Цвет, цветовые модели и пространства в компьютерной графике
Исследование природы цвета как качественной субъективной характеристики излучения оптического диапазона. Световое и зрительное восприятие цвета человеком. Назначение, описание моделей и структура цветовых профилей и пространств в компьютерной графике.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.10.2011 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
13
Курсовая работа
Цвет, цветовые модели и пространства в компьютерной графике
Содержание
Введение
1. О природе света и цвета
1.1 Основные цвета
1.2 Природа цветового ощущения
1.3 Цветовой тон
1.4 Колориметрия. Закон Грассмана
2. Восприятие цвета человеком
2.1 Интуитивное восприятие цвета
2.2 Зрительный аппарат человека
2.3 Световая и спектральная чувствительность глаза
2.4 Субъективные характеристики цвета
3. Модели цвета
3.1 Цветовые модели и их виды
3.2 Модель цвета XYZ
3.3 Диаграмма цветности МКО
3.4 Аддитивная Цветовая Модель RGB
3.5 Цветовые модели CMY и CMYK
3.6. Цветовая модель HSV
3.7 Цветовая модель HSB/ HLS
3.8 Цветовая модель CIE Luv / CIE Lab
3.9 Цветовая модель YUV
3.10 Цветовая модель YCbCr
3.11 Цветовая модель YIQ
3.12 Перцепционные цветовые модели
4. Цветовые профили и пространства. Кодирование и калибровка цвета
4.1 Кодирование Цвета. Палитра
4.2 Цветовые пространства
4.3 Визуализация цветового пространства
4.4 Эталонные пространства
4.5 Рабочие пространства
4.6 Цветовые профили
4.7 Типы профилей
4.8 Калибровка цвета
Заключение
Список литературы
Введение
Мы смотрим на предметы и, характеризуя их, говорим примерно следующее: он большой, мягкий, светло-голубого цвета. При описании чего-либо в большинстве случаев упоминается цвет, так как он несет огромное количество информации. На самом деле тело не имеет определенного цвета. Само понятие цвета тесно связано с тем, как человек (человеческий взгляд) воспринимает свет; можно сказать, что цвет зарождается в глазу.
Цвет - чрезвычайно сложная проблема, как для физики, так и для физиологии, т.к. он имеет как психофизиологическую, так и физическую природу. Восприятие цвета зависит от физических свойств света, т. е. электромагнитной энергии, от его взаимодействия с физическими веществами, а также от их интерпретации зрительной системой человека. Другими словами, цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет, и от системы человеческого видения. Более того, одни предметы отражают свет (доска, бумага), а другие его пропускают (стекло, вода). Если поверхность, которая отражает только синий свет, освещается красным светом, она будет казаться черной. Аналогично, если источник зеленого света рассматривать через стекло, пропускающее только красный свет, он тоже покажется черным.
Самым простым является ахроматический цвет, т.е. такой, какой мы видим на экране черно-белого телевизора. При этом белыми выглядят объекты, ахроматически отражающие более 80% света белого источника, а черными - менее 3%. Единственным атрибутом такого цвета является интенсивность или количество. С интенсивностью можно сопоставить скалярную величину, определяя черное, как 0, а белое как 1.
Если воспринимаемый свет содержит длины волн в произвольных неравных количествах, то он называется хроматическим.
При субъективном описании такого цвета обычно используют три величины: цветовой тон, насыщенность и светлота. Цветовой тон позволяет различать цвета, такие как красный, зеленый, желтый и т.д. (это основная цветовая характеристика). Насыщенность характеризует чистоту, т.е. степень ослабления (разбавления, осветления) данного цвета белым светом, и позволяет отличать розовый цвет от красного, изумрудный от ярко-зеленого и т. д. Другими словами, по насыщенности судят о том, насколько мягким или резким кажется цвет. Светлота отражает представление об интенсивности, как о факторе, не зависящем от цветового тона и насыщенности (интенсивность цвета).
Обычно встречаются не чистые монохроматические цвета, а их смеси. В основе трехкомпонентной теории света лежит предположение о том, что в центральной части сетчатки глаза находятся три типа чувствительных к цвету колбочек.
Первый воспринимает зеленый цвет, второй - красный, а третий - синий цвет. Относительная чувствительность глаза максимальна для зеленого цвета и минимальна для синего. Если на все три типа колбочек воздействует одинаковый уровень энергетической яркости, то свет кажется белым. Ощущение белого цвета можно получить, смешивая любые три цвета, если ни один из них не является линейной комбинацией двух других. Такие цвета называют основными.
Человеческий глаз способен различать около 350 000 различных цветов. Это число получено в результате многочисленных опытов. Четко различимы примерно 128 цветовых тонов. Если меняется только насыщенность, то зрительная система способна выделить уже не так много цветов: мы можем различить от 16 (для желтого) до 23 (для красного и фиолетового) таких цветов.
Таким образом, для характеристики цвета используются следующие атрибуты:
Цветовой тон. Можно определить преобладающей длиной волны в спектре излучения. Цветовой тон позволяет отличать один цвет от другого - например, зеленый от красного, желтого и других.
Яркость. Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.
Насыщенность или чистота тона. Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет, то получится светлый бледно-красный цвет.
Указанные три атрибута позволяют описать все цвета и оттенки. То, что атрибутов именно три, является одним из проявлений трехмерных свойств цвета.
Большинство людей различают цвета, а те, кто занимается компьютерной графикой, должны четко чувствовать разницу не только в цветах, но и в тончайших оттенках. Это очень важно, так как именно цвет несет в себе большое количество информации, которая ничуть не уступает в важности ни форме, ни массе, ни другим параметрам, определяющим каждое тело.
Факторы, влияющие на внешний вид конкретного цвета:
· источник света;
· информация об окружающих предметах;
· ваши глаза;
Правильно подобранные цвета могут, как привлечь внимание к желаемому изображению, так и оттолкнуть от него. Это объясняется тем, что в зависимости от того, какой цвет видит человек, у него возникают различные эмоции, которые подсознательно формируют первое впечатление от видимого объекта.
Цвет в компьютерной графике нужен для того, чтобы:
- нести в себе определенную информацию об объектах. Например, летом деревья зеленые, осенью - желтые. На черно-белой фотографии определить пору года практически невозможно, если на это не указывают какие-либо другие дополнительные факты.
- цвет необходим также для того, чтобы различать объекты.
- с его помощью можно вывести одни части изображения на первый план, другие же увести в фон, то есть акцентировать внимание на важном - композиционном - центре.
- без увеличения размера при помощи цвета можно передать некоторые детали изображения.
