Система математических расчетов MATLAB

Общие свойства и возможности рабочего стола. Получение справок (Getting Help). Рабочее пространство системы MATLAB. Просмотр и редактирование массивов данных при помощи редактора Array Editor. Пути доступа системы. Операции с файлами.

Рубрика Программирование, компьютеры и кибернетика
Вид учебное пособие
Язык русский
Дата добавления 28.05.2007
Размер файла 1021,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

что дает трехмерный массив с двумя страницами

B(:, :, 1) =

2 8

0 5

B(:, :, 2) =

1 3

7 9

Функция cat принимает любые комбинации существующих и новых данных. Более того, вы можете осуществлять вложение данных функций. Приведенные ниже строки, к примеру, формируют четырехмерный массив:

A = cat (3, [9 2; 6 5], [7 1; 8 4])

B = cat (3, [3 5; 0 1], [5 6; 2 1])

D = cat (4, A, B, cat (3, [1 2; 3 4], [4 3; 2 1])).

Функция cat автоматически добавляет, при необходимости, единичные индексы между размерностями. Например, для создания массива размера 2х2х1х2 можно ввести

C = cat (4, [1 2; 4 5], [7 8; 3 2])

В данном случае функция cat вводит нужное число единичных размерностей для создания четырехмерного массива, чья последняя размерность не является единичной. Если бы аргумент dim был бы равен 5, последняя запись привела бы к массиву размера 2х2х1х1х2. Это добавляет еще одну единицу в индексации массива. Для обращения к значению 8 в четырехмерном случае нужно применить следующую индексацию

Индекс единичной размерности

Определение характеристик многомерных массивов.

Для получения информации об имеющихся многомерных массивах можно воспользоваться стандартными командами size (дает размер массива), ndims (дает количество размерностей) и whos (последняя команда дает подробную информацию о всех переменных рабочего пространства системы MATLAB). Для вышеприведенного примера мы получим

size(C)

ans =

2 2 1 2

ndims(C)

ans =

4

Индексация

Многие концепции, используемые в двумерном случае, распространяются также на много-мерные массивы. Для выделения (обращения) к какому-либо одному элементу многомерного массива следует воспользоваться целочисленной индексацией. Каждый индекс указывает на соответствующую размерность: первый индекс на размерность строк, второй индекс на раз-мерность столбцов, третий на первую размерность страниц и так далее. Рассмотрим массив случайных целых чисел nddata размера 10х5х3:

nddata = fix (8*randn (10, 5, 3));

Для обращения к элементу (3,2) на странице 2 массива nddata нужно записать nddata(3,2,2).

Вы можете также использовать векторы как массив индексов. В этом случае каждый элемент вектора должен быть допустимым индексом, то есть должен быть в пределах границ, опре-деленных для размерностей массива. Так, для обращения к элементам (2,1), (2,3), и (2,4) на странице 3 массива nddata, можно записать

nddata (2, [1 3 4], 3).

Оператор двоеточия и индексирование многомерных массивов.

Стандартная индексация MATLAB-а при помощи оператора двоеточия (colon) применима и в случае многомерных массивов. Например, для выбора всего третьего столбца страницы 2 массива nddata используется запись nddata(:, 3, 2). Оператор двоеточия также полезен и для выделения определенных подмножеств данных. Так, ввод nddata(2:3,2:3,1) дает массив (мат-рицу) размера 2х2, который является подмножеством данных на странице 1 массива nddata. Эта матрица состоит из данных второй и третьей строки и сторого и третьего столбца первой стриницы многомерного массива. Оператор двоеточия может использоваться для индексации с обеих сторон записи. Например, для создания массива нулей размера 4х4 записываем:

C = zeros (4,4)

Теперь, чтобы присвоить значения подмножества 2х2 массива nddata четырем элементам в центре массива С запишем

C(2:3,2:3) = nddata (2:3,1:2,2)

Устранение неопределенностей в многомерной индексации

Некоторые выражения, такие как

A(:, :, 2) = 1:10

Являются неоднозначными, поскольку они не обеспечивают достаточного объема информа-ции относительно структуры размерности, в которую вводятся данные. В представленном выше случае, делается попытка задать одномерный вектор в двумерном объекте. В таких ситуациях MATLAB выдает сообщение об ошибке. Для устранения неопреденности, нужно убедиться, что обеспечена достаточная информация о месе записи данных, и что как данные так и место назначения имеют одинаковую форму. Например,

A(1,:,2) = 1:10.

Изменение формы (Reshaping)

Если вы не меняете форму или размер, массивы в системе MATLAB сохраняют размернос-ти, заданные при их создании. Вы можете изменить размер массива путем добавления или удаления элементов. Вы можете также изменить форму массива изменяя размерности строк, столбцов и страниц, при условии сохранения тех же элементов. Функция reshape выполняет указанную операцию. Для многомерных массивов эта функция имеет вид

B = reshape (A, [s1 s2 s3 ...] )

где s1, s2, и так далее характеризуют желаемый размер для каждой размерности преобразо-ванной матрицы. Отметим, что преобразованный массив должен иметь то же число элемен-тов, что и исходный массив (иными словами, произведение размеров массивов должно быть неизменным).

