Разработка модели программного обеспечения, управляющего работой холодильника
Особенности объектно-ориентированного проектирования. Основные понятия объектно-ориентированного подхода. Основы языка UML, варианты его использования. Диаграммы классов и взаимодействия. Разработка диаграммы прецедентов (вариантов использования).
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 13.05.2014 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное агентство по образованию
Государственное образовательное учреждение
Высшего профессионального образования
"Ярославский государственный технический университет"
Кафедра "Информационных систем и технологий"
Разработка модели программного обеспечения, управляющего работой холодильника
Курсовая работа
по дисциплине "Объектное моделирование информационных систем"
Реботу выполнил
студент гр. ДСИТ-37
М.П. Буяров
доцент
Т.К. Ивашковская 2011
Содержание
- Введение
- Задание
- 1. Особенности объектно-ориентированного проектирования
- 1.1 Сущность объектно-проектированного подхода
- 1.2 Основные понятия объектно-ориентированного подхода
- 2. Основы языка UML
- 2.1 Варианты использования
- 2.2 Диаграммы
- 2.2.1 Диаграмма классов
- 2.2.2 Диаграмма взаимодействия
- 3.2 Глоссарий
- 3.3.1 Разработка диаграммы прецедентов (вариантов использования)
- 3.4.1 Диаграммы последовательности
- 3.4.2 Диаграмма состояний
- Заключение
- Литература
Введение
Тенденции развития современных информационных технологий приводят к постоянному возрастанию сложности информационных систем (ИС), создаваемых в различных областях экономики. Современные крупные проекты ИС характеризуются, как правило, следующими особенностями:
сложность описания (достаточно большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними), требующая тщательного моделирования и анализа данных и процессов;
наличие совокупности тесно взаимодействующих компонентов (подсистем), имеющих свои локальные задачи и цели функционирования (например, традиционных приложений, связанных с обработкой транзакций и решением регламентных задач, и приложений аналитической обработки (поддержки принятия решений), использующих нерегламентированные запросы к данным большого объема);
отсутствие прямых аналогов, ограничивающее возможность использования каких-либо типовых проектных решений и прикладных систем;
необходимость интеграции существующих и вновь разрабатываемых приложений;
функционирование в неоднородной среде на нескольких аппаратных платформах;
разобщенность и разнородность отдельных групп разработчиков по уровню квалификации и сложившимся традициям использования тех или иных инструментальных средств;
существенная временная протяженность проекта, обусловленная, с одной стороны, ограниченными возможностями коллектива разработчиков, и, с другой стороны, масштабами организации-заказчика и различной степенью готовности отдельных ее подразделений к внедрению ИС.
объектное ориентированное проектирование язык
Для успешной реализации проекта объект проектирования (ИС) должен быть прежде всего адекватно описан, должны быть построены полные и непротиворечивые функциональные и информационные модели ИС. Накопленный к настоящему времени опыт проектирования ИС показывает, что это логически сложная, трудоемкая и длительная по времени работа, требующая высокой квалификации участвующих в ней специалистов. Однако до недавнего времени проектирование ИС выполнялось в основном на интуитивном уровне с применением неформализованных методов, основанных на искусстве, практическом опыте, экспертных оценках и дорогостоящих экспериментальных проверках качества функционирования ИС. Кроме того, в процессе создания и функционирования ИС информационные потребности пользователей могут изменяться или уточняться, что еще более усложняет разработку и сопровождение таких систем.
Rational Rose - популярное средство визуального моделирования объектно-ориентированных информационных систем компании Rational Software Corp. Работа продукта основана на универсальном языке моделирования UML (Universal Modeling Language). Благодаря уникальному языку моделирования, Rational Rose способен решать практически любые задачи в проектировании информационных систем: от анализа бизнес процессов до кодогенерации на определенном языке программирования. Только Rational Rose позволяет разрабатывать как высокоуровневые, так и низкоуровневые модели, осуществляя тем самым либо абстрактное проектирование, либо логическое. Rational Rose имеет весь необходимый набор визуальных средств проектирования и помогает решать проблемы с кодогенерацией на определенном языке программирования. Rational Rose осуществляет такие подходы, как прямое и обратное проектирование, а так же Round Trip Engineering.
Цель курсовой работы является закрепление теоретического материала дисциплины "Объектное моделирование информационных систем", а также приобретение навыков практического объектно-ориентированного проектирования информационных систем в среде Rational Rose на примере разработки модели программного обеспечения, управляющего работой холодильника.
Задачи:
Изучить особенности объектно-ориентированного подхода к проектированию и разработке ИС. Познакомиться с основами языка UML.
Провести объектно-ориентированный анализ выбранной предметной области и построить ее модель.
Задание
Цель курсовой работы:
Изучение объектно-ориентированного подхода к проектированию информационных систем и формирование навыков его самостоятельного практического применения;
Задания курсовой работы:
Изучить особенности объектно-ориентированного подхода к проектированию и разработке ИС. Познакомиться с основами языка UML
Провести объектно-ориентированный анализ выбранной предметной области и построить ее модель.
Пояснения, рекомендации и требования к выполнению курсовой работы:
Задание 1.
Для выполнения первого задания необходимо изучить основные методологии разработки и проектирования ИС, особенности объектно-ориентированного подхода к проектированию и разработке ИС, основы языка UML. Список рекомендуемой литературы приведен ниже.
Задание 2.
В соответствии с вариантом необходимо выбрать предметную область и проанализировать ее. В каждом из предложенных вариантов требуется при помощи CASE-средства Rational Rose построить модель программного обеспечения.