- в двумерной графике, а именно таковую мы видим на мониторе, так как он не обладает третьим измерением, именно при помощи цвета, точнее оттенков, имитируется (передается) объем.
- цвет используется для привлечения внимания зрителя, создания красочного и интересного изображения.
Любое компьютерное изображение характеризуется, кроме геометрических размеров и разрешения (количество точек на один дюйм), максимальным числом цветов, которые могут быть в нем использованы. Максимальное количество цветов, которое может быть использовано в изображении данного типа, называется глубиной цвета. Кроме полноцветных, существуют типы изображений с различной глубиной цвета - черно-белые штриховые, в оттенках серого, с индексированным цветом. Некоторые типы изображений имеют одинаковую глубину цвета, но различаются по цветовой модели.
1. О природе света и цвета
1.1 Основные цвета
Свет как физическое явление представляет собой поток электромагнитных волн различной длины и амплитуды. Глаз человека, будучи сложной оптической системой, воспринимает эти волны в диапазоне длин приблизительно от 350 до 780 нм. Свет воспринимается либо непосредственно от источника, например, от осветительных приборов, либо как отраженный от поверхностей объектов или преломленный при прохождении сквозь прозрачные и полупрозрачные объекты. Цвет - это характеристика восприятия глазом электромагнитных волн разной длины, поскольку именно длина волны определяет для глаза видимый цвет. Амплитуда, определяющая энергию волны (пропорциональную квадрату амплитуды), отвечает за яркость цвета. Таким образом, само понятие цвета является особенностью человеческого "видения" окружающей среды.
Рис.1.1. Три функции выравнивания цветов для отображения спектральных частот из диапазона примерно от 400 до 700 нм.
При объединении света от нескольких источников с различными преобладающими частотами интенсивность света от каждого источника можно менять, что позволит получить диапазон дополнительных цветов. На основе данного наблюдения была сформирована одна модель цвета. Оттенки, выбранные для источников, называются в ней основными цветами, а цветовой гаммой модели называется набор всех цветов, которые можно получить из основных цветов. Два основных цвета, дающих в сумме белый цвет, называются дополнительными. Примеры пар дополнительных цветов -- красный и голубой, зеленый и пурпурный, синий и желтый.
Ни один конечный набор действительных основных цветов не даст всех возможных видимых цветов. Тем не менее, для большинства задач трех основных цветов достаточно, а, используя расширенные методы, можно описать и цвета, не входящие в цветовую гамму для данного набора основных цветов. Имея набор из трех основных цветов, любой четвертый цвет можно описать с помощью процедур смешивания цветов. Следовательно, смесь одного или двух основных цветов с четвертым цветом можно представить некоторой комбинацией остальных основных цветов. В этом расширенном смысле можно считать, что набор из трех основных цветов описывает все цвета. На рис. 1.1 показан набор функций выравнивания цветов для трех основных цветов и указано, какая "величина" каждого основного цвета требуется для получения любого спектрального цвета. Кривые, изображенные на рис. 1.1, получены усреднением мнений большого числа наблюдателей. Цвета в окрестности 500 нм можно подобрать, только "вычитая" некоторую долю красного света из комбинации синего и зеленого. Это означает, что для описания цвета, близкого к 500 нм, можно только так объединить этот цвет с долей красного, чтобы получить указанную на диаграмме комбинацию синего и зеленого. Из сказанного, в частности, следует, что RGB-монитор не может отображать цвета в окрестности 500 нм.
1.2 Природа цветового ощущения
Характер цветового ощущения связан со спектральным составом действующего на глаз света и со свойствами зрительного аппарата человека. Влияние спектрального состава следует из таблицы, в которой цвета излучений сопоставлены с занимаемыми ими спектральными интервалами.
· Фиолетовый 400-450 нм
· Синий 450-480 нм
· Голубой 480-510 нм
· Зеленый 510-565 нм
· Желтый 565-580 нм
· Оранжевый 580-620 нм
· Красный 620-700 нм
Вместе с тем задача оценки цвета не решается простым измерением распределения энергии излучения по спектру, как можно предположить на основании таблицы. По интервалу, занимаемому излучением, цвет можно указать вполне однозначно: если тело излучает или отражает в пределах 565-580 нм, то цвет его всегда жёлтый. Однако обратное заключение верно не всегда: по известному цвету излучения невозможно уверенно указать его спектральный состав или длину волны. Например, если излучение желтое, то это не значит, что оно занимает названный интервал или его часть. Желтой выглядит и смесь монохроматических излучений, находящихся вне этого интервала: зеленого (l1 = 546 нм) с красным (l2 = 700 нм) при определенных соотношениях их мощностей. В общем случае видимое тождество световых пучков не гарантирует их тождества по спектральному составу. Неразличимые по цвету, пучки могут иметь как одинаковый состав, так и разный. В первом случае их цвета называются изомерными, во втором - метамерными.
Практика воспроизведения цветных объектов требует получения цвета, зрительно неотличимого от воспроизводимого. При этом не имеет значения, метамерны или изомерны оригинальный цвет и цвет-копия. Отсюда возникает потребность воспроизводить и измерять цвет, не зависимо от спектрального состава излучения, вызывающего данное цветовое ощущение. Для специалиста, использующего или воспроизводящего цвет, безразличен спектральный состав света, отражаемого образцом. Для него существенно, чтобы копия была действительно, например желтой, как образец, а не желто-зеленой или желто-оранжевой.
Теория цветового зрения объясняет, почему участок спектра, находящийся в пределах 400 - 700 нм, оказывает световое действие и по какой причине мы видим излучения в диапазоне 400 - 450 нм фиолетовым, 450 - 480 - синим и т.д. Сущность теории состоит в том, что светочувствительные нервные окончание, находящиеся в одной из оболочек глаза и называемые фоторецепторами, реагируют только на излучения видимой части спектра. Глаз содержит три группы рецепторов, из которых одна наиболее чувствительна к интервалу 400 - 500 нм, другая - 500 - 600 нм, третья - 600 - 700 нм. Рецепторы реагируют на излучения в соответствии с их спектральной чувствительностью, и ощущения всех цветов возникают в результате комбинации трех реакций.
1.3 Цветовой тон
Необходимо также уточнить, что понимается под цветовым тоном. Рассмотрим два примера спектра (рис. 1.3).
