Школьная локальная сеть: настройка и поддержка

Цели информатизации школы № 15 г. Заволжье. Проектирование и организация школьной сети. Структура и основные функции локальной вычислительной сети. Характеристика программно-аппаратных средств, механизмы построения и особенности администрирования ЛВС.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 20.05.2013
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

ФГБОУ ВПО "Нижегородский государственный педагогический университет им.К. Минина"

Факультет математики, информатики и физики

Кафедра информатики и информационных технологий

Выпускная квалификационная работа

"Школьная локальная сеть: настройка и поддержка"

Работу выполнила

студент очного отделения

Кочанов И.А.

Научный руководитель

Исаенкова Н.В.

Нижний Новгород 2012 г.

Оглавление

  • Введение
  • Глава 1. Локальные сети. Структура, характеристики, функции
  • 1.1 История развития вычислительных сетей
  • 1.2 Что такое локальная вычислительная сеть
  • 1.3 Общая структура организации локальных вычислительных сетей
  • 1.4 Классификация локальных вычислительных сетей
  • 1.5 Адресация в локальных вычислительных сетях
  • 1.5 Топология локальных сетей
  • 1.7 Методы доступа и протоколы передачи данных в локальных сетях
  • 1.8 Методы доступа к каналам связи
  • 1.9 Методы обмена данными в локальных сетях
  • 1.10 Сравнение технологий и определение конфигурации
  • 1.11 Протоколы, интерфейсы, стеки протоколов
  • 1.12 Коммуникационное оборудование вычислительных сетей
  • 1.13 Доступ к сетевым ресурсам локальной вычислительной сети
  • 1.14 Базовые технологии локальных сетей
  • Глава 2. Организация локальной вычислительной
  • сети в школе
  • 2.1 Цели и задачи информатизации школы
  • 2.2 Выбор операционной системы
  • 2.3 Выбор структуры локальной сети школы
  • 2.4 Настройка сервера
  • Управление системой фильтрации
  • 2.5 Создание пользователей групп и настройка прав доступа
  • Заключение
  • Список литературы

Введение

Компьютерной сетью называют совокупность узлов (компьютеров, терминалов, периферийных устройств), имеющих возможность информационного взаимодействия друг с другом с помощью специального коммуникационного оборудования и программного обеспечения.

Размеры сетей варьируются в широких пределах - от пары соединенных между собой компьютеров, стоящих на соседних столах, до миллионов компьютеров, разбросанных по всему миру (часть из них может находиться на космических объектах).

По широте охвата принято деление сетей на несколько категорий: локальные вычислительные сети - ЛВС или LAN (Local-Area Network), позволяют объединять компьютеры, расположенные в ограниченном пространстве.

Для локальных сетей, как правило, прокладывается специализированная кабельная система, и положение возможных точек подключения абонентов ограничено этой кабельной системой. Иногда в локальных сетях используют беспроводную связь (Wireless), но при этом возможности перемещения абонентов сильно ограничены.

Локальные сети можно объединять в крупномасштабные образования:

CAN (Campus-Area Network) - кампусная сеть, объединяющая локальные сети близко расположенных зданий; MAN (Metropolitan-Area Network) - сеть городского масштаба;

WAN (Wide-Area Network) - широкомасштабная сеть;

GAN (Global-Area Network) - глобальная сеть

Сетью сетей в наше время называют глобальную сеть - Интернет.

Для более крупных сетей устанавливаются специальные проводные и беспроводные.

В современных организациях, как то учебные заведения, бизнес офисы, магазины или административные здания для обеспечения более быстрой, удобной совместной работы принято использовать локальные вычислительные сети (ЛВС). Все вышесказанное определяет актуальность темы дипломной работы "Школьная локальная сеть: настройка и поддержка".

Объект: Проектирование локальной сети.

Предмет: Проектирование и организация школьной сети.

Целью дипломной работы: изучить и систематизировать теоретический материал, необходимый для построения ЛВС; организовать и настроить работу ЛВС в школе № 15 г. Заволжье.

Для решения поставленной цели необходимо решить следующие задачи:

1. Изучить теоретические основы ЛВС.

2. Изучить программно-аппаратные средства.

3. Изучить механизмы построения, работы ЛВС.

4. Исследовать администрирование ЛВС.

5. Рассмотреть механизмы обслуживания ЛВС в школе.

Дипломная работа состоит из двух глав: теоретическая и практическая. В первой главе рассмотрена основная теория локальных сетей, а именно:

Протоколы, способы передачи информации по сети, аппаратные средства передачи данных. Во второй главе рассмотрены следующие аспекты:

Общие цели информатизации школы, техническое задание директора школы, выбор операционной системы, выбор типа локальной сети, настройка сервера, удаленный доступ к компьютерам учеников, а также ограничение прав доступа к тем или иным ресурсам операционной системы.

школьная локальная сеть вычислительная

Глава 1. Локальные сети. Структура, характеристики, функции

1.1 История развития вычислительных сетей

Необходимо отметить, что в настоящее время кроме компьютерных сетей применяются и терминальные сети. Следует различать компьютерные сети и терминальные сети. Терминальные сети строятся на других, чем компьютерные сети, принципах и на другой вычислительной технике. К терминальным сетям, например, относятся: сети банкоматов, кассы предварительной продажи билетов на различные виды транспорта и т.д.