В процессе создания модели должны быть выполнены следующие действия:
составление глоссария проекта (глоссарий предназначен для описания терминологии предметной области. Он может быть использован как неформальный словарь данных системы);
создание диаграммы вариантов использования;
анализ вариантов использования (с помощью диаграмм кооперации или последовательности для каждого варианта использования);
проектирование системы;
реализация системы.
После выполнения третьего этапа модель должна удовлетворять перечисленным ниже требованиям:
Глоссарий проекта должен иметь вид таблицы и храниться в отдельном файле.
На диаграммах вариантов использования каждое действующее лицо (actor) и вариант использования должны сопровождаться описанием. Эти описания должны быть составлены на русском языке. Описание действующего лица должно коротко (в одну-две строки) сообщать о роли данного лица. Описание варианта использования должно включать в себя пояснение, предусловие, потоки событий (основной и альтернативные, если таковые есть) и постусловие. Описания представляют собой либо присоединенные текстовые файлы, либо текст, введенный в поле Documentation спецификации соответствующего элемента диаграммы.
Диаграммы взаимодействия, соответствующие потокам событий вариантов использования, должны содержать необходимые пояснения.
При проектировании системы требуется:
создать иерархию классов системы;
каждый класс снабдить описанием, которое должно включать в себя краткое описание (описание атрибутов в виде таблицы (имя, описание, тип), таблицу с описанием операций (имя, описание));
для классов указать стереотипы;
построить диаграммы классов системы, отображающие связи между классами;
для описания поведения экземпляров отдельных классов построить диаграммы состояний;
разработать (если это требуется вариантом задания) схему базы данных и отобразить ее на диаграмме "сущность - связь".
При реализации системы необходимо построить диаграммы компонентов, также следует разработать диаграмму размещения. В зависимости от варианта задания диаграмма размещения должна показывать расположение компонентов в распределенном приложении или связи между встроенным процессором и устройствами.
1. Особенности объектно-ориентированного проектирования
1.1 Сущность объектно-проектированного подхода
Принципиальное различие между структурным и объектно-ориентированным подходом заключается в способе декомпозиции системы. Объектно-ориентированный подход использует объектную декомпозицию, при этом статическая структура системы описывается в терминах объектов и связей между ними, а поведение системы описывается в терминах обмена сообщениями между объектами. Каждый объект системы обладает своим собственным поведением, моделирующим поведение объекта реального мира. Понятие "объект" впервые было использовано около 30 лет назад в технических средствах при попытках отойти от традиционной архитектуры фон Неймана и преодолеть барьер между высоким уровнем программных абстракций и низким уровнем абстрагирования на уровне компьютеров. С объектно-ориентированной архитектурой также тесно связаны объектно-ориентированные операционные системы. Однако наиболее значительный вклад в объектный подход был внесен объектными и объектно-ориентированными языками программирования: Simula, Smalltalk, C++, Object Pascal. На объектный подход оказали влияние также развивавшиеся достаточно независимо методы моделирования баз данных, в особенности подход "сущность-связь".
Концептуальной основой объектно-ориентированного подхода является объектная модель. Основными се элементами являются:
абстрагирование (abstraction);
инкапсуляция (encapsulation);
модульность (modularity);
иерархия (hierarchy).
Кроме основных имеются еще три дополнительных элемента, не являющихся в отличие от основных строго обязательными:
типизация (typing),
параллелизм (concurrency),
устойчивость (persistence).
Абстрагирование - это выделение существенных характеристик некоторого объекта, которые отличают его от всех других видов объектов и, таким образом, четко определяют его концептуальные границы относительно дальнейшего рассмотрения и анализа. Абстрагирование концентрирует внимание на внешних особенностях объекта и позволяет отделить самые существенные особенности его поведения от деталей их реализации. Выбор правильного набора абстракций для заданной предметной области представляет собой главную задачу объектно-ориентированного проектирования.
Инкапсуляция - это процесс отделения друг от друга отдельных элементов объекта, определяющих его устройство и поведение. Инкапсуляция служит для того, чтобы изолировать интерфейс объекта, отражающий его внешнее поведение, от внутренней реализации объекта. Объектный подход предполагает, что собственные ресурсы, которыми могут манипулировать только методы самого класса, скрыты от внешней среды. Абстрагирование и инкапсуляция являются взаимодополняющими операциями: абстрагирование фокусирует внимание на внешних особенностях объекта, а инкапсуляция (или, иначе, ограничение доступа) не позволяет объектам-пользователям различать внутреннее устройство объекта.
Модульность - это свойство системы, связанное с возможностью ее декомпозиции на ряд внутренне связных, но слабо связанных между собой модулей. Инкапсуляция и модульность создают барьеры между абстракциями.
Иерархия - это ранжированная или упорядоченная система абстракций, расположение их по уровням. Основными видами иерархических структур применительно к сложным системам являются структура классов (иерархия по номенклатуре) и структура объектов (иерархия по составу). Примерами иерархии классов являются простое и множественное наследование (один класс использует структурную или функциональную часть соответственно одного или нескольких других классов), а иерархии объектов - агрегация.
Типизация - это ограничение, накладываемое на класс объектов и препятствующее взаимозаменяемости различных классов (или сильно сужающее ее возможность). Типизация позволяет защититься от использования объектов одного класса вместо другого или по крайней мере управлять таким использованием.
Параллелизм - свойство объектов находиться в активном или пассивном состоянии и различать активные и пассивные объекты между собой.