Анализ спектра, изображенного на рис. 1.3 (а), позволяет утверждать, что излучение имеет светло-зеленый цвет, поскольку четко выделяется одни спектральная линия на фоне равномерного спектра белого. А какой цвет (цветовой тон) соответствует спектру варианта (б)? Здесь нельзя выделить в спектре преобладающую составляющую, поскольку присутствуют красная и зеленая линии одинаковой интенсивности. По законам смешения цветов это Может дать оттенок желтого цвета, однако в спектре нет соответствующей линии монохроматического желтого. Поэтому под цветовым тоном следует понимать цвет монохроматического излучения, соответствующего суммарному цвету смеси. Впрочем, как именно «соответствующего» -- это также требует уточнения.
Рис 1.20 Два спектра: а - имеется явное преобладание одной составляющей. b - две составляющие с одинаковой интенсивностью
1.4 Колориметрия. Закон Грассмана
Наука, которая изучает цвет и его измерения, называется колориметрией. Она описывает общие закономерности цветового восприятия света человеком.
Одними из основных законов колориметрии являются законы смешивания цветов. Эти законы в наиболее полном виде были сформулированы в 1853 году немецким математиком Германам Грассманом:
1. Цвет трехмерен - для его описания необходимы три компоненты. Любые четыре цвета находятся в линейной зависимости, хотя существует неограниченное число линейно независимых совокупностей из трех цветов.
Иными словами, для любого заданного цвета (Ц) можно записать такое цветовое уравнение, выражающее линейную зависимость цветов:
Ц = к1 Ц1 + к2 Ц2 + к3 Ц3
,где Ц1, Ц2, Ц3 -- некоторые базисные, линейно независимые цвета, коэффициенты k1,k2,k3 указывают количество соответствующего смешиваемого цвета. Линейная независимость цветов Ц1, Ц2, Ц3 означает, что ни один из них не может быть выражен взвешенной суммой (линейной комбинацией) двух других.
Если на глаз действует смесь излучений, то реакции рецепторов на каждое из них складываются. Смешение окрашенных световых пучков даёт пучок нового цвета. Получение заданного цвета называется его синтезом. Законы синтеза цвета сформулировал Г. Грасман (1853 г.).
Первый закон Грасмана (трехмерности). Любой цвет однозначно выражается тремя, если они линейно независимы.
Линейная независимость заключается в том, что нельзя получить никакой из указанных трех цветов сложением двух остиальных. Закон утверждает возможность описания цвета с помощью цветовых уравнений.
Второй закон Грасмана (непрерывности). При непрерывном изменении излучения цвет изменяется также непрерывно.
Не существует такого цвета, к которому невозможно было бы подобрать бесконечно близкий.
Третий закон Грасмана (аддитивности). Цвет смеси излучений зависит только от их цветов, но не от спектрального состава.
Из этого закона следует факт, имеющий первостепенное значение для теории цвета, - аддитивность цветовых уравнений: если цвета нескольких уравнений описаны цветовыми уравнениями, то цвет выражается суммой этих уравнений.
Смысл третьего закона становится более понятным, если учесть, что один и тот же цвет (в том числе и цвет смешиваемых компонент) может быть получен различными способами. Например, смешиваемая компонента может быть получена, в свою очередь, смешиванием других компонент.
модель цвет пространство компьютер графика
2. Восприятие цвета человеком
2.1 Интуитивное восприятие цвета
Мы попытались объяснить цвет с помощью длин ваш и спектра. Как оказывается, это неполное представление о цвете, а вообще говоря, оно неправильно.
Во-первых, глаз человека-- не спектроскоп. Зрительная система Человека, скорее всего, регистрирует не длину волны и спектр, а формирует ощущения иным способом.
Во-вторых, без учета особенностей человеческого восприятия невозможно объяснить смешение цветов. Например, белый цвет действительно можно представить равномерным спектром смеси бесконечного множества монохроматических цветов. Однако тот же белый цвет можно создать смесью всего двух специально подобранных монохроматических цветов (такие цвета называются взаимно дополнительными).
Во всяком случае, человек воспринимает эту смесь как белый цвет. А можно получить белый цвет, смешав три или более монохроматических излучений Излучения различные по спектру, но дающие один и тот же цвет, называются метамерными.
Многие люди воспринимают понятия, связанные с цветом, на более интуитивном уровне, чем набор трех чисел, дающих относительные пропорции основных цветов. Обычно гораздо проще представить создание пастельного красного цвета, прибавляя белый к чистому красному, а темно-синего -- добавляя черный к чистому синему. Исходя из этого, графические пакеты часто предлагают палитры цветов с использованием нескольких моделей цвета. Одна модель обеспечивает пользователю интуитивный цветовой интерфейс, а другие описывают компоненты цвета для выходных устройств.
2.2 Зрительный аппарат человека
Системы отображения графической информации воздействуют на зрительный аппарат человека, поэтому с необходимостью должны учитывать как физические, так и психофизиологические особенности зрения.
На рис. 2.2 показан поперечный размер глазного яблока человека.
Свет попадает в глаз через роговицу и фокусируется хрусталиком на внутренний слой глаза, называемый сетчаткой.
Сетчатка глаза содержит два принципиально различных типа фоторецепторов - палочки, обладающие широкой спектральной кривой чувствительности, вследствие чего они не различают длин волн и, следовательно, цвета, и колбочки, характеризующиеся узкими спектральными кривыми и поэтому обладающие цветовой чувствительностью.
Колбочек существует три типа отличающихся фоточувствительным пигментом. Колбочки обычно называют "синими", "зелеными" и "красными" в соответствии с наименованием цвета, для которого они оптимально чувствительны. Выдаваемое колбочкой значение является результатом интегрирования спектральной функции с весовой функцией чувствительности.
Рис. 2.2. Поперечный разрез глаза
Светочувствительные клетки, известные как колбочки и палочки, формируют слой клеток в задней части сетчатки.
Колбочки и палочки содержат зрительные пигменты. Зрительные пигменты очень похожи на любые другие пигменты, в том, что они поглощают свет и степень поглощения зависит от длины волны. Важное свойство зрительных пигментов состоит в том, что когда зрительный пигмент поглощает фотон света, то изменяется форма молекулы и в то же самое время происходит переизлучение света.
Пигмент при этом изменился, измененная молекула поглощает свет менее хорошо чем прежде, т.е. как часто говорят, "отбеливается". Изменение формы молекулы и переизлучение энергии некоторым, пока еще не вполне ясным образом, инициируют светочувствительную клетку к выдаче сигнала.
Информация от светочувствительных рецепторов (колбочек и палочек) передается другим типам клеток, которые соединены между собой. Специальные клетки передают информацию в зрительный нерв.
Таким образом волокно зрительного нерва обслуживает несколько светочувствительных рецепторов, т.е. некоторая предварительная обработка изображения выполняется непосредственно в глазу, который по сути представляет собой выдвинутую вперед часть мозга.