Функция reshape «действует» вдоль столбцов. Она создает преобразованную матрицу путем взятия последовательных элементов вдоль каждого столбца исходной матрицы.

Ниже в качестве примеров приведены несколько примеров массивов, которые могут быть получены из массива nddata (обратите внимание на размерности).

B = reshape(nddata,[6 25])

C = reshape(nddata,[5 3 10])

D = reshape(nddata,[5 3 2 5])

Удаление единичных размерностей.

Система MATLAB создает единичные размерности, когда вы задаете их при создании или преобразовании массива, или же в результате вычислений приводящих к появлению указан-ных размерностей.

B = repmat (5, [2 3 1 4] ) ;

size(B)

ans =

2 3 1 4

Функция squeeze удаляет единичные размерности из массива.

C = squeeze(B);

size(C)

ans =

2 3 4

Функция squeeze не оказывает воздействия на двумерные массивы - векторы-строки оста-ются строками.

Вычисления с многомерными массивами

Многие вычислительные и математические функции MATLAB-а принимают в качестве аргументов многомерные массивы. Эти функции действуют на определенные размерности многомерных массивов, в частности, на отдельные элементы, векторы или матрицы.

Действия над векторами

Функции которые действуют над векторами, такие как sum, mean, и т.д., по умолчанию обы-чно действуют вдоль первой неединичной размерности многомерного массива. Многие из этих функций дают возможность задать размерность вдоль которой они действуют. Однако, есть и исключения. Например, функция cross, которая определяет векторное произведение двух векторов, действует вдоль первой неединичной размерности, имеющей размер 3.

Внимание! Во многих случаях эти функции имеют другие ограничения на входные аргумен-ты - например, некоторые функции, допускающие многомерные входные массивы, требуют чтобы массивы имели одинаковый размер.

Поэлементное воздействие

Те функции MATLAB-а, которые действуют поэлементно на двумерные массивы, такие как тригонометрические и экспоненциальные функции, работают совершенно аналогично и в многомерном случае. Например, функция sin возвращает массив того же размера, что и вход-ной массив. Каждый элемент выходного массива является синусом соответствующего эле-мента входного массива. Аналогично, все арифметические, логические операторы и операторы отношения действуют с соответствующими элементами многомерных массивов (которые должны иметь одинаковые размеры каждой размерности). Если один из операндов является скаляром, а второй - скаляром, то операторы применяют скаляр ко всем элементам массива.

Действия над плоскостями и матрицами

Функции, действующие над плоскостями или матрицами, такие как функции линейной алге-бры или матричные функции в директории matfun , не принимают в качестве аргументов многомерные массивы. Иными словами, вы не можете использовать функции в директории matfun, или операторы *, ^, \, или /, с многомерными массивами. Попытка использования многомерных массивов или операндов в таких случаях приводит к сообщению об ошибке.

Вы можете, тем не менее, применить матричные функции или операторы к матрицам внутри многомерных массивов. Например, сооздадим трехмерный массив А

A = cat (3 , [1 2 3; 9 8 7; 4 6 5], [0 3 2; 8 8 4; 5 3 5], [6 4 7; 6 8 5; 5 4 3]);

Применение функции eig ко всему многомерному массиву дает сообщение об ошибке:

eig(A)

??? Error using eig

Input arguments must be 2-D.

Вы можете, однако, приментиь функцию eig к отдельным плоскостям в пределах массива. Например, воспользуемся оператором двоеточия для выделения одной страницы (допустим, второй):

eig(A(:, :, 2))

ans =

-2.6260

12.9129

2.7131

Внимание! В первом случае, где не используется оператор двоеточия, для избежания ошиб-ки нужно использовать функцию squeeze. Например, ввод eig (A(2,:,:)) приводит к ошибке так как размер входа есть [1 3 3]. Выражение eig(squeeze(A(2, :, :))), однако, передает функции eig допустимую двумерную матрицу.

Организация данных в многомерных массивах

Вы можете использовать два возможных варианта представления данных при помощи многомерных массивов:

· Как плоскости (или страницы) двумерных данных. В дальнейшем вы можете обра-щаться с этими страницами как с матрицами.

· Как многомерные данные. Например, вы можете иметь четырехмерный массив, где каждый элемент соответствует температуре или давлению воздуха, измеренным на равномерно распределенной трехмерной (пространственной) сетке в комнате.

В качестве конкретного примера рассмотрим представление какого-либо изображения в формате RGB. Напомним, что в формате RGB изображение хранится в виде трех двумерных матриц одинакового размера, каждая из которых характеризует интенсивность одного цвета - красного (Red), зеленого (Green) и синего (Blue) - в соответствующей точке. Общая карти-на при этом получается в результате наложения трех указанных матриц. Для отдельного изображения, использование многомерных массивов является, вероятно, наиболее легким путем для запоминания данных и доступа к ним.