Устойчивость - свойство объекта существовать но времени (вне зависимости от процесса, породившего данный объект) и/или в пространстве (при перемещении объекта из адресного пространства, в котором он был создан).
1.2 Основные понятия объектно-ориентированного подхода
Объект определяется как осязаемая реальность (tangible entity) - предмет или явление, имеющие четко определяемое поведение. Объект обладает состоянием, поведением и индивидуальностью; структура и поведение схожих объектов определяют общий для них класс. Термины "экземпляр класса" и "объект'' являются эквивалентными. Состояние объекта характеризуется перечнем всех возможных (статических) свойств данного объекта и текущими значениями (динамическими) каждого из этих свойств. Поведение характеризует воздействие объекта на другие объекты и наоборот относительно изменения состояния этих объектов и передачи сообщений. Иначе говоря, поведение объекта полностью определяется его действиями. Индивидуальность - это свойства объекта, отличающие его от всех других объектов.
Определенное воздействие одного объекта на другой с целью вызвать соответствующую реакцию называется операцией. Как правило, в объектных и объектно-ориентированных языках операции, выполняемые над данным объектом, называются методами и являются составной частью определения класса.
Класс - это множество объектов, связанных общностью структуры и поведения. Любой объект является экземпляром класса. Определение классов и объектов - одна из самых сложных задач объектно-ориентированного проектирования.
Следующую группу важных понятий объектного подхода составляют наследование и полиморфизм. Понятие полиморфизма может быть интерпретировано как способность класса принадлежать более чем одному типу. Наследование означает построение новых классов на основе существующих с возможностью добавления или переопределения данных и методов.
Объектно-ориентированная система изначально строится с учетом ее эволюции. Наследование и полиморфизм обеспечивают возможность определения новой функциональности классов с помощью создания производных классов - потомков базовых классов. Потомки наследуют характеристики родительских классов без изменения их первоначального описания и добавляют при необходимости собственные структуры данных и методы. Определение производных классов, при котором задаются только различия или уточнения, в огромной степени экономит время и усилия при производстве и использовании спецификаций и программного кода.
Важным качеством объектного подхода является согласованность моделей деятельности организации и моделей проектируемой системы от стадии формирования требований до стадии реализации. Требование согласованности моделей выполняется благодаря возможности применения абстрагирования, модульности, полиморфизма на всех стадиях разработки. Модели ранних стадий могут быть непосредственно подвергнуты сравнению с моделями реализации. По объектным моделям может быть прослежено отображение реальных сущностей моделируемой предметной области (организации) в объекты и классы информационной системы.
2. Основы языка UML
Большинство существующих методов объектно-ориентированного анализа и проектирования (ООАП) включают как язык моделирования, так и описание процесса моделирования. Язык моделирования - это нотация (в основном графическая), которая используется методом для описания проектов. Нотация представляет собой совокупность графических объектов, которые используются в моделях; она является синтаксисом языка моделирования. Например, нотация диаграммы классов определяет, каким образом представляются такие элементы и понятия, как класс, ассоциация и множественность. Процесс - это описание шагов, которые необходимо выполнить при разработке проекта.
Унифицированный язык моделирования UML (Unified Modeling Language) - это преемник того поколения методов ООАП, которые появились в конце 80-х и начале 90-х гг. Создание UML фактически началось в конце 1994 г., когда Гради Буч и Джеймс Рамбо начали работу по объединению методов Booch и ОМТ (Object Modeling Technique) под эгидой компании Rational Software. К концу 1995 г. они создали первую спецификацию объединенного метода, названного ими Unified Method, версия 0.8. Тогда же, в 1995 г., к ним присоединился создатель метода OOSE (Object-oriented Software Engineering) Ивар Якобсон.
Таким образом, UML является прямым объединением и унификацией методов Буча, Рамбо и Якобсона, однако дополняет их новыми возможностями. Главными в разработке UML были следующие цели:
предоставить пользователям готовый к использованию выразительный язык визуального моделирования, позволяющий разрабатывать осмысленные модели и обмениваться ими;
предусмотреть механизмы расширяемости и специализации для расширения базовых концепций;
обеспечить независимость от конкретных языков программирования и процессов разработки;
обеспечить формальную основу для понимания этого языка моделирования (язык должен быть одновременно точным и доступным для понимания, без лишнего формализма);
Определенное воздействие одного объекта на другой с целью вызвать соответствующую реакцию называется операцией. Как правило, в объектных и объектно-ориентированных языках операции, выполняемые над данным объектом, называются методами и являются составной частью определения класса.
Класс - это множество объектов, связанных общностью структуры и поведения. Любой объект является экземпляром класса. Определение классов и объектов - одна из самых сложных задач объектно-ориентированного проектирования.
Следующую группу важных понятий объектного подхода составляют наследование и полиморфизм. Понятие полиморфизма может быть интерпретировано как способность класса принадлежать более чем одному типу. Наследование означает построение новых классов на основе существующих с возможностью добавления или переопределения данных и методов.
Объектно-ориентированная система изначально строится с учетом ее эволюции. Наследование и полиморфизм обеспечивают возможность определения новой функциональности классов с помощью создания производных классов - потомков базовых классов. Потомки наследуют характеристики родительских классов без изменения их первоначального описания и добавляют при необходимости собственные структуры данных и методы. Определение производных классов, при котором задаются только различия или уточнения, в огромной степени экономит время и усилия при производстве и использовании спецификаций и программного кода.
