоне от 0 до max_1.
3) void srand (unsigned seed)
Устанавливает новое зерно ГСЧ. Обычно используется для установки известного начального значения x0 при отладке программы.
4) void randomize()
Устанавливает начальное значение, полученное из текущего системного времени путем путем преобразования его в целое число. Обычно используется для сброса ГСЧ в начале программы с целью предотвращения генерирования одних и тех же последовательностей. Не рекомендуется использовать в процессе отладки, т. к. последовательность, выбранную вызовом randomize(), сложно воспроизвести. Кроме того, не рекомендуется вызывать слишком часто или через фиксированные промежутки времени, т. к. это снизит качество («случайность») генерируемых последовательностей.
8. Практические задания
8.1 Случайные числа в заданном диапазоне
Выдайте на экран 10 случайных равномерно распределенных чисел в диапазоне:
От 3 до 12, целые.
Из множества {-3, 0, 6, 9, 12, 15}.
От 3 до 12, вещественные.
От -2,3 до 10,7 с шагом 0,1.
Из множества {-30; 10; 63; 59; 120; 175}.
Из множества {1; 0,1; 0,01; …; 10-15}.
8.2 Двумерные случайные величины
Написать функцию генерации случайной точки в двумерном круге с параметрами r, x0, y0.
8.3 Генерация одномерной случайной величины
Постройте случайную последовательность плотностью распределения которой принимает значение 1/4 на отрезке [0; 2] и 1/2 на отрезке [4; 5].
8.4 Оценить вероятность
В урне 5 белых, 10 черных и 15 красных шаров. Вынимают три шара. Оцените программным способом вероятность того, что все шары разного цвета.
8.5 Медианы треугольника
Известно, что две медианы в треугольнике пересекаются в точке, которая делит их в отношении 2:1. Используя ГСЧ и векторную алгебру, докажите этот факт.
9. Лабораторные задания
9.1 ГСЧ фон Неймана
Реализуйте программно метод средин квадратов для двоичных 8-разрядных чисел. Покажите, что ГСЧ зацикливается после прихода в ноль.
Замечания:
Квадрат числа будет занимать 16 бит, что может вызвать переполнение знакового типа int. Рекомендуется использовать типы unsigned int или long для промежуточных вычислений.
Для выделения средней части следует использовать операции сдвига и преобразования типа (либо побитового «И»).
9.2 Случайная матрица
Заполните динамическую матрицу 40?50 целыми случайными числами от -3 до 2. Найдите среднее арифметическое всех элементов этой матрицы. Зная точное значение данной величины (), вычислите ее относительную погрешность (в процентах) по формуле:
100% * (ТочноеЗначение - ПриблЗначение) / ДлинаДиапазона
Замечания:
Количество целых чисел в диапазоне от -3 до 2 равно 2 - (-3) + 1 = 6.
Чтобы напечатать символ %, используйте в функции printf спецификатор «%%».
9.3 Площадь фигуры
С помощью встроенного ГСЧ вычислите площадь фигуры, ограниченной линиями:
2 ? x ? 5,
4 ? y ? 25,
y ? x2.
Вычислите относительную погрешность (в процентах) в двух случаях, когда количество случайных точек равно 1000 и 10000.
Замечания: точное значение площади в данном примере равно
125/3 - 8/3 - 12
9.4 Случайная величина с заданными свойствами
Напишите функцию, генерирующую случайные числа с заданным распределением методом обратной функции распределения.
Распределения, для которых требуется генерировать случайные числа:
Равномерное на отрезках [a, b] [c, d].
Треугольное с параметрами [a, b].
10. Дополнительные задания
10.1 Многомерные случайные величины
Напишите функцию генерации случайной точки в n_мерном шаре с центром в начале координат и радиусом r.
10.2 Быки и коровы
Напишите программу, моделирующую игру «Быки и коровы». Программа выбирает с помощью датчика случайных чисел четырехзначное число с разными цифрами. Цель игры - угадать это число. На каждом шаге играющий называет четырехзначное число, а программа сообщает, сколько цифр числа угадано (быки) и сколько угаданных цифр стоит на нужном месте (коровы).