Пусть все изображение хранится в файле RGB. Для доступа к полной плоскости изображе-ния в одном цвете, допустим - красном, следует записать

red_plane = RGB (:,:,1);

Для доступа к части всего изображения можно использовать запись

subimage = RGB (20:40, 50:85, :)

Изображение в формате RGB является хорошим примером данных, для которых может пот-ребоваться доступ к отдельным плоскостям, для операций типа фильтрации или просто де-монстрации. В других задачах, однако, сами данные могут быть многомерными. Рассмотри, например, набор температур, измеренных на равномерной пространственной сетке какого-либо помещения.

В данном случае пространственное положение каждого значения температуры является составной частью набора данных , то есть физическое расположение в трехмерном прос-транстве является частью информации. Такие данные также весьма прспособлены для представления при помощи многомерных массивов (см.рисунок выше).

Здесь, чтобы найти среднее значение всех измерений, то есть среднюю температуру воздуха в комнате, можно записать

mean (mean (mean (TEMP)))

где через TEMP обозначен массив четырехмерных данных.

Дл получения вектора «серединных» температур (элемента (2,2)) комнаты на каждой странице, то есть в каждом сечении, запишем

B = TEMP (2, 2, :).

ОРГАНИЗАЦИЯ И ХРАНЕНИЕ ДАННЫХ

Для хранения различных типов данных в системе MATLAB используются так называемые структуры (structure) и ячейки (cell). Структуры (иногда их называют массивами структур) служат для хранения массивов различных типов данных, организаванных по принципу пои-менованных полей. Ячейки (или массивы ячеек) являются специальным классом массивов системы MATLAB, чьи элементы состоят из ячеек, в которых могут храниться любые другие массивы данных, применяемые в MATLAB-е. Как структуры, так и ячейки обеспечивают иерархический механизм для хранения самых различных типов данных. Они отличаются друг от друга прежде всего способом организации базы данных. При использовании струк-тур доступ к данным осуществляется при помощи наименований полей, тогда как в массивах ячеек доступ осуществляется при помощи матричной индексации.

В приведенных ниже таблицах дается краткое описание функций MATLAB-а, предназначен-ных для работы с массивами структур и ячеек

Структуры

Функция

Описание

fieldnames

Получить имена полей

getfield

Получить содержание поля

isfield

Истинно, если поле есть в структуре

isstruct

Истинно, если структура

rmfield

Удалить поле

setfield

Установить содержимое поля

struct

Создать массив структур

struct2cell

Преобразовать структуру в массив ячеек

Ячейки

Функция

Описание

cell

Создать массив ячеек

cell2struct

Преобразовать массив ячеек в структуру

celldisp

Показать содержимое массива ячеек

cellfun

Применить функцию к массиву ячеек

cellplot

Показать графическую структуру массива ячеек

deal

Обмен данными между любыми классами массивов

iscell

Истинно для массивов ячеек

num2cell

Преобразовать числовой масси в массив ячеек

МАССИВЫ СТРУКТУР

Структуры это массивы данных с поименованными «хранилищами» данных, называемыми полями. Поля структуры могут содержать данные любого типа. Например, одно поле может содержать текстовую строку, представляющую имя (name), второе поле может содержать скалярную переменную, являющуюся счетом за лечение (billing), третье может содержать матрицу результатов медицинских анализов (test) и так далее.

Как и обычным масивам данных, структурам присущи основные свойства массивов. Одна структура является структурой размера 1х1, точно так же как число 5 является числовым массивом размера 1х1. Вы можете строить структуры с лбой допустимой размерностью или формы, включая многомерные массивы структур.

Создание массивов структур

Имеется два следующих способа создания структур:

· Путем использования операторов присваивания.

· С использованием функции struct.

Создание массивов структур с применением операторов присваивания.

Вы можете построить простую структуру размера 1х1 путем прямого присваивания значений индивидуальным полям. MATLAB при этом автоматически конструирует соответствующую структуру. Например, создадим 1х1 структуру данных пациента лечебницы, показанную в начале данного раздела. Для этого следует ввести следующие записи:

patient.name = 'John Doe';

patient.billing = 127.00;

patient.test = [79 75 73; 180 178 177.5; 220 210 205];

Если ввести теперь в командной строке запись

patient

то MATLAB ответит

name: 'John Doe'

billing: 127

test: [3x3 double]

patient является массивом, представляющим собой структуру с тремя полями. Для расшире-ния данного массива нужно просто добавить соответствующие индексы после имени струк-туры:

patient(2).name = 'Ann Lane';

patient(2).billing = 28.50;

patient(2).test = [68 70 68; 118 118 119; 172 170 169];

Структура patient имеет теперь размер [1 2]. Отметим, что если массив структур содержит более одного элемента, то MATLAB уже не выводит на экран содержание отдельных полей при вводе имени структуры. Взамен, на дисплей выдаются общая информация о содержимом структуры, то есть имена полей:

Patient

patient =

1x2 struct array with fields:

name

billing

test

Для получения данной информации вы можете также использовать функцию fieldnames. Данная функция выдает массив ячеек содержащих названия полей в форме строки. Если вы расширяете структуру, MATLAB запалняет те поля, в которые вы не ввели данные, пустыми матрицами так, что:

· Все структуры в массиве имеют одинаковое число полей.

· Все соответствующие поля имеют одинаковые имена.