Важным качеством объектного подхода является согласованность моделей деятельности организации и моделей проектируемой системы от стадии формирования требований до стадии реализации. Требование согласованности моделей выполняется благодаря возможности применения абстрагирования, модульности, полиморфизма на всех стадиях разработки. Модели ранних стадий могут быть непосредственно подвергнуты сравнению с моделями реализации. По объектным моделям может быть прослежено отображение реальных сущностей моделируемой предметном области (организации) в объекты и классы информационной системы.
2.1 Варианты использования
В течение достаточно длительного периода времени в процессе как объектно-ориентированного, так и традиционного структурного проектирования разработчики использовали типичные сценарии, помогающие лучше понять требования к системе. Эти сценарии трактовались весьма неформально - они почти всегда использовались и крайне редко документировались. Ивар Якобсон впервые ввел понятие "вариант использования" (use case) и придал ему такую значимость, что он превратился в основной элемент разработки и планирования проекта.
Вариант использования представляет собой последовательность действий (транзакций), выполняемых системой в ответ на событие, инициируемое некоторым внешним объектом (действующим лицом). Вариант использования описывает типичное взаимодействие между пользователем и системой. Например, два типичных варианта использования обычного текстового процессора - "сделать некоторый текст полужирным" и "создать индекс". Даже на таком простом примере можно выделить ряд свойств варианта использования: он охватывает некоторую очевидную для пользователей функцию, может быть как небольшим, так и достаточно крупным и решает для пользователя некоторую дискретную задачу В простейшем случае вариант использования определяется в процессе обсуждения с пользователем тех. функций, которые он хотел бы реализовать.
Когда Якобсон в 1994 г. предложил варианты использования в качестве основных элементов процесса разработки ПО, он также предложил применять для их наглядного представления диаграммы вариантов использования. На рис. 1 показаны некоторые варианты использования для системы торговой организации; человеческие фигурки здесь обозначают действующих лиц, овалы - варианты использования, а линии и стрелки - различные связи между действующими лицами и вариантами использования.
Рис. 1 Диаграмма вариантов использования
Действующее лицо (actor) - это роль, которую пользователь играет по
отношению к системе. На рис. 1 четыре действующих лица: Менеджер по продажам, Оптовый торговец, Продавец и Система учета. Действующие лица представляют собой роли, а не конкретных людей или наименования работ.
Несмотря на то, что на диаграммах вариантов использования они изображаются в виде стилизованных человеческих фигурок, действующее лицо может также быть внешней системой, которой необходима некоторая информация от данной системы (например, Система учета). Показывать на диаграмме действующих лиц системы следует только в том случае, когда им действительно необходимы некоторые варианты использования.
Все варианты использования так или иначе связаны с внешними требованиями к функциональности системы. Если Системе учета требуется файл, то это требование должно быть удовлетворено. Варианты использования всегда следует анализировать вместе с действующими лицами системы, определяя при этом реальные задачи пользователей и рассматривая альтернативные способы решения этих задач.
Действующие лица могут играть различные роли по отношению к варианту использования. Они могут пользоваться его результатами или могут сами непосредственно в нем участвовать. Значимость различных ролей действующего лица зависит от того, каким образом используются его связи.
Хорошим источником для идентификации вариантов использования служат внешние события. Следует начать с перечисления всех событий, происходящих во внешнем мире, на которые система должна каким-то образом реагировать. Какое-либо конкретное событие может повлечь за собой реакцию системы, не требующую вмешательства пользователей, или, наоборот, вызвать чисто пользовательскую реакцию. Идентификация событий, на которые необходимо реагировать, помогает выделить варианты использования.
В дополнение к связям между действующими лицами и вариантами использования существуют два других типа связей (см. рис.1):
"использование" (uses) и "расширение" (extends) между вариантами использования. Связь типа "расширение" применяется тогда, когда один вариант использования подобен другому, но несет несколько большую нагрузку.
В данном примере основным вариантом использования является Заключить сделку В этом варианте предполагается нормальный ход процесса. Однако в случае превышения некоторого лимита - например, максимальной суммы торговой сделки, установленной для конкретноп клиента, процесс, связанный с данным вариантом использования, имеются исключения, то такое действующее лицо не имеет отношения к реализации других вариантов использования.
Выбор применяемой связи определяется следующими правилами:
связь "расширение" следует применять при описании изменений в нормальном поведении системы;
связь "использование" следует применять для избежания повторов в двух (или более) вариантах использования. Варианты использования являются необходимым средством на стадии формирования требований к ПО. Каждый вариант использования - это потенциальное требование к системе, и пока оно не выявлено, невозможно запланировать его реализацию.
Различные разработчики подходят к описанию вариантов использования с разной степенью детализации. Например, Ивар Якобсон утверждает, что для проекта с трудоемкостью в 10 человеко-лет количество вариантов использования может составлять около 20 (не считая связей "использование" и "расширение"). Следует предпочитать небольшие и детализированные варианты использования, поскольку они облегчают составление и реализацию согласованного плана проекта.
2.2 Диаграммы
UML обеспечивает поддержку всех этапов жизненного цикла ИС и предоставляет для этих целей ряд графических средств - диаграмм.
На этапе создания концептуальной модели для описания бизнес-деятельности используются модели бизнес-прецедентов и диаграммы видов деятельности, для описания бизнес-объектов - модели бизнес-объектов и диаграммы последовательностей.
На этапе создания логической модели ИС описание требований к системе задается в виде модели и описания системных прецедентов, а предварительное проектирование осуществляется с использованием диаграмм классов, диаграмм последовательностей и диаграмм состояний.
На этапе создания физической модели детальное проектирование выполняется с использованием диаграмм классов, диаграмм компонентов, диаграмм развертывания.
