Графический метод решения задачи линейной оптимизации в трехмерном случае

Программа для обучения графическому методу решения задач линейной оптимизации (ЗЛО). Необходимое серверное и клиентское программное обеспечение. Графический метод решения ЗЛО для произвольной задачи. Организационно-экономическое обоснование проекта.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 14.10.2010
Размер файла 996,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Изменение положения символов на экране во времени -- дефект, называемый дрожанием изображения. Это явление связано с неправильными колебаниями магнитного поля, используемого для отклонения электронного луча.

Некоторые виды люминофора имеют значительное послесвечение, то есть яркость символов снижается очень медленно, и они воспринимаются на протяжении нескольких периодов регенерации после того, как соответствующие пиксели уже больше не облучаются. Такое явление значительно снижает четкость изображения; на мониторах с быстрыми люминофорами оно не наблюдается.

Основные нормируемые визуальные характеристики мониторов и соответствующие допустимые значения этих характеристик представлены в таблице 1.

Таблица 1. Некоторые нормируемые визуальные параметры видеотерминалов

Параметры

Допустимые значения

Яркость знака или фона (измеряется в темноте)

35-120 кд/м2

Контраст

От 3:1 до 1,5:1

Временная нестабильность изображения (мерцания)

Не должна быть зафиксирована более 90% наблюдателей

Угловой размер знака

16-60

Отношение ширины знака к высоте

0,5-1,0

Отражательная способность экрана (блики)

не более 1%

Неравномерность яркости элементов знаков

не более 25%

Неравномерность яркости рабочего поля экрана

не более 20%

Формат матрицы знака для прописных букв и цифр, (для отображения строчных букв с нижними выносными элементами формат матрицы должен быть увеличен сверху или снизу на 2 элемента изображения)

не менее 7 * 9 элементов изображения не менее 5 * 7 элементов изображения

Размер минимального элемента отображения (пикселя) для монохромного монитора, мм

0,3

Допустимое горизонтальное смещение однотипных знаков, % от ширины знака

не более 5

Допустимое вертикальное смещение однотипных знаков, % от высоты матрицы,

не более 5

Допустимая пространственная нестабильность изображения (дрожание по амплитуде изображения) при частоте колебаний в диапазоне от 0,5 до 30 Гц, мм

не более 2L*10-4 (L-расстояние наблюдения, мм)

Примечание: под неравномерностью яркости понимаются отношения

где n -- число измеренных значений яркости;

Lmax -- максимальное значение яркости;

Lmin -- минимальное значение яркости

5.3 Освещенность рабочего помещения

Итак, основная нагрузка при работе за компьютером приходится на глаза. Их утомляемость во многом зависит не только от качества изображения на экране, но и от общей освещенности помещения. В то время как для обычных офисов рекомендуется освещенность до 1600 люкс, для рабочих мест, оснащенных видеотерминалами, рекомендуется освещенность 100-500 люкс. Согласно гигиеническим нормам, освещенность на поверхности стола и клавиатуре должна быть не менее 300 люкс, а вертикальная освещенность экрана - всего 100-250 люкс. Исследования физиологов и гигиенистов убедительно доказали, что и полутьма, и слишком высокая освещенность экрана приводят к быстрому зрительному утомлению.

Размещать компьютер рекомендуется так, чтобы свет (естественный или искусственный) падал сбоку, лучше слева, это избавит вас от мешающих теней и поможет снизить освещенность экрана. В качестве источников освещения рекомендуется применять люминесцентные лампы типа ЛБ со светильниками серии ЛПО36 с зеркализованными решетками. Лампы накаливания лучше использовать для местного освещения зоны рабочего документа (клавиатуры, книги, тетради). Постарайтесь, чтобы люстра в вашей рабочей комнате имела закрытые снизу светильники, так чтобы на экран монитора падал рассеянно-отраженный свет. Это избавит вас от бликов и облегчит зрительную работу. А вот настольная лампа, наоборот, должна иметь плотный, непросвечивающий абажур, направляющий свет прямо в зону рабочего документа.

Условия внешнего освещения часто влияют на оценку качества цветопередачи и других параметров отображения. Многие производители, такие как Mitsubishi и Panasonic, борются с внешними факторами, уменьшая кривизну экрана, вплоть до создания совершенно плоских экранов. По данным Panasonic, в модели PanaFlat PF70, выпускаемой этой компанией, блики по сравнению с обычными ЭЛТ уменьшены на 87%. Имеется также ряд других средств, позволяющих бороться с внешним светом, - специальные многослойные покрытия и капюшоны, такие как поставляемые с моделями серии Electron компании LaCie.

5.4 Излучения и поля

К числу вредных факторов, с которыми сталкивается человек, работающий за монитором, относятся рентгеновское и электромагнитное излучения, а также электростатическое поле. (Допустимые нормы для этих параметров представлены в таблице 2.)