Например, при вводе

patient(3).name = 'Alan Johnson'

структура patient принимает размер 1х3. При это оба поля patient(3).billing и patient(3).test содержат пустые матрицы.

Внимание! Размеры данных в одноименных полях могут быть различными. В нашем при-мере со структурой patient поля name могут иметь различную длину, поля test могут содер-жать массивы числовых данных различных размеров и так далее.

Создание массива структур с использованием функции struct.

Вы можете заранее создать массив структур применив функцию struct. Ее основная форма имеет вид

str_array = struct ('поле1',знач1,'поле2',знач2, ...)

где аргументами являются имена полей и их соответствующие значения. Значением поля мо-жет быть или одно значение, представленное любой допустимой конструкцией в MATLAB-е, или массив ячеек данных (массивы ячеек рассмотрены в следующем разделе). Все значения полей в списке аргументов должны иметь одинаковый вид (единственное значение или мас-сив ячеек).

Вы можете использовать различные методы для задания массива структур. Эти методы отличаются способом инициализации полей структуры. В качестве примера расмотрим зада-ние структуры размера 1х3 с именем weather (погода), имеющую поля temp (температура)

и rainfall (дождевые осадки). Три различные способа задания такой структуры даны в приведенной ниже таблице.

Метод

Синтаксис

Задание

Функция struct

weather(3) = struct('temp',72,'rainfall',0.0);

Структура weather(3) инициализируется с указан-ными значениями полей. По-ля остальных двух структур в массиве, weather(1) и weather(2), содержат в качес-тве данных пустые матрицы.

Сочетание функций struct и repmat

weather =

repmat (struct ('temp', 72,

'rainfall', 0.0), 1, 3);

Все структуры в массиве weather инициализируются с использованием одинаковых значений одноименных полей.

Функция struct с использованием синтаксиса ячеек

weather =

struct ('temp',{68, 80, 72},

'rainfall', {0.2,0.4,0.0} );

Структуры в массиве weather инициализируются с разными значениями полей, заданных массивом ячеек.

Обращение к данным в массивах структур.

Используя индексацию массива структур, можно осуществить обращение к данным любого поля или любого элемента поля в массиве структуры. Аналогичным образом, вы можете за-дать значение любого поля или элемента поля структуры. В качестве примера, используемо-го в данном разделе, рассмотрим структуру, представленную на приведенном ниже рисунке.

Вы можете обратиться к подмассивам путем дабавления стандартной индексации к имени массива структур. Например, следующая запись приводит к структуре размера 1х2

mypatients = patient(1:2)

1x2 struct array with fields:

name

billing

test

Первая структура в массиве mypatients совпадает с первой структурой в массиве patient:

mypatients(1)

ans =

name: 'John Doe'

billing: 127

test: [3x3 double].

Для обращения к полю определенной структуры, нужно добавить точку (.) после имени стру-ктуры, с указанием далее имени поля:

str = patient(2) . name

str =

Ann Lane

Для обращения к элементам внутри полей, следует добавить требуемые индексы к имени поля. Если поле содержит числовой массив, нужно использовать индексация цифровых массивов. Если поле содержит массив ячеек, используйте соответствующую индексацию ячеек и так далее. Например,

test2b = patient(3).test(2,2)

test2b =

153

Аналогичную форму записи следует использовать и для задания значений переменных внутри поля, например,

patient(3).test(2,2) = 7

Вы можете также одновременно извлечь данные одноименных полей многомерной структу-ры. Например, запись ниже создает вектор 1х3, содержащий все значения счетов полей billing fields.

bills = [patient.billing]

bills =

127.0000 28.5000 504.7000

Аналогично, вы можете создать массив ячеек, содержащий данные температур test для пер-вых двух структур.

tests = {patient(1:2).test}

tests =

[3x3 double] [3x3 double]

Обращение к полям структуры с применением функций setfield и getfield

Прямая индексация обычно является наиболее эффективным способом задания или получе-ния значений полей структуры. Если, однако, вы знаете только название поля в виде строки, например, если вы использовали функцию fieldnames для получения имени поля в пределах M-файла - то для указанных операций с данными этих полей можно также применить функ-ции setfield и getfield.

Функция getfield позволяет получить значение или значения поля или элемента поля и име-ет следующий синтаксис

f = getfield(array,{array_index},'field',{field_index})

где индекс field_index является необязательным , а array_index является необязательным для массива структур размера 1х1. Данный синтаксис соответствует записи

f = array(array_index).field(field_index)

Например, для обращения к полю name во второй структуре массива patient запишем

str = getfield(patient,{2},'name')

Аналогично, функция setfield дает возможность задать значения полей используя синтаксис

f = setfield (array,{array_index},'field',{field_index},value)

Определение размера массива структур

Для получения размера массива структур или размера любого поля структуры. можно вос-пользоваться функцией size. При вводе в качестве аргумента функции size имени структуры, данная функция возвращает вектор размерностей массива. Если задать аргумент в форме массив(n).поле, функция size возвращает размер содержимого поля. Например, для нашей структуры patient размера 1х3, запись size(patient) возвращает вектор [1 3]. Выражение size(patient(1,2).name) возвращает длину строки имени элемента (1,2) структуры patient.