Ниже приводятся определения и описывается назначение перечисленных диаграмм и моделей применительно к задачам проектирования ИС (в скобках приведены альтернативные названия диаграмм, использующиеся в современной литературе).
Диаграммы прецедентов (диаграммы вариантов использования, use case diagrams) - это обобщенная модель функционирования системы в окружающей среде.
Диаграммы видов деятельности (диаграммы деятельностей, activity diagrams) - модель бизнес-процесса или поведения системы в рамках прецедента.
Диаграммы взаимодействия (interaction diagrams) - модель процесса обмена сообщениями между объектами, представляется в виде диаграмм последовательностей (sequence diagrams) или кооперативных диаграмм (collaboration diagrams).
Диаграммы состояний (statechart diagrams) - модель динамического поведения системы и ее компонентов при переходе из одного состояния в другое.
Диаграммы классов (class diagrams) - логическая модель базовой структуры системы, отражает статическую структуру системы и связи между ее элементами.
Диаграммы базы данных (database diagrams) - модель структуры базы данных, отображает таблицы, столбцы, ограничения и т.п.
Диаграммы компонентов (component diagrams) - модель иерархии подсистем, отражает физическое размещение баз данных, приложений и интерфейсов ИС.
Диаграммы развертывания (диаграммы размещения, deployment diagrams) - модель физической архитектуры системы, отображает аппаратную конфигурацию ИС.
На рис.2 показаны отношения между различными видами диаграмм UML. Указатели стрелок можно интерпретировать как отношение "является источником входных данных для." (например, диаграмма прецедентов является источником данных для диаграмм видов деятельности и последовательности). Приведенная схема является наглядной иллюстрацией итеративного характера разработки моделей с использованием UML.
Рис. 2 Взаимосвязи между диаграммами UML
2.2.1 Диаграмма классов
Диаграммы классов являются центральным звеном объектно-ориентированных методов. Диаграмма классов определяет типы объектов системы и различного рода статические связи, которые существуют между ними. Имеются два основных вида статических связей:
ассоциации (например, клиент может сделать заказ);
подтипы (частный клиент является разновидностью клиента).
Рис. 2.1 Диаграмма классов
На диаграммах классов изображаются также атрибуты классов, операции классов и ограничения, которые накладываются на связи между объектами.
На рис. 2.1 изображена типичная диаграмма классов. Перед тем как приступить к описанию диаграмм классов, следует обратить внимание на один важный момент, связанный с характером использования этих диаграмм разработчиками. Этот момент обычно никак не документируется, однако оказывает существенное воздействие на способ интерпретации диаграмм и поэтому имеет ножное отношению к тому, что описывается с помощью модели.
Построение диаграмм классов можно рассматривать в различных аспектах:
концептуальный аспект - диаграммы классов отображают понятия изучаемой предметной области (моделируемой организации). Эти понятия, естественно, будут соответствовать реализующим их классам, однако такое прямое соответствие зачастую отсутствует. На самом деле концептуальная модель может иметь весьма слабое отношение или вообще не иметь никакого отношения к реализующему ее программному обеспечению, поэтому ее можно рассматривать как не зависимую от средств реализации (языка программирования);
аспект спецификации - модель спускается на уровень ПО, но рассматриваются только интерфейсы, а не программная реализация классов (под интерфейсом здесь понимается набор операций класса, видимых извне);
аспект реализации - модель действительно определяет реализацию классов ПО. Этот аспект наиболее важен для программистов.
Понимание аспекта имеет большое значение как для построения, так и для чтения диаграмм классов. К сожалению, различия между аспектами не столь отчетливы, и большинство разработчиков при построении диаграмм допускают их смешение.
При построении диаграммы необходимо выбрать единственный аспект. При чтении диаграммы следует выяснить, в соответствии с каким аспектом она строилась. Если нужно интерпретировать эту диаграмму правильным образом, то без такого знания не обойтись.
Точка зрения на диаграммы классов, не будучи собственно формальной частью UML, однако при построении и анализе моделей является крайне важной. Конструкции UML можно использовать с любой из трех точек зрения. Большинство опытных разработчиков-программистов предпочитают аспект реализации. С другой стороны, очевидно, что построение диаграмм классов на стадии формирования требований к ПО должно выполняться с концептуальной точки зрения.
На рис.3 изображена простая модель классов, связанная с обработкой заказов клиентов. Опишем каждый фрагмент модели и рассмотрим его возможную интерпретацию с различных точек зрения.
Ассоциации представляют собой связи между экземплярами классов (личность работает в компании, компания имеет ряд офисов).
С концептуальной точки зрения ассоциации представляют собой концептуальные связи между классами. На диаграмме показано, что Заказ должен поступить от единственного Клиента, а Клиент в течение некоторого времени может сделать несколько Заказов. Каждый из этих Заказов содержит несколько Строк заказа, каждая из которых соответствует единственному Продукту.
Каждая ассоциация обладает двумя ролями; каждая роль представляет собой направление ассоциации. Таким образом, ассоциация между Клиентом и Заказом содержит две роли: одна от Клиента к Заказу, другая - от Заказа к Клиенту.
Роль может быть явно поименованная с помощью метки. Например, роль ассоциации в направлении от Заказа к Строкам заказа называется "позиция заказа". Если такая метка отсутствует, роли присваивается имя класс - цели - таким образом, роль ассоциации от Заказа к Клиенту может быть названа Клиент (термины "начало" (source) и "цель" (target) употребляются для обозначения классов, являющихся соответственно начальным и конечным для ассоциации).