Таблица 2. Допустимые значения параметров излучений, генерируемых видеомониторами

Параметры

Допустимые значения

Мощность экспозиционной дозы рентгеновского излучения на расстоянии 0,05 м вокруг видеомонитора

100 мкР/час

Электромагнитное излучение на расстоянии 0,5 м вокруг видеомонитора

по электрической составляющей:

в диапазоне 5 Гц-2 кГц

25 В/м

в диапазоне 2-400 кГц

2,5 В/м

по магнитной составляющей:

в диапазоне 5 Гц-2 кГц

250 нТл

в диапазоне 2-400 кГц

25 нТл

Поверхностный электростатический потенциал

Не более 500 В

Благодаря существующим достаточно строгим стандартам дозы рентгеновского излучения от современных видеомониторов не опасны для большинства пользователей. Исключение составляют люди с повышенной чувствительностью к нему (в частности, рентгеновские излучения от монитора опасны для беременных женщин, поскольку могут оказать неблагоприятное воздействие на плод на ранних стадиях развития).

Специалисты не пришли к однозначному выводу относительно воздействия электромагнитного излучения на организм человека, однако совершенно очевидно, что уровни излучения, фиксируемые вблизи монитора (таблица 2), опасности не представляют.

При работе монитора возникает и электростатическое поле. Уровни его напряженности невелики и не оказывают существенного воздействия на организм человека в отличие от более высоких уровней электростатического поля, характерных для промышленных условий. Более значимой для пользователей является способность заряженных микрочастиц адсорбировать пылинки, тем самым препятствуя их оседанию и повышая дополнительный риск аллергических заболеваний кожи, глаз, верхних дыхательных путей.

5.5 Стандарты на мониторы

Выделяют две основные группы стандартов и рекомендаций - по безопасности и эргономике.

К первой группе относятся стандарты UL, CSA, DHHS, CE, скандинавские SEMRO, DEMKO, NEMKO и FIMKO, а также FCC Class B. Из второй группы наиболее известны MPR-II, TCO "92 и TCO"95, ISO 9241-3, EPA Energy Star, TUV Ergonomie.

FCC Class B. Этот стандарт разработан канадской Федеральной комиссией по коммуникациям для обеспечения приемлемой защиты окружающей среды от влияния радиопомех в замкнутом пространстве. Оборудование, соответствующее требованиям FCC Class B, не должно мешать работе теле- и радиоаппаратуры.

MPR-II. Этот стандарт был выпущен в 1990 г. Шведским национальным департаментом стандартов и утвержден ЕЭС. MPR-II налагает ограничения на излучения от компьютерных мониторов и промышленной техники, используемой в офисе.

ТСО "92. Рекомендация, разработанная Шведской конфедерацией профсоюзов и Национальным советом индустриального и технического развития Швеции (NUTEK), регламентирует взаимодействие с окружающей средой. Она требует уменьшения электрического и магнитного полей до технически возможного уровня с целью защиты пользователя. Для того чтобы получить сертификат ТСО "92, монитор должен отвечать стандартам низкого излучения (Low Radiation), т. е. иметь низкий уровень электромагнитного поля, обеспечивать автоматическое снижение энергопотребления при долгом неиспользовании, отвечать европейским стандартам пожарной и электрической безопасности. Как видно из таблицы 3, требования TCO "92 являются гораздо более жесткими, чем требования MPR-II.

В 1995 г. требования ТСО были ужесточены. Заметим, что в Европе уже невозможно продать монитор, не имеющий соответствия ТСО "92, хотя подобное удовольствие обходится покупателям недешево - около 90 долл. дополнительно.

Таблица 3

Диапазон частот

Требования MPR-II (расстояние 0,5 м)

Требования TCO "92 (расстояние 0,5 м)

Электрическое поле

Сверхнизкие (5 Гц - 2 кГц)

25,5 В/м

10 В/м

Низкие (2 кГц - 400 кГц)

2,5 В/м

1 В/м

Магнитное поле

Сверхнизкие (5 Гц - 2 кГц)

250 нТл

200 нТл

Низкие (2 кГц - 400 кГц)

25 нТл

25 нТл

TUV Ergonomie - немецкий стандарт эргономики. Мониторы, отвечающие этому стандарту, прошли испытания согласно EN 60950 (электрическая безопасность) и ZH 1/618 (эргономическое обустройство рабочих мест, оснащенных дисплеями), а также отвечают шведскому стандарту MPR-II.