Область сетчатки, в которой волокна зрительного нерва собираются вместе и выходят из глаза, лишена светочувствительных рецепторов и называется слепым пятном.
Таким образом, свет должен вначале пройти два слоя клеток, прежде чем он воздействует на колбочки и палочки.
Причины для такого обратного устройства сетчатки не полностью поняты, но одно из объяснений состоит в том, что расположение светочувствительных клеток в задней части сетчатки позволяет любому паразитному непоглощенному свету попасть на клетки находящиеся непосредственно позади сетчатки, которые содержат черный пигмент - меланин. Клетки, содержащие меланин, также помогают химически восстанавливать светочувствительный визуальный пигмент в колбочках и палочках после того, как они были отбелены на свету.
Интересно отметить, что природа создала целый ряд конструкций глаза. При этом глаза у всех позвоночных похожи на глаза человека, а глаза у беспозвоночных либо сложные (фасеточные) как у насекомых, либо недоразвитые в виде светочувствительного пятна. Только у осьминогов глаза устроены как у позвоночных, но светочувствительные клетки находятся непосредственно на внутренней поверхности глазного яблока, а не как у нас позади других слоев, занимающихся предварительной обработкой изображения. Поэтому, возможно, особого смысла в обратном расположении клеток в сетчатке нет. А это просто один из экспериментов природы.
2.3 Световая и спектральная чувствительность глаза
Способность глаза реагировать на возможно малый поток излучения называется световой чувствительностью. Она измеряется, как величина, пороговой яркости. Пороговой называется та наименьшая яркость объекта, например светового пятна, при которой оно может быть обнаружено с достаточной вероятность на абсолютно черном фоне. Вероятность обнаружения зависит не только от яркости объекта, но и от угла зрения, под которым он рассматривается, или, как говорят, от его углового размера. С возрастанием углового размера растет число рецепторов, на которое проецируется пятно. Практически, однако, с увеличением угла зрения более чем на 50° чувствительность перестаёт изменяться.
В соответствии с этим световая чувствительность Sп. определяется как величина, обратная пороговой яркости Bп., при условии, что угол зрения 50°:
Sп. = (1 / Вп.) 50°
Световая чувствительность очень велика. Так, по данным Н. И. Пинегина, для отдельных наблюдателей минимум энергии, необходимый для появления зрительного эффекта, составляет 3-4 кванта. Это значит, что в благоприятных условиях палочковая световая чувствительность глаза близка к предельной, физически мыслимой. Колбочковая световая чувствительность, обеспечивающая цветовые ощущения, намного ниже «ахроматической», палочковой. По Н. И. Пинегину, для возбуждения колбочкового зрения необходимо, чтобы на одну колбочку в среднем упало не менее 100 квантов. Монохроматические излучения действуют на глаз по-разному. Его реакция максимальна на среднюю часть спектра. Чувствительность к монохроматическим, определяемая как относительная, называется спектральной. Реакция глаза, выражающаяся в возникновении светового ощущения, зависит, во-первых, от потока излучения Фl, упавшего на сетчатку, а во-вторых, от той доли потока, которая воздействует на рецепторы. Эта доля есть спектральная чувствительность kl. Иногда для обозначения того же понятия применяется термин спектральная эффективность излучения. Произведение kl и Фl, определяет характеристику потока излучения,связанную с уровнем его светового действия называемую световым потоком Fl.
Fl = Фl kl. (1)
Следовательно, абсолютное значение спектральной чувствительности определяется отношением:
kl = Fl / Фl.
Глаз имеет наибольшую спектральную чувствительность к излучению l = 555 нм, относительно которой определяются все другие значения этой величины. При световых измерениях значение kl в формуле (1) принято заменять произведением k555 vl, где vl -относительное значение спектральной чувствительности, называемое относительной спектральной световой эффективностью излучения (видностью): vl = kl / v555.
В таб. 2.3 даны значения относительной спектральной световой эффективности некоторых излучений.
Таблица 2.3.
Наименование цвета световых потоков |
Длина волны, нм |
Относительная спектральная Световая эффективность |
|
Синевато-пурпурный (фиолетовый) (bP) |
380 |
0,0001 |
|
Пурпурно-синий (сине-фиолетовый) (bP) |
480 |
0,0116 |
|
Синий (B) |
465 |
0,075 |
|
Зеленовато-синий (gB) |
482 |
0,15 |
|
Сине-зелёный (BG) |
487 |
0,18 |
|
Синевато-зелёный (bG) |
493 |
0,24 |
|
Зелёный (G) |
498 |
0,29 |
|
Желтовато-зелёный (yG) |
530 |
0,862 |
|
Желто-зелёный (YG) |
555 |
1,00 |
|
Зеленовато-желтый (gY) |
570 |
0,952 |
|
Желтый (Y) |
575 |
0,91 |
|
Желтовато-оранжевый (y0) |
580 |
0,87 |
|
Оранжевый (O) |
586 |
0.80 |
|
Красновато-оранжевый (r0) |
596 |
0.68 |
|
Красный (R) |
620 |
0.381 |
2.4 Субъективные характеристики цвета
Характер цветового ощущения зависит как от суммарной реакции цветочувствительных рецепторов, так и от соотношения реакций каждого из трёх типов рецепторов. Суммарная реакция определяет светлоту, а соотношение ее долей - цветность. Когда излучение раздражает все рецепторы одинаково (единица интенсивности раздражения - «доля участия в белом»), его цвет воспринимается как белый, серый или как черный. Белый, серый и черный цвета называются ахроматическими. Эти цвета не различаются качественно.
Разница в зрительных ощущениях при действии на глаз ахроматических излучений зависит только от уровня раздражения рецепторов. Поэтому ахроматические цвета могут быть заданы одной психологической величиной - светлотой.
Если рецепторы разных типов раздражены неодинаково, возникает ощущение хроматическое цвета. Для его описания нужны уже две величины светлота и цветность. Качественная характеристика зрительного ощущения, определяемая как цветность, двумерна: складывается из насыщенности и цветового тона. В тех случаях, когда, когда все рецепторы раздражены почти одинаково, цвет близок к ахроматическому: качество цвета едва выражено. Это, в частности, белый с синим оттенком, синевато-серый и т.д. Чем больше перевес в раздражении рецепторов одного из двух типов, тем сильнее ощущается качество цвета, его хроматичность. Когда, например, возбуждены только красночувствительные рецепторы, мы видим чисто красный цвет. Весьма далекий от ахроматического.