2.2.2 Диаграмма взаимодействия
Диаграммы взаимодействия (interaction diagrams) являются моделями, описывающими поведение взаимодействующих групп объектов. Как правило, диаграмма взаимодействия охватывает поведение объектов в рамках только одного варианта использования. На такой диаграмме отображаются ряд объектов и те сообщения, которыми они обмениваются между собой. Проиллюстрируем данный подход на примере достаточно простого варианта использования, который описывает следующее поведение:
Окно Ввода Заказа посылает Заказу сообщение "приготовиться".
Заказ посылает данное сообщение каждой Строке заказа в данном Заказе.
Каждая Строка заказа проверяет состояние определенного Запаса товара:
Если данная проверка удовлетворяется (результат - true), то Строка заказа удаляет соответствующее количество товара из Запаса.
В противном случае количество Запаса снижается до уровня повторного заказа, и Запас запрашивает новую поставку товара.
Существуют два вида диаграмм взаимодействия: диаграммы последовательности (sequence diagrams) и кооперативные диаграммы (collaboration diagrams).
На диаграмме последовательности объект изображается в виде прямоугольника на вершине пунктирной вертикальной линии (рис.2.2).
Эта вертикальная линия называется линией жизни (lifeline) объекта. Она представляет собой фрагмент жизненного цикла объекта в процессе взаимодействия. Такую форму представления впервые ввел Ивар Якобсон.
Рис. 2.2 Диаграмма последовательности
Каждое сообщение представляется в виде стрелки между линиями жизни двух объектов. Сообщения появляются в том порядке, как они показаны на странице - сверху вниз. Каждое сообщение помечается, как минимум, именем сообщения; при желании можно добавить также аргументы и некоторую управляющую информацию и, кроме того, можно показать само делегирование (self-delegation) - сообщение, которое объект посылает самому себе, при этом стрелка сообщения указывает на ту же самую линию жизни.
Из всей возможной управляющей информации два ее вида имеют существенное значение. Во-первых, это условие, показывающее, когда посылается сообщение (например, [нуженПовторныйЗаказ = "true"]). Сообщение посылается только при выполнении данного условия. Другой полезный управляющий маркер - это маркер итерации, показывающий, что сообщение посылается много раз для множества объектов-адресатов (например,* приготовиться).
Диаграммы последовательности очень просты и наглядны (в этом заключается самое большое их достоинство) и существенно помогают разобраться в процессе поведения системы.
Диаграмма (см. рис. 2.2) содержит возврат, означающий не новое сообщение, а возврат из сообщения. На диаграмме возврат отличается от обычных сообщений тем, что его стрелка не сплошная, а имеет вид пары линий.
Диаграммы последовательности можно также использовать для представления параллельных процессов.
На рис. 2.2 изображен ряд объектов, участвующих в проверке банковской транзакции. В момент создания Транзакции она порождает Координатор Транзакции в целях координации проверок, выполненных Транзакцией. Этот координатор создает несколько объектов Транзакционного Контролера (в данном случае два объекта), каждый из которых отвечает за определенную проверку. Такой процесс облегчает создание различных дополнительных процессов проверки, поскольку каждая проверка вызывается асинхронно и выполняется параллельно с другими.
Рис. 2.3 Параллельные процессы и активизации
Когда Проверка Транзакции завершается, она посылает соответствующее сообщение Координатору Транзакции. Координатор проверяет, все ли проверки сообщили о своем выполнении. Если нет, то координатор не выполняет никаких действий. Если же все проверки завершились успешно, как в данном случае, то координатор сообщает Транзакции о нормальном завершении.
В диаграмму последовательности на рис. 2.3 введен ряд новых элементов. Во-первых, это активизации, появляющиеся явно в том случае, когда метод становится активным либо во время его выполнения, либо при ожидании результата выполнения какой-либо процедуры. Во-вторых, половинные стрелки обозначают асинхронные сообщения. Асинхронное сообщение не блокирует работу вызывающего объекта. Таким образом, он может продолжать свой собственный процесс. Асинхронное сообщение может выполнять одну из трех функций:
создавать новую ветвь процесса (в этом случае оно связано с самой верхней частью активизации);
создавать новый объект;
устанавливать связь с уже выполняющейся ветвью процесса.
Удаление объекта показано с помощью большого знака "X". Объекты могут выполнить самоуничтожение или могут быть уничтожены посредством еще одного сообщения.
Используя механизм активизации, можно более четко показать смысл само делегирования. Без них, или без такого обозначения с помощью столбиков, которое здесь используется, довольно трудно определить, где же выполняются следующие после само делегирования вызовы - то ли в вызывающем методе, то ли в вызываемом методе. Активизации вносят ясность в этот вопрос.
3. Разработка модели программного обеспечения,
управляющего работой холодильника
3.1 Описание предметной области
Требуется разработать средствами Rational Rose модель программного обеспечения встроенного процессора холодильника.
Холодильник состоит из нескольких холодильных камер для хранения продуктов. В каждой холодильной камере имеется регулятор температуры, мотор, термометр, индикатор, таймер, датчик открытия двери камеры и устройство для подачи звуковых сигналов. При помощи терморегулятора устанавливается максимально допустимая температура в данной камере. Мотор предназначен для поддержания низкой температуры. Термометр постоянно измеряет температуру внутри камеры, а индикатор температуры, расположенный на дверце, постоянно высвечивает ее значение. При повышении температуры выше предела, определяемого текущим положением регулятора, включается мотор. При снижении температуры ниже некоторого другого значения, связанного с первым, мотор отключается. Доступ в камеру осуществляется через дверцу. Если дверь холодильной камеры открыта в течение слишком долгого времени, подается звуковой сигнал. Звуковой сигнал также подается в любых нештатных ситуациях (например, при поломке мотора).