Добавление полей к структуре

Вы можете добавить поле ко всем структурам в массиве добавлением поле к любой одной структуре. Например, для добавления поля номера социальной страховки к массиву patient можно воспользоваться записью вида

patient(2).ssn = '000-00-0000'

При этом поле patient(2).ssn второго пациекта имеет заданное значение. Все другие структу-ры в массиве структур также имеют поле ssn, но эти поля содержат пустые матрицы до тех пор, пока вы не зададите в явном виде соответствующие значения.

Удаление поля из структуры

Вы можете удалить любое поле заданной структуры при помощи функции rmfield. Ее наиболее общая форма имеет вид

struc2 = rmfield(array,'field')

где array это массив структур, а 'field' является именем поля, которое вы хотите удалить. Например, чтобы удалить поле name из массива patient, нужно ввести:

patient = rmfield(patient,'name')

Применение функций и операторов

Вы можете осуществлять операции над полями и над элементами полей точно так же, как над любыми другими массивами системы MATLAB. Для выбора данных, над которыми нужно произвести действия нужно использовать индексацию. Например, следующее выра-жение вычисляет среднее значение вдоль строк массива test в patient(2):

mean((patient(2).test)')

Зачастую бывают различные возможности для применеия функций или операторов к полям массива структур. Один из путей суммирования всех полей billing в структуре patient выг-лядит следующим образом:

total = 0;

for j = 1:length(patient)

total = total + patient(j).billing;

end

Для упрощения подобных операций, MATLAB предоставляет возможность производить дей-ствия одновременно со всеми одноименными полями массива структур. Для этого нужно просто заключить выражение (допустим, array.field) в квадратные скобки внутри применяе-мой функции. Например, вы можете решить приведенную выше задачу, записав

total = sum ([patient.billing])

Подобная запись эквивалентна использованию так называемого списка, разделенного запятой (comma-separated list)

total = sum ([patient(1).billing , patient(2).billing ,...])

Такой синтаксис наиболее полезен в случаях, когда поле является скалярным операндом.

Создание функций для операций над массивами структур

Вы можете записать свои функции в виде М-файлов для работы со структурами любой нес-тандартной формы. При этом вам придется осуществить собственный контроль ошибок. Иными словами, вам следует убедиться, что осуществляется проверка действий над выбран-ными полями.

В качестве примера, рассмотрим набор данных, который описывает измерения в различных моментах времени различных токсинов в источнике питьевой воды. Данные состоят из 15 различных наблюдений, где каждое наблюдение содержит три независимых замера. Вы мо-жете организовать эти данные в виде набора 15 структур, где каждая структура имеет три поля, по одному для каждого проведенного измерения.

Приведенная ниже функция concen, действует над массивом структур со специфичными ха-рактеристиками. Их характеристики должны содержать поля lead (свинец), mercury (ртуть),

и chromium (хром).

function [r1, r2] = concen(toxtest);

% Create two vectors. r1 contains the ratio of mercury to lead

% at each observation. r2 contains the ratio of lead to chromium.

r1 = [toxtest.mercury]./[toxtest.lead];

r2 = [toxtest.lead]./[toxtest.chromium];

% Plot the concentrations of lead, mercury, and chromium

% on the same plot, using different colors for each.

lead = [toxtest.lead];

mercury = [toxtest.mercury];

chromium = [toxtest.chromium];

plot(lead,'r'); hold on

plot(mercury,'b')

plot(chromium,'y'); hold off

Данная функция создает два вектора. r1 содержит отношение ртути к свинцу в каждом наб-людении, а r2 содержит отношение свинца к хрому. Далее эта функция строит кривые кон-центрации свинца, ртути и хрома на одном графике, используя разные цвета (красный - сви-нец, синий - ртуть, желтый - хром).

Попробуйте применить данную функцию на примеры структуры test со следующими данны-ми

test(1).lead = .007; test(2).lead = .031; test(3).lead = .019;

test(1).mercury = .0021; test(2).mercury = .0009;

test(3).mercury = .0013;

test(1).chromium = .025; test(2).chromium = .017;

test(3).chromium = .10;

Организация данных в массиве структур

Ключ к организации массива структур состоит в выборе способа, которым вы хотите обра-щаться к подмассивам данных или отдельным данным структуры. Это, в свою очередь, оп-ределяет как вы дольжны построить массив, содержащий структуры и как выбирать поля структуры. Например, рассмотрим RGB изображение размера 128х128, запомненное в трех различных массивах : RED, GREEN и BLUE.

Имеются по меньшей мере две возможности для организации таких данных в массив струк-

тур.

Плоская организация Поэлементная организация

Плоская организация

В этом варианте, каждое поле структуры представляет полную плоскость изображения в красном, зеленом или синем цветах. Вы можете создать такую структуру используя запись

A.r = RED;

A.g = GREEN;

A.b = BLUE;

Подобный подход позволяет вам легко извлекать полное изображение в отдельных состав-ляющих цветов, для решения таких задач как фильтрация. Например, для обращения ко всей красной плоскости нужно просто записать

red_plane = A.r;

Плоская организация имеет то дополнительное преимущество, что массив структур можно без труда дополнить другими изображениями. Если у вас есть набор изображений, вы може-те запомнить их как A(2), A(3), и так далее, где каждая структура содержит полное изобра-жение.