Степень отличия хроматического цвета от ахроматического называется насыщенностью. Светлота и насыщенность - характеристики, недостаточные для полного определения цвета. Когда говорят «насыщенный красный» или «малонасыщенный зелёный», то кроме насыщенности, упоминается цветовой тон цвета. Это, то его свойство, которое подразумевают в обыденной жизни, когда называют цвет предмета. Несмотря на очевидность понятия, общепризнанного определения термина «цветовой тон» нет. Одно из них дается в такой форме: цветовой тон - это характеристика цвета, определяющая его сходство с известным цветом (неба, зелени, песка и т. д.) и выражаемая словами «синий, зеленый. Желтый и т. д.».
Цветовой тон определяется рецепторами, дающими наибольшую реакцию. Если цветовое ощущение формируется в результате одинакового раздражения рецепторов двух типов при меньшем вкладе третьего, то возникает цвет промежуточного тона. Так, голубой цвет ощущается при одинаковых реакциях зеленочувствительных и синечувствительных оболочек. Реакция рецепторов, получивших наименьшее раздражение, определяет насыщенность.
Ощущение желтого возникает при равных реакциях красночувствительных и зеленочувствительных колбочек. Если усиливать возбуждение красночувствительных, цветовой тон смещается в сторону оранжевого. Если вызывать раздражение и у синечувствительных, насыщенность упадет. Цветовой тон, насыщенность и светлота данного цвета зависят не только от спектрального состава излучения, но и от условий наблюдения, состояния наблюдателя, цвета фона и т.д. Поэтому рассмотренные здесь характеристики называются субъективными.
3. Модели цвета
3.1 Цветовые модели и их виды
Наука о цвете - это довольно сложная и широкомасштабная наука, поэтому в ней время от времени создаются различные цветовые модели, применяемые в той либо иной области. Одной из таких моделей и является цветовой круг.
Многим известно о том, что существует 3 первичные цвета, которые невозможно получить и которые образуют все остальные. Основные цвета - это желтый, красный и синий. При смешивании желтого с красным получается оранжевый, синего с желтым - зеленый, а красного с синим - фиолетовый. Таким образом, можно составить круг, который будет содержать все цвета. Он представлен на рис. и называется большим кругом Освальда.
Наряду с кругом Освальда есть еще и круг Гете, в котором основные цвета расположены в углах равностороннего треугольника, а дополнительные - в углах перевернутого треугольника.
Друг напротив друга расположены контрастные цвета.
Для описания излучаемого и отраженного цвета используются разные математические модели - цветовые модели (цветовое пространство), т.е. - это способ описания цвета с помощью количественных характеристик. Цветовые модели могут быть аппаратно-зависимыми (их пока большинство, RGB и CMYK в их числе) и аппаратно-независимыми (модель Lab). В большинстве «современных» визуализационных пакетов (например, в Photoshop) можно преобразовывать изображение из одной цветовой модели в другую.
В цветовой модели (пространстве) каждому цвету можно поставить в соответствие строго определенную точку. В этом случае цветовая модель - это просто упрощенное геометрическое представление, основанное на системе координатных осей и принятого масштаба.
Основные цветовые модели:
· RGB;
· CMY (Cyan Magenta Yellow);
· CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет);
· HSB;
· Lab;
· HSV (Hue, Saturation, Value);
· HLS (Hue, Lightness, Saturation);
· и другие.
В цифровых технологиях используются, как минимум четыре, основных модели: RGB, CMYK, HSB в различных вариантах и Lab. В полиграфии используются также многочисленные библиотеки плашечных цветов.
Цвета одной модели являются дополнительными к цветам другой модели. Дополнительный цвет - цвет, дополняющий данный до белого. Дополнительный для красного - голубой (зеленый+синий), дополнительный для зеленого - пурпурный (красный+синий), дополнительный для синего - желтый (красный+зеленый) и т.д.
По принципу действия перечисленные цветовые модели можно условно разить на три класса:
· аддитивные (RGB), основанные на сложении цветов;
· субтрактивные (CMY, CMYK), основу которых составляет операция вычитания цветов (субтрактивный синтез);
· перцепционные (HSB, HLS, LAB, YCC), базирующиеся на восприятии.
Аддитивный цвет получается на основе законов Грассмана путем соединения лучей света разных цветов. В основе этого явления лежит тот факт, что большинство цветов видимого спектра могут быть получены путем смешивания в различных пропорциях трех основных цветовых компонент. Этими компонентами, которые в теории цвета иногда называются первичными цветами, являются красный (Red), зеленый (Green) и синий (Вlue) цвета. При попарном смешивании пер-
вичных цветов образуются вторичные цвета: голубой (Сyan), пурпурный (Magenta) и желтый (Yellow). Следует отметить, что первичные и вторичные цвета относятся к базовым цветам.
Базовыми цветами называют цвета, с помощью которых можно получить практически весь спектр видимых цветов.
Для получения новых цветов с помощью аддитивного синтеза можно использовать и различные комбинации из двух основных цветов, варьирование состава которых приводит к изменению результирующего цвета.
Таким образом, цветовые модели (цветовое пространство) представляют средства для концептуального и количественного описания цвета. Цветовой режим - это способ реализации определенной цветовой модели в рамках конкретной графической программы.
3.2. Модель цвета XYZ
Рис. 3.2. Три функции подбора цветов для основных МКО.
Набор основных цветов МКО обычно называется моделью цвета XYZ, где параметры X, Y и Z представляют величину каждого основного цвета МКО, требуемую для получения выбранного цвета. Таким образом, цвет в модели XYZ описывается так же, как, например, в модели RGB.
В трехмерном пространстве цветов XYZ любой цвет С(Х) представляется как:
С(А) = (X, Y, Z) (1.1)
где X,Y,Z вычисляются из функций подбора цвета (рис. 3.2):
(1.2)
Параметр `'k'' в этих формулах равен 683 люмен/ватт, где "люмен" -- единица измерения излучения в единичный телесный угол для "стандартного" точечного источника света (когда-то назывался свечой). Функция I() представляет спектральное излучение (избирательная интенсивность света в определенном направлении), а функция подбора цветов f выбирается так, чтобы параметр Y был равен яркости этого цвета. Значения светимости обычно нормируются в диапазон 0-100, где 100 представляет светимость белого света.