3.2 Глоссарий
Термин |
Описание |
|
Пользователь |
Любое физическое лицо, пользующееся услугами холодильника |
|
Дверь холодильной камеры |
Устройство, позволяющее осуществлять доступ в холодильную камеру |
|
Датчик открытия двери |
Электрическое реле, включающееся при открытии двери холодильника и выключающееся при ее закрытии |
|
Регулятор температуры |
Электрическое реле, связанное с термометром и мотором, позволяющее устанавливать необходимую температуру в холодильной камере |
|
Таймер |
Устройство, подающее электрический сигнал через определенный промежуток времени на устройство подачи звуковых сигналов |
|
Термометр |
Устройство, измеряющее температуру в камере |
|
Устройство подачи звуковых сигналов |
Устройство воспроизведения звука из электрического сигнала |
|
Мотор |
Электрическое устройство, позволяющее поддерживать постоянную температуру в холодильной камере |
|
Индикатор |
Цифровое табло, отображающее текущее значение температуры в камере |
3.3 Создание концептуальной модели
3.3.1 Разработка диаграммы прецедентов (вариантов использования)
Модель прецедентов описывает процессы с точки зрения внешнего пользователя.
Проектирование системы начинаем с изучения и моделирования деятельности холодильника.
Для включения в диаграмму выбранные прецеденты должны удовлетворять следующим критериям:
прецедент должен описывать, ЧТО нужно делать, а не КАК;
прецедент должен описывать действия с точки зрения ИСПОЛНИТЕЛЯ;
прецедент должен возвращать исполнителю некоторое СООБЩЕНИЕ;
последовательность действий внутри прецедента должна представлять собой одну НЕДЕЛИМУЮ цепочку.
Исходя из цели создания системы, для дальнейшего исследования и моделирования отбираются только те прецеденты, которые связаны с использованием холодильника.
На рис. 3.1 изображена диаграмма вариантов использования холодильника.
Рис. 3.1 Диаграмма вариантов использования холодильника
Таблица 1.1 Описание вариантов использования
Обозначение актёра |
Описание актера |
Обозначение прецедента |
Описание прецедента |
|
Пользователь |
Любое физическое лицо, пользующееся услугами холодильника |
Открыть холодильную камеру |
Открытие холодильной камеры пользователем |
|
Закрыть холодильную камеру |
Закрытие холодильной камеры пользователем |
|||
Установить температуру в камере |
Установка температуры в холодильной камере |
|||
Посмотреть температуру в камере |
Просмотр температуры в холодильной камере |
Таблица 1.2 Описательная спецификация прецедента "Открытие холодильной камеры".
Название прецедента |
Открытие холодильной камеры |
|
Краткое описание |
Открытие холодильной камеры пользователем |
|
Субъект |
Пользователь |
|
Предусловие |
||
Основной поток |
Открытие холодильника |
|
Альтернативный поток |
||
Постусловие |
Таблица 1.3 Описательная спецификация прецедента "Закрытие холодильной камеры".
Название прецедента |
Закрытие холодильной камеры |
|
Краткое описание |
Закрытие холодильной камеры пользователем |
|
Субъект |
Пользователь |
|
Предусловие |
||
Основной поток |
Закрытие холодильника |
|
Альтернативный поток |
||
Постусловие |
Таблица 1.4 Описательная спецификация прецедента "Установка температуры в холодильной камере".
Название прецедента |
Установка температуры в холодильной камере |
|
Краткое описание |
Установка необходимой температуры в холодильной камере |
|
Субъект |
Пользователь |
|
Предусловие |
||
Основной поток |
Установка температуры |
|
Альтернативный поток |
||
Постусловие |
Таблица 1.5 Описательная спецификация прецедента "Просмотр температуры в холодильной камере".
Название прецедента |
Просмотр температуры в холодильной камере |
|
Краткое описание |
Просмотр температуры, установленной внутри холодильной камере |
|
Субъект |
Пользователь |
|
Предусловие |
||
Основной поток |
Просмотр температуры |
|
Альтернативный поток |
||
Постусловие |
3.3.2 Разработка диаграммы классов
Диаграмма классов отражает различные взаимосвязи между отдельными сущностями предметной области, такими как объекты и подсистемы, а также описывает их внутреннюю структуру и типы отношений.
Рис. 3.2 Диаграмма классов холодильника
Таблица 2.1 - Описание структуры классов.
Класс |
Атрибуты |
Операции |
||
Название |
Тип |
|||
Дверь холодильной камеры |
Открытие |
|||
Закрытие |
||||
Датчик открытия двери |
Включение |
|||
Отключение |
||||
Мотор |
Включение |
|||
Отключение |
||||
Регулятор Температуры |
Установка температуры |
|||
Термометр |
Измерение температуры |
|||
Индикатор |
Отображение температуры |
|||
Устройство подачи звуковых сигналов |
Подача звукового сигнала |
|||
Таймер |
Включение |
|||
Отключение |
Таблица 2.2 - Стереотипы классов.
Дверь холодильной камеры |
Boundary |
|
Датчик открытия двери |
Boundary |
|
Мотор |
Boundary |
|
Регулятор Температуры |
Boundary |
|
Термометр |
Boundary |
|
Индикатор |
Boundary |
|
Устройство подачи звуковых сигналов |
Boundary |
|
Таймер |
Boundary |
3.4 Анализ поведения системы
3.4.1 Диаграммы последовательности
Для детального описания выполнения процессов обычно используются диаграммы последовательностей. Диаграммы последовательности показывают взаимодействие объектов во времени и отражают последовательность происходящих событий.