EPA Energy Star VESA DPMS. Согласно этому стандарту монитор должен поддерживать три энергосберегающих режима - ожидание (stand-by), приостановку (suspend) и "сон" (off). В режиме ожидания изображение на экране пропадает, но внутренние компоненты монитора функционируют в нормальном режиме, а энергопотребление снижается до 80% от рабочего состояния. В режиме приостановки, как правило, отключаются высоковольтные узлы, а потребление энергии падает до 30 Вт и менее. И наконец, в режиме так называемого "сна" монитор потребляет не более 8 Вт, а функционирует у него только микропроцессор. При нажатии любой клавиши клавиатуры или движении мыши монитор переходит в нормальный режим работы.

Российский стандарт ГОСТ 27954 - 88 на видеомониторы персональных ЭВМ. Требования этого стандарта обязательны для любого монитора, продаваемого в РФ. Основные требования приведены в таблице 4.

Таблица 4

Характеристика монитора

Требование ГОСТ 27954 - 88

Частота кадров при работе с позитивным контрастом

Не менее 60 Гц

Частота кадров в режиме обработки текста

Не менее 72 Гц

Дрожание элементов изображения

Не более 0,1 мм

Антибликовое покрытие

Обязательно

Допустимый уровень шума

Не более 50 дБА

Мощность дозы рентгеновского излучения на расстоянии 5 см от экрана при 41-часовой рабочей неделе

Не более 0,03 мкР/с

Кроме того, данным стандартом не допускается применение взрывоопасных ЭЛТ, регламентируется степень детализации технической документации на мониторы, а также устанавливаются требования стандартизации и унификации, технологичности, эргономики и технической эстетики, безопасности, технического ремонта и обслуживания, а также надежности.

Мониторы персональных компьютеров и рабочих станций при обязательной сертификации подвергаются сертификационным испытаниям по следующим параметрам:

1. Параметры безопасности - электрическая, механическая, пожарная безопасность (ГОСТ Р 50377 - 92).

2. Санитарно-гигиенические требования - уровень звуковых шумов (ГОСТ 26329 - 84 или ГОСТ 2718 - 88), ультрафиолетовое, рентгеновское излучения и показатели качества изображения (ГОСТ 27954-88).

3. Электромагнитная совместимость - излучаемые радиопомехи (ГОСТ 29216 - 91).

Сертификат выдается только на весь комплекс вышеперечисленных ГОСТов.

Согласно СанПиН, "запрещается утверждение нормативной и технической документации на новые видеодисплейные терминалы и персональные вычислительные машины, постановка их на производство, продажа и использование в производственных условиях, учебном процессе и в быту, а также их закупка и ввоз на территорию Российский Федерации без согласования нормативной и технической документации с органами Госсанэпиднадзора России и получения гигиенических сертификатов".

В настоящий момент государственная организация СЕРТИНФО выдала сертификаты соответствия на мониторы фирм ALR, Funai, HP, IBM, Samsung, Siemens Nixdorf, Sony, ViewSonic. Практически все модели Samsung, Panasonic, Sony и ViewSonic прошли российскую сертификацию.

5.6 Воздействие работы с ПК на зрение человека

Условия работы за монитором противоположны тем, которые привычны для наших глаз. В обычной жизни мы воспринимаем в основном отраженный свет (если только не смотрим на солнце, звезды или искусственные источники освещения), а объекты наблюдения непрерывно находятся в поле нашего зрения в течение хотя бы нескольких секунд. А вот при работе за монитором мы имеем дело с самосветящимися объектами и дискретным (мерцающим с большой частотой) изображением, что увеличивает нагрузку на глаза.

Таким образом, характерной особенностью труда за компьютером является необходимость выполнения точных зрительных работ на светящемся экране в условиях перепада яркостей в поле зрения, наличии мельканий, неустойчивости и нечеткости изображения. Объекты зрительной работы находятся на разном расстоянии от глаз пользователя (от 30 до 70 см) и приходится часто переводить взгляд в направлениях экран--клавиатура--документация (согласно хронометражным данным от 15 до 50 раз в минуту). Частая переадаптация глаза к различным яркостям и расстояниям является одним из главных негативных факторов при работе с дисплеями. Неблагоприятным фактором световой среды является несоответствие нормативным значениям уровней освещенности рабочих поверхностей стола, экрана, клавиатуры. Нередко на экранах наблюдается зеркальное отражение источников света и окружающих предметов. Все вышеизложенное затрудняет работу и приводит к нарушениям основных функций зрительной системы. Работающие с видеодисплейными терминалами предъявляют жалобы на боль и ощущение «песка» в глазах, покраснение век, трудности перевода взгляда с близких на далекие предметы. Отмечается быстрое утомление и затуманенность зрения, двоение предметов. Комплекс выявляемых нарушений был охарактеризован специалистами как «профессиональная офтальмопатия» или астенопия -- субъективные зрительные симптомы дискомфорта или эмоциональный дискомфорт, являющийся результатом зрительной деятельности.