Недостаток плоской организации становится очевичным, когда вам нужно обратиться к от-дельным частям изображения. В этом случае вы должны оперировать с каждым полем в от-дельности:

red_sub = A.r (2:12, 13:30);

grn_sub = A.g (2:12, 13:30);

blue_sub = A.b (2:12, 13:30);

Поэлементная организация

Данный вариант имеет то преимущество, что обеспечивает простой доступ к подмножествам данных. Для организации данных в данной форме нужно использовать команды

for i = 1:size(RED,1)

for j = 1:size(RED,2)

B(i,j) .r = RED(i,j);

B(i,j) .g = GREEN(i,j);

B(i,j) .b = BLUE(i,j);

end

end

При поэлементной организации, вы можете осуществить обращение к подмножествам дан-ных при помощи единственного выражения:

Bsub = B(1:10, 1:10);

Однако, обращение к полной плоскости изображения при поэлементом методе требуется цикл :

red_plane = zeros(128,128);

for i = 1 : (128*128)

red_plane(i) = B(i).r;

end

Поэлементая организация не является лучшим выбором для большинства приложений, свя-занных с обработкой изображений. Однако, она может быть лучшей для других приложений, когда вам требуется часто обращаться к отдельным подмножествам полей структуры. Пример в следующем разделе демонстрирует данный тип приложен

Пример - Простая база данных

Рассмотрим организацию простой базы данных.

А Плоская организация В Поэлементная организация

Оба возможных способов организации базы данных имеет определенные проимущества, зависящие от того как вы хотите осуществить доступ к данным:

· Плоская организация обеспечивает более легкую возможность вычислений одновре-менно над всеми полями. Например, чтобы найти среднее значение всех данных в поле amount следует записать:

а) При плоской организации

avg = mean(A.amount);

б) При поэлементной организации

avg = mean([B.amount]);

Поэлементная организация дает более легкий доступ ко всей информации, связанной с одним клиентом. Рассмотрим М-файл, названный client.m, который осуществляет вывод на экран имени и адреса любого клиента. При использовании плоской организации, следует вводить в качестве аргументов индивидуальные поля:

function client(name,address, amount)

disp(name)

disp(address)

disp(amount)

Для вызова функции client для второго клиента записываем,

client(A.name(2,:),A.address(2,:), A. amount (2,:))

При использовании поэлементой организации вводится вся структура

function client(B)

disp(B)

Для вызова функции client для второго клиента при этом просто записываем,

client(B(2))

· Поэлементная организация позволяет более просто расширять поля массивов строк. Если вы заранее не знаете максимальную длину строки при плоской организации, вам может потребоваться часто корректировать поля name или address , чтобы ввести более длинные строки.

Обычно данные не диктуют выбора организации базы данных. Скорее, вы сами должны решить, как вы хотите осуществлять доступ и операции над данными.

Вложенные структуры

Поле структуры может содержать другую структуру, и даже массив структур.Если вы уже имеете некоторую структуру, то для вложения новых структур в любое поле данной струк-туры вы можете воспользоваться как функцией struct, так и применить непосредственно оператор присваивания

Создание вложенных структур при помощи функции struct

Для создания вложенных структур вы можете применить функцию struct . Например, создадим массив структур размера 1х1 со вложенной в поле nest структурой:

A = struct('data',[3 4 7; 8 0 1],'nest',struct('testnum','Test 1', 'xdata',[4 2 8],'ydata',[7 1 6]));

Применим теперь операторы присваивания для добавления сторого элемента к массиву А:

A(2).data = [9 3 2; 7 6 5];

A(2).nest.testnum = 'Test 2';

A(2).nest.xdata = [3 4 2];

A(2).nest.ydata = [5 0 9];

Индексация вложенных структур

Для обращения к вложенным структурам, нужно просто добавить имена вложенных полей с использование точечных разделителей. Первая текстовая строка в индексированном выраже-нии определяет массив структур, а последующие выражения дают доступ к полям, содержа-щим другие структуры. Например, массив А, созданный ранее, имеет три уровня вложения:

· Для обращения к вложенной структуре внутри А(1) запишем A(1).nest.

· Для обращения к полю xdata во вложенной структуре в A(2) запишем A(2).nest.xdata.

· Для обращения к элементу 2 поля ydata в A(1), запишем A(1).nest.ydata(2).

МАССИВЫ ЯЧЕЕК

Массивы ячеек это массивы данных системы MATLAB элементы которых являются ячейка-ми и могут служить «хранилищами» для других массивов данных. Например, одна ячейка массива ячеек может содержать матрицу действительных чисел, другая ячейка - массив тек-стовых строк, а третья - вектор комплексных значений.

Вы можете конструировать массивы ячеек любых допустимых размерностей и форм, вклю-чая многомерные массивы ячеек.