Основными элементами диаграммы последовательностей являются обозначения объектов (прямоугольники), вертикальные линии, отображающие течение времени при деятельности объекта, и стрелки, показывающие выполнение действий объектами.
Рис 3.3 Диаграмма последовательности для прецедента
"Закрыть холодильную камеру"
Рис. 3.4 Диаграмма последовательности для прецедента
"Открыть холодильную камеру"
Рис 3.5 Диаграмма последовательности для прецедента
"Посмотреть температуру в холодильной камере"
Рис 3.6 Диаграмма последовательности для прецедента
"Установить температуру в холодильной камере"
3.4.2 Диаграмма состояний
Для описания поведения экземпляров отдельных классов построим диаграмму состояний.
Рис. 3.7 Диаграмма состояний
Заключение
Если при проектировании ИС разбивается на объекты, то для ее визуального моделирования следует использовать UML. В то же время, при выборе подхода к разработке ИС следует учитывать, что визуальные модели все более широко используются в существующих технологиях управления проектированием систем, сложность, масштабы и функциональность которых постоянно возрастают. Они хорошо приспособлены для решения таких часто возникающих при создании систем задач как: физическое перераспределение вычислений и данных, обеспечение параллелизма вычислений, репликация БД, обеспечение безопасности доступа к ИС, оптимизация балансировки нагрузки ИС, устойчивость к сбоям и т.п. Визуализированные средствами UML модели ИС позволяют наладить плодотворное взаимодействие между заказчиками, пользователями и командой разработчиков. Они обеспечивают ясность представления выбранных архитектурных решений и позволяют понять разрабатываемую систему во всей ее полноте.
Литература
1. Леоненков, А.В. Самоучитель UML.2-е издание - СПб.: "БХВ-Петербург", 2004. - 432 с.
2. Маклаков, С.В. Bpwin и Erwin. CASE-средства разработки информационных систем. М.: ДИАЛОГ-МИФИ, 2000 - 256 с.
3. Рамбо, Дж. UML 2.0. Объектно-ориентированное моделирование и разработка. - СПб.: Питер, 2007.
4. Романов, В.П. Проектирование экономических информационных систем. Методологии и современные технологии. - М: Экзамен, 2005. - 256 с.
5. Розенберг, Д. Применение объектного моделирования с использованием UML и анализ прецедентов - М.: "ДМК Пресс", 2002. - 160 с.
6. Уэнди Боггс, Майкл Боггс. UML и Rational Rose. Лори, 2004 - 510 с.
Размещено на Allbest.ru
Подобные документы
Основные элементы объектной модели. Сущность и преимущества объектно-ориентированного подхода, понятие объекта и класса. Унифицированный язык моделирования UML. Диаграммы классов и взаимодействия: назначение, построение и примеры использования.
реферат [273,2 K], добавлен 09.06.2009Понятие технологии разработки программного обеспечения и модели жизненного цикла. Сущность объектно-ориентированного подхода. Строительные блоки, общие механизмы языка моделирования UML, диаграммы классов, состояний, взаимодействий и компонентов.
курсовая работа [262,5 K], добавлен 10.07.2014Специальное и общесистемное программное обеспечение. Разработка диаграммы прецедентов, классов, деятельности, состояний. Детальная реализация функциональных частей программного обеспечения. Разработка пользовательского интерфейса, методика испытаний.
курсовая работа [3,3 M], добавлен 26.01.2013Общая характеристика объектно-ориентированного подхода в программировании, его основные свойства и принципы. Разработка программы для автоматизация деятельности кафе на основе объектно-ориентированного подхода, проектирования и реализации схемы данных.
курсовая работа [1,2 M], добавлен 22.01.2012Краткая характеристика предметной области. Актуальность разработки объектно-ориентированной модели информационной системы для учебной библиотеки. Создание диаграммы вариантов использования, последовательности, кооперативной диаграммы, диаграммы классов.
курсовая работа [381,8 K], добавлен 01.06.2009Исследование объектно-ориентированного подхода к проектированию программного обеспечения будильника. Модель программного обеспечения. Взаимодействие между пользователями и системой. Диаграммы и генерация программного кода при помощи средств Rational Rose.
курсовая работа [355,8 K], добавлен 26.09.2014Общая характеристика склада как объекта хозяйственной деятельности. Создание диаграммы прецедентов и последовательности. Построение корпоративной диаграммы сотрудничества. Предназначение диаграммы классов и компонентов. Генерация программного кода C++.
курсовая работа [222,0 K], добавлен 23.06.2011Принципы объектного подхода. UML как воплощение идеи визуального моделирования. Синтаксис и семантика основных объектов UML, различные отношения между классами. Диаграммы использования, их назначение. Разработка модели бизнес-прецедентов данных.
презентация [1,0 M], добавлен 19.09.2016Анализ проблематики построения объектно-ориентированного канала связи. Основные понятия протокола Modbus. Возможности CodeSys для реализации объектно-ориентированного подхода. Разработка методики кроссплатформенной библиотеки для интеграции устройств.
курсовая работа [38,6 K], добавлен 15.06.2013Унифицированный язык моделирования. Методы объектно-ориентированного анализа и проектирования. Создание диаграммы последовательности и диаграммы сотрудничества. Главная диаграмма классов. Добавление связей между классами. Зависимость между пакетами.
курсовая работа [2,7 M], добавлен 23.06.2011