Любой цвет в пространстве цветов XYZ можно, используя единичные векторы X, Y, Z, представить в виде аддитивной комбинации основных цветов. Следовательно, уравнение (1.2) можно записать так:
С() = XX+YX+ZX. (1.3)
Нормированные значения XYZ
При обсуждении свойства цвета удобно нормировать величины в уравнении (1.2) на сумму X+Y+Z, представляющую общую лучистую энергию. Тогда нормированные величины можно вычислить следующим образом:
(1.4)
Поскольку х + у + z = 1, любой цвет можно представить, используя только величины х и у. Кроме того, мы нормировали набор параметров на общую энергию, так что параметры хну зависят теперь только от опенка и чистоты, поэтому они часто называются координатами цветности. Однако сами по себе значения х и у не позволяют полностью описать все свойства цвета, и по ним получить величины X, У и Z нельзя. Следовательно, полное описание цвета обычно дается с помощью трех значений: х, у и светимости (яркости) Y. Оставшиеся величины МКО вычисляются как:
(1.5)
где Z = 1 -- х -- у. С помощью координат цветности (х, у) на двухмерной диаграмме можно представить все цвета.
3.3 Диаграмма цветности МКО
Если изобразить нормированные значения x и у для цветов видимой части спектра, получим языкообразную кривую, показанную на рис. 3.3. Данная кривая называется диаграммой цветности МКО. Точки вдоль кривой представляют спектральные цвета (чистые цвета). Линия, соединяющая красную и фиолетовую точки и именуемая пурпурной линией, не является частью спектра. Внутренние точки диаграммы представляют все возможные комбинации цветов. Точка С на диаграмме соответствует положению белого света. В действительности данная точка изображена для источника белого света, известного как иллюминат С, который используется в качестве стандартной аппроксимации дневного света.
Рис. 3.3. Диаграмма цветности МКО для спектральных цветов от 400 до 700 нм.
3.4 Аддитивная Цветовая Модель RGB
Рис. 3.4.1. Модель цвета RGB. Любой цвет в пределах единичного куба можно описать в форме аддитивной комбинации трех основных цветов
Согласно трехцветной теории зрения глаза человека воспринимают цвет посредством стимуляции трех зрительных пигментов в колбочках сетчатки. Один из этих пигментов более чувствителен к свету с длиной порядка 630 нм (красный), другой имеет максимум чувствительности вблизи 530 нм (зеленый), а третий - на частоте порядка 450 нм (синий). Сравнивая интенсивности источников света, мы ощущаем цвет света. Данная теория зрения является основой для отображения цветовых выходов на мониторе с использованием трех основных цветов -- красного (red), зеленого (green) и синего (blue), что называется моделью цвета RGB.
Данную модель можно представить, используя единичный куб, построенный по осям R, G и В, как показано на рис. 3.4.1. Начало координат представляет черный цвет, а противоположная вершина с координатами (1, 1, 1) -- белый. Вершины куба, расположенные по осям, представляют основные цвета, а оставшиеся вершины -- дополнительные цвета.
Вкратце история системы RGB такова. Томас Юнг (1773-1829) взял три фонаря и приспособил к ним красный, зеленый и синий светофильтры. так были получены источники света соответствующий цветов. направив на белый экран свет этих трех источников, ученый получил такое изображение (рис. 3.4.2). На экране свет от источников давал цветные круги. В местах пересечения кругов наблюдалось смешивание цветов. Желтый цвет получался путем смешивания красного и зеленого, голубой - смесь зеленого и синего, пурпурный - синего и красного, белый - всех трех основных цветов. Некоторое время спустя Джеймс Максвелл (1831-1879) изготовил первый колориметр, с помощью которого человек мог зрительно сравнить монохроматический цвет и цвет смешивания в заданной пропорции компонент RGB. Регулируя яркость каждой из смешиваемых компонент, можно добиться уравнивания цветов смеси и монохроматического излучения.
Рис. 3.4.2. Модель цвета RGB
Рис. 12.13. Цветовая гамма RGB для координат цветности NTSC. Иллюминат С находится в точке с координатами (0,310; 0.316) со значением яркости Y = 100,0
Как и система XYZ, RGB -- это аддитивная модель. Каждую точку (цвет) внутри единичного куба можно представить взвешенной векторной суммой основных цветов, используя единичные векторы R, G и В:
(3.4)
где параметры R, G и В принимают значения из диапазона 0-1. Например, пурпурная вершина достигается сложением максимальных красного и синего значений, в результате чего получается тройка (1,0,1), а белый цвет (1, 1, 1) представляет собой сумму максимальных значений красного, зеленого и синего. Оттенки серого представлены вдоль главной диагонали куба, идущей от начала координат (черный) к белой вершине. Точки вдоль этой диагонали получают равный вклад от всех основных цветов, а серая точка на полпути между белым и черным представлена как (0,5; 0,5; 0,5).
К настоящему времени система RGB является официальным стандартом. Решением Международной Комиссии по Освещению - МКО в 1931г. были стандартизированы основные цвета, которые было рекомендовано использовать в качестве R, G и B. Это монохроматические цвета светового излучения с длинами волн соответственно:
· R - 700 нм
· G - 546.1 нм
· B - 435.8 нм
Красный цвет получается с помощью лампы накаливания с фильтром. Для получения чистых зеленого и синего цветов используется ртутная лампа. также стандартизировано значение светового потока для каждого основного цвета.
Система RGB имеет неполный цветовой охват - некоторые насыщенные цвета не могут быть представлены смесью указанных трех компонент. В первую очередь, это цвета от зеленого до синего, включая все оттенки голубого. Речь здесь идет о насыщенных цветах, поскольку, например, ненасыщенные голубые цвета смешиванием компонентов RGB получить можно. несмотря на неполный охват, система RGB широко используется в настоящее время - в первую очередь, в цветных телевизорах и дисплеях компьютеров. отсутствие некоторых оттенков цвета не слишком заметно.
Еще одним фактором, способствующим популярности системы RGB, является ее наглядность - основные цвета находятся в трех четко различимых участках видимого спектра.
Кроме того, одной из гипотез, объясняющих цветовое зрение человека, является трехкомпонентная теория, которая утверждает, что в зрительной системе человека есть три типа светочувствительных элементов. Один тип элементов реагирует на зеленый, другой тип - на красный, а третий тип - на синий цвет. Такая гипотеза высказывалась еще Ломоносовым, ее обоснованием занимались многие ученые, начиная с Т.Юнга. Впрочем, трехкомпонентная теория не является единственной теорией цветового зрения человека.
3.5 Цветовые модели CMY и CMYK
На мониторе отображение цветовых растров происходит путем объединения света, испускаемого люминофорами экрана, что является процессом аддитивным. В то же время, устройства выдачи документальных копий, такие как принтеры и плоттеры, дают цветное изображение, проливая на бумагу цветные пигменты. Цветное изображение на бумаге видно потому, что мы видим отраженный свет, т.е. благодаря процессу вычитания.