Библиографический список
1. Керниган Б. Язык программирования Си: Задачи по языку Си. / Б. Керниган, Д. Ритчи, А. Фьюэр М.: Финансы и статистика, 1985. - 192 с.
2. Керниган Б., Ритчи Д. Язык программирования Си. М.: Финансы и статистика, 1992. - 272 с.
3. Подбельский В.В., Фомин С.С. Программирование на языке Си. Учеб. пособие. М.: Финансы и статистика, 2004. 600 с.
4. Форсайт Дж. Машинные методы математических вычислений / Дж. Форсайт, М. Малькольм, К. Моулер. М.: Мир, 1980. - 279 с.
5. Кнут Д. Искусство программирования, том 2. Получисленные методы / Д. Кнут. М.: Изд. дом «Вильямс», 2007. 832 с.
6. Каханер Д. Численные методы и математическое обеспечение: Пер. с англ. / Д. Каханер, К. Моулер, С. Нэш. М.: Мир, 1998. - 575 с., ил.
7. Зубинский А. В поисках случайности // А. Зубинский. Компьютерное обозрение №29, 2003.
Подобные документы
Анализ способов построения генераторов случайных чисел для криптографических задач. Анализ генератора случайных чисел на основе магнитометров. Анализ статистических свойств двоичных последовательностей, полученных путем квантования данных магнитометра.
дипломная работа [2,5 M], добавлен 06.05.2018Написание программы для генерации случайных чисел, в которой реализуются возможности генерации абсолютно случайных чисел. Приложение на языке С/С++. Описание узла, содержащего данные; функций и методов работы; чтения данных из памяти и вывода их на экран.
курсовая работа [172,4 K], добавлен 23.05.2012Структура и функции генератора случайных чисел. Методы предельного уменьшения ошибки второго рода. Усиление шумового сигнала. Его дискретизация по времени и аналого-цифровое преобразование. Формирование случайной последовательности и ее корреляция.
курсовая работа [299,4 K], добавлен 11.12.2014Применение случайных чисел в моделировании, выборке, численном анализе, программировании и принятии решений. Понятие равномерного распределения вероятности. Способы получения последовательности. Правила выбора модуля. Критерий Колмогорова-Смирнова.
курсовая работа [1,3 M], добавлен 17.03.2011Программа для формирования и просмотра команды для олимпиады по программированию. Генератор случайных чисел в Borland C++, методы их получения. Линейный конгруэнтный метод. Метод Фибоначчи, вихря Мерсенна. Тестирование псевдослучайных последовательностей.
курсовая работа [93,5 K], добавлен 27.09.2014Характеристика вероятностного алгоритма и особенности его использования. Принцип работы и назначение генератора случайных чисел, сущность псевдослучайных чисел. Рассмотрение и реализация метода середины квадрата, разработка алгоритма и его кодирование.
курсовая работа [50,3 K], добавлен 18.09.2009Формирование устойчивой последовательности псевдослучайных чисел с использованием метода "середины квадрата". Разработка программы для определения среднего значения чисел, среднего значения квадратов чисел и дисперсии для последовательности из 20 чисел.
лабораторная работа [1,4 M], добавлен 21.01.2015Проектирование датчика случайных чисел, пригодного для моделирования случайной последовательности с заданным законом распределения. Методы моделирования. Разработка алгоритма и программы датчика. Исследование свойств выработанной им последовательности.
лабораторная работа [124,2 K], добавлен 15.06.2010Исследование разрешающей способности сканирующего туннельного микроскопа при сканировании исследуемой поверхности острием иглы конусообразной формы. Листинг программы и построение СТМ-профилограмм нанообъектов. Тестирование генератора случайных чисел.
курсовая работа [634,0 K], добавлен 12.01.2014Моделирование работы генератора случайных двоичных чисел с ограниченной последовательностью 0 и 1, подчиняющегося равномерному закону распределения, заданному с помощью модели Гильберта. Представление программного решения задачи средствами языка С++.
лабораторная работа [857,7 K], добавлен 05.06.2011