Создание массивов ячеек

Вы можете создавать массивы ячеек двумя способами:

· Используя операторы присваивания.

· Используя функцию cell, а затем назначая данные созданных ячеек.

Применение операторов присваивания

Вы можете создать массив ячеек путем присваивания данных индивидуальным ячейкам, по одной ячейке за один раз. MATLAB при этом автоматически создает требуемый массив яче-ек. Существуют два способа индексации данных ячеек:

· Индексация ячеек

Заключите индексы ячейки в обычные скобки с использованием стандартной индексации массивов. Заключите содержимое ячейки в правой стороне оператора присваивания в фигур-ные скобки “{}”. Например, создадим массив ячеек А размера 2х2.

A(1,1) = {[1 4 3; 0 5 8; 7 2 9]};

A(1,2) = {'Anne Smith'};

A(2,1) = {3+7i};

A(2,2) = {-pi:pi/10:pi};

Внимание! Запись “{}” обозначает пустой массив ячеек, точно так же как “[ ]” обозначает пустую матрицу для числовых массивов. Вы можете использовать пустой массив ячеек в лю-бых выражениях с массивами ячеек.

· Индексация содержимого ячеек

Заключите индексы ячейки в фигурные скобки, применяя стандартные обозначения масси-вов. Задайте содержимое ячейки в правой части оператора присваивания в обычном виде.

A{1,1} = [1 4 3; 0 5 8; 7 2 9];

A{1,2} = 'Anne Smith';

A{2,1} = 3+7i;

A{2,2} = -pi:pi/10:pi;

Различные примеры, приведенные ниже, используют оба приведенных синтаксиса. Обе фор-мы записи являются вполне взаимозаменяемыми.

Внимание! Если вы уже имеете числовой массив с заданным именем, не пытайтесь создать массив ячеек с помощью операторов присваивания, не уничтожив предаврительно числовой массив. Если вы не очистите числовой массив, MATLAB примет, что вы пытаетесь «сме-шать» синтаксисы ячеек и числовых массивов и выдаст сообщение об ошибке.

MATLAB выводит содержимое массива ячеек на дисплей в сжатой форме. Для нашего мас-сива А мы получим.

A =

[3x3 double] 'Anne Smith'

[3.0000+ 7.0000i] [1x21 double]

Для вывода полного содержания ячеек, нужно воспользоваться функцией celldisp. Для гра-фического вывода на дисплей архитектуры ячейки служит функция cellplot. Если вы назна-чаете данные ячейке, которая находится вне размерности имеющегося массива ячеек, MATLAB автоматически расширяет массив, чтобы включить заданный вами элемент. При этом промежуточные ячейки заполняются пустыми матрицами. Например, приведенный ни-же оператор присваивания превращает массив ячеек А размера 2х2 в массив размера 3х3.

A(3,3) = {5};

Все остальные ячейки третьего столбца и третьей строки при этом будут содержать пустые матрицы.

Использование фигурных скобок для построения массивов ячеек

Фигурные скобки, “{}”, являются такими же конструктурами массивов ячеек, как квадрат-ные скобки являются конструкторами числовых массивов. Фигурные скобки используются совершенно аналогично квадратным скобкам, за тем исключением, что их можно использо-вать для вложения массивов ячеек (см. ниже).

При конструировании массивов с использованием фигурных скобок нужно использовать пробелы или запятые для разделения столбцов, и точки с запятой для разделения строк. На-пример, ввод

C = {[1 2], [3 4]; [5 6], [7 8]};

приводит к следующему массиву ячеек размера 2х2

Для объединения отдельных массивов ячеек в новые массивы, вы можете использовать квадратные скобки, как и при объединении числовых массивов.

Задание массивов ячеек при помощи функции cell

Функция cell позволяет создавать пустые массивы ячеек заданного размера. Например, сле-дующее выражение создает пустоймассив ячеек размера 2х2.

B = cell(2, 3);

Для заполнения ячеек массива В нужно прменить операторы присваивания:

B(1,3) = {1:3};

Доступ к данным массивов ячеек

Вы можете извлекать данные из массивов ячеек или же запоминать данные в имеющемся или вновь созданном массиве ячеек двумя способами:

· Использованием индексации содержимого ячеек при помощи обычных индексов.

· Использованием индексов, заключенных в фигурные скобки.

Доступ к данным массивов ячеек с использованием фигурных скобок

Вы можете использовать индексирование содержимого в правой части выражения для обра-щения ко всем данным в какой-либо отдельной ячейке. Для этого в левой части выражения следует задать переменную для записи содержимого ячейки. Заключите индексы ячеек в фигурные скобки. Это означает, что вы обращаетесь к содержимому ячейки. Рассмотрим следующий массив N размера 2х2:

N{1,1} = [1 2; 4 5];

N{1,2} = 'Name';

N{2,1} = 2 - 4i;

N{2,2} = 7;

Вы можете получить строку в N{1,2} записав

c = N{1,2}

При вводе данной строки MATLAB выдаст

c =

Name

Внимание! В операторах присваивания вы можете использовать индексацию содержимого только для обращения к одной ячейке, а не к подмножеству ячеек. Например, оба выражения

A{1, :} = value и B = A{1, :} являются неправильными.