Субтрактивную (основанная на вычитании) модель цвета можно сформировать, используя три основных цвета -- голубой (cyan), пурпурный (magenla) и желтый (yellow). Как отмечалось выше, голубой цвет можно описать как сумму зеленого и синего. Следовательно, свет, отраженный от голубых чернил, содержит только зеленый и синий компоненты, а красный компонент поглощается, или вычитается, чернилами. Подобным образом пурпурные чернила вычитают зеленый компонент из падающего света, а желтые чернила -- синий. Представление модели CMY в форме единичного куба иллюстрируется на рис. 3.5.2.
Рис. 3.5.1. Модель цвета CMY
В модели CMY точка (1,1,1) представляет черный цвет, поскольку из падающего света вычтены вес компоненты. Начало координат представляет белый свет. Равные доли всех основных цветов дают оттенки серого и располагаются вдоль главной диагонали куба. Комбинация голубых и пурпурных чернил даст синий цвет, поскольку из падающего света поглощены красный и зеленый компоненты. Подобным образом, комбинация голубых и желтых чернил дает зеленый свет, а комбинация пурпурных и желтых -- красный.
Рис. 3.5.2. Модель цвета CMY. Точки внутри единичного куба описываются вычитанием из белого цвета заданных доз основных цветов
В процессе печати CMY часто используется набор капель четырех чернил, которые располагаются очень близко, подобно тому, как в RGB-мониторе используются три люминофорные точки. Таким образом, на практике модель цвета CMY называется моделью CMYK, где К -- это параметр черного цвета. Для каждого из основных цветов (cyan, magenta и yellow) используется своя чернильница, и еще в одной содержатся черные чернила. Последняя чернильница нужна потому, что отраженный свет от смеси голубого, пурпурного и желтого чернил обычно дает только оттенки серого. Некоторые плоттеры позволяют получать различные комбинации цветов, разбрызгивая чернила трех основных цветов. Для черно-белой, или полутоновой (gray-scale), печати используется только черная чернильница.
Данная модель -- основная модель полиграфии. Пурпурный, голубой, желтый цвета составляют так называемую полиграфическую триаду, и при печати этими красками большая часть видимого цветового спектра может быть воспроизведена на бумаге. Однако реальные краски имеют примеси, их цвет может быть не идеальным, и смешение трех основных красок, которое должно давать черный цвет, дает вместо этого неопределенный грязно-коричневый. Кроме того, для получения интенсивного черного необходимо положить на бумагу большое количество краски каждого цвета. Это приведет к переувлажнению бумаги, качество печати при этом снизится. К тому же использование большого количества краски неэкономно.
Достоинством модели является:
- независимость каналов (изменение процента любого из цветов не влияет на остальные),
- это родная модель для триадной печати, только ее понимают растровые процессоры - RIP выводных устройств (неделенные RGB изображения на пленках могут выйти серыми и только на черной фотоформе).
Недостатками этой модели являются:
- узкий цветовой охват, обусловлен несовершенством пигментов и отражающими свойствами бумаги,
- не совсем точное отображение цветов CMYK на мониторе.
- многие фильтры растровых программ в этой модели не работают,
- на 30% требуется больший объем памяти по сравнению с моделью RGB.
Рис. 3.5.3. Получение модели CMY из RGB
Переход от RGB-представления в систему CMY можно описать следующим матричным преобразованием:
(3.5.1)
где белая точка в пространстве RGB представлена единичным вектором-столбцом. При переходе от CMY-представления в систему RGB используется матричное преобразование:
(3.5.2)
В этом преобразовании единичный вектор-столбец представляет черную точку в пространстве цветов CMY.
Для преобразования из RGB в CMYK вначале нужно положить К = max(R, G, В). Далее К вычитается из С, М и У в уравнении (3.5.1). Подобным образом для преобразования из CMYK в RGB выбирается К = min(R, G, В), затем К вычитается из R, G и В согласно уравнению (3.5.2). На практике данные уравнения часто модифицируются с целью улучшения качества печати в конкретной системе.
Рис. 3.5.4. Куб цветов RGB, наблюдаемый вдоль диагонали, идущей от белого к черному (а), контур куба имеет форму шестиугольника (б).
3.6 Цветовая модель HSV
В интерфейсах выбора цвета часто используется модель цвета, основанная на интуитивных концепциях, а не на наборе основных цветов. Отметим, что спецификацию цвета в интуитивной модели можно дать, выбирая спектральный цвет и долю белого и черного, которую нужно добавить к этому цвету, чтобы получить различные тени, оттенки и тона.
Параметрами цвета в этой модели являются оттенок (hue - H), насыщенность (saturation -- S) и значение (value -- V). Чтобы ввести это трехмерное пространство цветов, параметры HSV связываются с направлениями RGB-куба. Если представить, что мы смотрим на куб вдоль диагонали от белой вершины к черной (началу координат), контур куба будет иметь форму шестиугольника (рис. 3.5.4). Границы шестиугольника представляют различные оттенки, а сам он используется в качестве основания шестиугольного конуса (рис. 3.6.1). В пространстве HSV насыщенность S измеряется вдоль горизонтальной оси, а значения параметра V -- вдоль вертикальной оси, проходящей через центр шестиугольника.
Оттенок представляется как угол, отсчитываемый от вертикальной оси и меняющийся от 0е (красный) до 360°. Вершины шестиугольника разделены интервалами по 60°. Желтому цвету соответствует 60°, зеленому -- 120°, голубому (противоположность красного) -- Н = 180°. Вообще, вес дополнительные цвета отличаются на 180°.
Рис. 3.6.1. Шестиугольный конус HSV
Параметр насыщения S используется для обозначения чистоты цвета. Чистый (спектральный) цвет имеет значение 5 = 1,0, и значения S уменьшаются к шкале полутонов (S = 0) в центре шестиугольного конуса.
Значение V меняется от 0 в вершине конуса (черная точка) до 1,0 в плоскости основания, где цвета имеют максимальную интенсивность. При V = 1,0 и. S =1,0 имеем чистые оттенки. Белой точке соответствуют значения параметров V = 1,0 и S = 0.
Отметим, что для большинства пользователей эта модель выбора цветов является более удобной. Начав с выбора чистого оттенка, который задаст угол оттенка Н, и положив V = S = 1,0, мы описываем искомый цвет, добавляя к имеющемуся оттенку белый либо черный цвет. Прибавление черного уменьшает значение V при постоянном S. Чтобы получить темно-синий цвет, например, V, нужно положить равным 0,4 при S = 1,0 и H = 240°. Подобным образом, если к выбранному оттенку нужно добавить белый цвет, при постоянном V уменьшается параметр S. Светло-синий цвет можно получить при 5 = 0,3 и V = 1,0, Я = 240°. Если к цвету прибавить немного белого и немного черного, это приводит к уменьшению V и S. В интерфейсе к описанной модели параметр HSV обычно можно выбирать с помощью палитры цветов, содержащей ползунки и цветовой круг.