Частота проявления астенопии зависит от рабочей ситуации, продолжительности работы за экраном и наличия у пользователя нарушений зрения, глазных болезней или наследственной склонности к таковым. В частности, после достижения 40-летнего возраста операторы должны регулярно проходить офтальмологическое обследование ввиду вероятности появления пресбиопии-- старческой дальнозоркости, способствующей возникновению или усилению зрительного дискомфорта. Что касается риска появления миопии-- близорукости, то при соблюдении режима труда и отдыха она, как правило, может возникнуть или усилиться только у людей, изначально к ней склонных.

Заключение

Компьютерные технологии, являясь великим достижением человечества, могут иметь отрицательные последствия для здоровья людей. Для снижения ущерба здоровью необходимо соблюдение установленных гигиенических требований к режимам труда и организации рабочих мест. Гигиенистами и физиологами проведено множество экспериментов по изучению работоспособности, выявлению причин утомления и возникновения патологических отклонений у работающих за ПЭВМ. Результаты этих экспериментов используются при разработке оптимальных режимов работы. Выбор режима зависит от таких факторов, как длительность смены, время суток, вид деятельности, тяжесть и напряженность труда, санитарно-гигиенические условия на рабочем месте.

Вообще, современный человек находится в окружении такого количества вредных влияний, пусть даже небольшой интенсивности, что его организм, достаточно устойчивый к влиянию каждого из них в отдельности, может не выдержать их общего натиска. Поэтому медики ужесточают требования к предельно допустимым уровням таких факторов и подчеркивают важность исследования проблемы комплексного воздействия факторов малой интенсивности.

Технический уровень современных мониторов не позволяет полностью исключить существование вредных воздействий. Однако это воздействие необходимо минимизировать, регламентировав ряд параметров, для чего в 1996г. были разработаны и выпущены новые санитарные нормы, действующие и поныне. Основная цель их внедрения - облегчить адаптацию к непривычным для организма человека факторам, сохранив тем самым работоспособность и здоровье пользователей ПК.


Подобные документы

  • Математические основы оптимизации. Постановка задачи оптимизации. Методы оптимизации. Решение задачи классическим симплекс методом. Графический метод. Решение задач с помощью Excel. Коэффициенты целевой функции. Линейное программирование, метод, задачи.

    реферат [157,5 K], добавлен 21.08.2008

  • Решение задачи линейного программирования графическим методом, его проверка в MS Excel. Анализ внутренней структуры решения задачи в программе. Оптимизация плана производства. Решение задачи симплекс-методом. Многоканальная система массового обслуживания.

    контрольная работа [2,0 M], добавлен 02.05.2012

  • Понятие арифметического точечного пространства. Различные виды плоскостей в пространстве. Общая задача оптимизации. Геометрия задачи линейного программирования. Графический метод решения задачи линейного программирования при малом количестве переменных.

    курсовая работа [756,9 K], добавлен 29.05.2014

  • Анализ метода линейного программирования для решения оптимизационных управленческих задач. Графический метод решения задачи линейного программирования. Проверка оптимального решения в среде MS Excel с использованием программной надстройки "Поиск решения".

    курсовая работа [2,2 M], добавлен 29.05.2015

  • Расчет производства необходимого количества продукции для получения максимальной прибыли предприятия. Математическая модель для решения задач линейного программирования. Построение ограничений и целевых функций. Исследование чувствительности модели.

    задача [74,7 K], добавлен 21.08.2010

  • Графический метод как наиболее простой и наглядный метод линейного программирования, его сущность и содержание, особенности применения на современном этапе. Этапы реализации данного метода. Описание интерфейса разработанного программного продукта.

    контрольная работа [318,0 K], добавлен 11.06.2011

  • Организационно-экономическая характеристика задачи выгрузки необходимых данных на магнитный носитель. Информационное, техническое и программное обеспечение решения данной задачи. Блок-схема алгоритма решения задачи. Экономическое обоснование программы.

    дипломная работа [559,3 K], добавлен 08.11.2010

  • Сущность и назначение основных алгоритмов оптимизации. Линейное программирование. Постановка и аналитический метод решения параметрической транспортной задачи, математическая модель. Метод решения задачи об оптимальных перевозках средствами MS Excel.

    курсовая работа [465,6 K], добавлен 24.04.2009

  • Особенности метода ветвей и границ как одного из распространенных методов решения целочисленных задач. Декомпозиция задачи линейного программирования в алгоритме метода ветвей и границ. Графический, симплекс-метод решения задач линейного программирования.

    курсовая работа [4,0 M], добавлен 05.03.2012

  • Оптимизация решения задачи с помощью алгоритма отжига. Анализ теории оптимизации как целевой функции. Метод градиентного спуска. Переменные и описание алгоритма отжига. Представление задачи коммивояжера через граф. Сведение задачи к переменным и решение.

    курсовая работа [784,0 K], добавлен 21.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.