Для обращения к подмножествам содержимого одной ячейки нужно объединить индексиро-вание. Например, чтобы получить элемент (2,2) массива в ячейке N{1,1}, следует записать:

d = N{1,1} (2,2)

что даст

d =

5

Обращение к подмножествам массива ячеек

Для присваивания любого множества ячеек некоторой переменной, нужно воспользоваться индексацией содержимого ячеек. При этом оператор двоеточия служит для доступа к под-множествам ячеек в пределах иассива ячеек.

Удаление ячеек

Вы можете удалить полностью любую размерность массива ячеек с использованием одного выражения. Как и в стандартном случае удаления массивов, нужно использовать векторное индексирование при удалении строк или столбцов массива ячеек, с приравниванием данной размерности пустой мастрице, например

.

A(:, 2) = [ ]

При удаленни ячеек, фигурные скобки вообще не используются в соответствующих выра-жениях.

Изменение формы (размерностей) массива ячеек

Ка и в случае любых других массивов, для изменения формы массива ячеек можно приме-нить функцию reshape. При этом общее число ячеек должно остаться тем же, то есть вы не можете использовать данную функцию для добавления или удаления ячеек.

A = cell(3, 4);

size(A)

ans =

3 4

B = reshape(A,6,2);

size(B)

ans =

6 2

Замена списка переменных массивами ячеек

Массивы ячеек могут быть ипользованы для замены списка переменных MATLAB-а в сле-дующих случаях:

· В списке входных аргументов.

· В списке выходных переменных.

· В операциях отображения на дисплей.

· При конструировании массивов (квадоатные скобки и фигурные скобки).

Если вы используете оператор двоеточия для индексации набора ячеек в сочетании с фигур-ными скобками, то MATLAB обращается с каждой ячейкой как с отдельной переменной. Например, допустим вы имеете массив ячеек T, где каждая ячейка содержит отдельный век-тор. Выражение T{1:5} эквивалентно списку векторов в первых пяти ячейках массива T, то есть оно равносильно записи

[ T{1} , T{2} , T{3} , T{4} , T{5} ]


Подобные документы

  • Использование программного обеспечения MatLab для выполнения математических расчетов в области линейной алгебры, теории информации и обработки сигналов, автоматического и автоматизированного управления. Возможности стандартного интерфейса программы.

    курсовая работа [178,7 K], добавлен 08.08.2011

  • Схема речеобразования у человека. Запись и считывание данных из речевого сигнала в MATLAB. Синтаксис вызова функции. Операции над звуковыми файлами. Исследование мужского и женского голосов. Спектрограммы голосов. Обработка речи в Simulink, Wavelet.

    контрольная работа [2,2 M], добавлен 18.04.2013

  • Возможности Matlab, выполнении математических и логических операций, интерактивные инструменты построения графиков. Конструкции для обработки и анализа больших наборов данных, программные и отладочные инструменты, оптимизация данных, операций и функций.

    статья [170,5 K], добавлен 01.05.2010

  • Обзор и сравнительный анализ современных математических пакетов. Вычислительные и графические возможности системы MATLAB, а также средства программирования в среде MATLAB. Основные возможности решения задач оптимизации в табличном процессоре MS Excel.

    дипломная работа [6,6 M], добавлен 04.09.2014

  • Анализ возможностей пакета MATLAB и его расширений. Язык программирования системы. Исследование выпрямительного устройства. Моделирование трёхфазного трансформатора. Схема принципиальная регулируемого конвертора. Возможности гибкой цифровой модели.

    презентация [5,1 M], добавлен 22.10.2013

  • Назначение и особенности системы MATLAB. Запуск программы, работа в режиме диалога, понятие о сессии, операции строчного редактирования. Формирование векторов и матриц. Графики ряда функций. Знакомство с трехмерной графикой. Интерфейс основного окна.

    учебное пособие [65,9 K], добавлен 17.03.2011

  • MATLAB – матричная лаборатория – наиболее развитая система программирования для научно-технических расчетов. Переменные и элементы xy-графики. Простые примеры, иллюстрирующие эффективность MATLAB. Системы линейных алгебраических уравнений и полиномы.

    методичка [47,2 K], добавлен 26.01.2009

  • Получение передаточной функции по модели разомкнутой системы автоматизированного управления двигателем постоянного тока. Получение оптимальных коэффициентов обратных связей в среде MatLab. Расчет переходных процессов системы с оптимальными коэффициентами.

    лабораторная работа [1,3 M], добавлен 31.10.2012

  • Создание матриц специального вида в Matlab: использование функций и анализ основного синтаксиса. Проведение вычислений с элементами массивов. Логические функции, поиск в массиве. Матричные и поэлементные операции. Операции "деления" слева и справа.

    презентация [189,4 K], добавлен 24.01.2014

  • Особенности графики системы MATLAB и ее основные отличительные черты. Построение графика функций одной переменной. Графики в логарифмическом масштабе, построение диаграмм, гистограмм, сфер, поверхностей. Создание массивов данных для трехмерной графики.

    реферат [1,4 M], добавлен 31.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.