Выбор теней, оттенков, тонов.
В плоскости сечения пирамиды HSV, показанной на рис. 3.6.2, представляются области цвета для выбора теней, оттенков и тонов. Прибавление черного к спектральному
Рис. 3.6.2. Сечения конуса HSV, демонстрирующие тени, оттенки и тона
Цвету уменьшает V вдоль стороны конуса в направлении черной точки. Следовательно, различные тени представлены значениями S= 1,0 и 0,0 ? V ? 1,0. Прибавление белого к спектральным цветам даст оттенки вдоль плоскости основания конуса, где значения параметров равны V = 1,0 и 0 < S < 1,0. Для получения различных тонов к спектральным цветам прибавляется и черный, и белый цвет, что даст точки, лежащие в треугольном сечении конуса.
Человеческий глаз способен различить около 128 тонов и 130 оттенков (уровней насыщения). Для каждого из них можно определить несколько теней (значений), в Зависимости от выбранного оттенка. Для желтого цвета можно различить порядка 23 теней, для синего цвета это число составляет 16. Это означает, что всего человеческий глаз может различить 128х 130x23 = 382 720 цветов. Для большинства графических приложений достаточно 128 оттенков. 8 уровней насыщенности и 16 значений. При таких диапазонах параметров модель HSV предлагает пользователю 16 384 цветов. Для хранения этих цветов можно использовать 14 (или меньше) бит на пиксель и таблицы кодов цвета.
3.7 Цветовая модель HSB/ HLS
Здесь заглавные буквы не соответствуют никаким цветам, а символизируют тон (цвет), насыщенность и яркость (Hue Saturation Brightness). Предложена в 1978 году. Все цвета располагаются по кругу, и каждому соответствует свой градус, то есть всего насчитывается 360 вариантов - H определяет частоту света и принимает значение от 0 до 360 градусов (красный - 0, желтый - 60, зеленый - 120 градусов и так далее), т.е. любой цвет в ней определяется своим цветом (тоном), насыщенностью (то есть добавлением к нему белой краски) и яркостью.
Насыщенность определяет, насколько ярко выраженным будет выбранный цвет. 0 - серый, 100 - самый яркий и чистый из возможных вариантов.
Параметр яркости соответствует общепризнанному, то есть 0 - это черный цвет.
Такая цветовая модель намного беднее рассмотренной ранее RGB, так как позволяет работать всего лишь с 3 миллионами цветов.
Эта модель аппаратно-зависимая и не соответствует восприятию человеческого глаза, так как глаз воспринимает спектральные цвета как цвета с разной яркостью (синий кажется более темным, чем красный), а в модели HSB им всем приписывается яркость 100%.
Насыщенность (Saturation) - это параметр цвета, определяющий его чистоту. Отсутствие (серых) примесей (чистота кривой) соответствует данному параметру. Уменьшение насыщенности цвета означает его разбеливание. Цвет с уменьшением насыщенности становится пастельным, блеклым, размытым. На модели все одинаково насыщенные цвета располагаются на концентрических окружностях, т. е. можно говорить об одинаковой насыщенности, например, зеленого и пурпурного цветов, и чем ближе к центру круга, тем все более разбеленные цвета получаются. В самом центре любой цвет максимально разбеливается, проще говоря, становится белым цветом.
Подобные документы
Понятия теории цвета, его элементы. Физическая природа света и цвета. Излученный и отраженный свет. Спектральные характеристики отражения и пропускания. Стандартные источники света. Применение эффектов в растровой графике к векторному изображению.
контрольная работа [4,5 M], добавлен 03.06.2013Преобразование "естественной" информации в дискретную форму. Анализ процессов дискретизации и квантования изображения. Векторные и растровые процедуры, применяемые в компьютерной графике. Законы математического описания цвета и виды цветовых моделей.
презентация [208,4 K], добавлен 29.01.2016Средства описания цветовых оттенков, которые могут быть воспроизведены на экране компьютера и на принтере. Система аддитивных и субтрактивных цветов в компьютерной графике. Ахроматическое (черно-белое) изображение, тона, полутона и оттенки серого.
презентация [204,1 K], добавлен 06.01.2014Понятие цвета с точки зрения ЭВМ, принципы хранения в памяти ЭВМ графической информации. Индексированный цвет, работа с палитрой. Цветовая модель CMYK. Особые взаимоотношения двух цветовых моделей. Основные области применения компьютерной графики.
курсовая работа [1,0 M], добавлен 06.12.2010Создание учебного пособия по компьютерной графике, представленного в электронной форме. Внешние спецификации: интерфейс, входные, выходные данные. Алгоритм и код программы. Руководство пользователя. Принципы организации тестирования программного продукта.
дипломная работа [2,1 M], добавлен 04.07.2013Компьютерная графика. Пиксели, разрешение, размер изображения. Типы изображений. Черно-белые штриховые и полутоновые изображения. Индексированные цвета. Полноцветные изображения. Форматы файлов. Цвет и его модели. Цветовые модели: RGB, CMYK, HSB.
реферат [18,1 K], добавлен 20.02.2009Изучение современных компьютерных программ манипуляции с цветом. Исследование систем соответствия цветов и цветовых режимов. Описания особенностей аддитивных, субтрактивных и перцепционных цветовых моделей. Работа с цветом в трехмерном пространстве.
презентация [2,6 M], добавлен 12.02.2014Основные законы смешения цветов. Волновые свойства света. Основные характеристики цвета (атрибуты). Аддитивная цветовая модель RGB. Цветовые модели CMY и HSV. Кодировка цветов в моделях. Формат BMP для хранения растровых изображений, структура файла.
презентация [198,0 K], добавлен 28.08.2013Измерение и определение количества цвета с помощью электронной схемы. Анализ принципа действия генераторных и параметрических датчиков цвета. Разработка программы для управления системой определения цвета. Описания модуля датчика распознавания цвета.
контрольная работа [489,4 K], добавлен 21.04.2015Исследование и анализ общих понятий цвета, а также принципы представления, хранения, ввода, вывода и обработки графической информации. Особенности создания материала для календаря, его перевод в цифровой вид и обработка при взаимодействии с типографией.
курсовая работа [319,7 K], добавлен 30.05.2015