Первые мощные компьютеры 50-годов, так называемые мэйнфреймы, были очень дорогими и предназначались только для пакетной обработки данных. Пакетная обработка данных самый эффективный режим использования процессора дорогостоящей вычислительной машины.

С появлением более дешевых процессоров начали развиваться интерактивные терминальные системы разделения времени на базе мэйнфреймов. Терминальные сети связывали мэйнфреймы с терминалами. Терминал - это устройство для взаимодействия с вычислительной машиной, которое состоит из средства ввода (например, клавиатуры) и средств вывода информации (например, дисплея).

Сами терминалы практически никакой обработки данных не осуществляли, а использовали возможности мощной и дорогой центральной ЭВМ. Эта организация работы называлась "режимом разделения времени”, так как центральная ЭВМ последовательно во времени решала задачи множества пользователей. При этом совместно использовались дорогие вычислительные ресурсы.

Удаленные терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам мощных ЭВМ. Затем мощные ЭВМ объединялись между собой, так появились глобальные вычислительные сети. Таким образом, сначала сети применялись для передачи цифровых данных между терминалом и большой вычислительной машиной. Первые ЛВС появились в начале 70-х годов, когда были выпущены мини-компьютеры. Мини-компьютеры были намного дешевле мэйнфреймов, что позволило использовать их в структурных подразделениях предприятий. Затем появилась необходимость обмена данными между машинами разных подразделений. Для этого многие предприятия стали соединять свои мини-компьютеры и разрабатывать программное обеспечение, необходимое для их взаимодействия. В результате появились первые ЛВС. Появление персональных компьютеров послужило стимулом для дальнейшего развития ЛВС. Они были достаточно дешевыми и являлись идеальными элементами для построения сетей. Развитию ЛВС способствовало появление стандартных технологий объединения компьютеров в сети: Ethernet, Arcnet, Token Ring. Появление качественных линии связи обеспечили достаточно высокую скорость передачи данных - 10 Мбит/с, тогда как глобальные сети, использовали только плохо приспособленные для передачи данных телефонные каналы связи, имели низкую скорость передачи - 1200 бит/c. Из-за такого различия в скоростях многие технологии, применяемые в ЛВС, были недоступны для использования в глобальных. В настоящее время сетевые технологии интенсивно развиваются, и разрыв между локальными и глобальными сетями сокращается во многом благодаря появлению высокоскоростных территориальных каналов связи, не уступающих по качеству кабельным системам ЛВС. Новые технологии сделали возможным передачу таких несвойственных ранее вычислительным сетям носителей информации, как голос, видеоизображения и рисунки. Сложность передачи мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных (задержки обычно приводят к искажению такой информации в конечных узлах связи). Но эта проблема решается и конвергенция телекоммуникационных сетей (радио, телефонных, телевизионных и вычислительных сетей) открывает новые возможности для передачи данных, голоса и изображения по глобальным сетям Интернет.

1.2 Что такое локальная вычислительная сеть

Локальная вычислительная сеть (ЛВС, локальная cеть, сленг. локалка; англ. Local Area Network, LAN) - компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

Существует множество способов классификации сетей. Основным критерием классификации принято считать способ администрирования. То есть в зависимости от того, как организована сеть и как она управляется, её можно отнести к локальной, распределённой, городской или глобальной сети. Управляет сетью или её сегментом сетевой администратор. В случае сложных сетей их права и обязанности строго распределены, ведётся документация и журналирование действий команды администраторов.

Компьютеры могут соединяться между собой, используя различные среды доступа: медные проводники (витая пара), оптические проводники (оптические кабели) и через радиоканал (беспроводные технологии). Проводные связи устанавливаются через Ethernet, беспроводные - через Wi-Fi, Bluetooth, GPRS и прочие средства. Отдельная локальная вычислительная сеть может иметь связь с другими локальными сетями через шлюзы, а также быть частью глобальной вычислительной сети (например, Интернет) или иметь подключение к ней.

Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Следует отметить, что ранее использовались протоколы Frame Relay, Token ring, которые на сегодняшний день встречаются всё реже, их можно увидеть лишь в специализированных лабораториях, учебных заведениях и службах. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры. Реже используются преобразователи (конвертеры) среды, усилители сигнала (повторители разного рода) и специальные антенны.

Маршрутизация в локальных сетях используется примитивная, если она вообще необходима. Чаще всего это статическая либо динамическая маршрутизация (основанная на протоколе RIP).

Иногда в локальной сети организуются рабочие группы - формальное объединение нескольких компьютеров в группу с единым названием.

Сетевой администратор - человек, ответственный за работу локальной сети или её части. В его обязанности входит обеспечение и контроль физической связи, настройка активного оборудования, настройка общего доступа и предопределённого круга программ, обеспечивающих стабильную работу сети.

Технологии локальных сетей реализуют, как правило, функции только двух нижних уровней модели OSI - физического и канального. Функциональности этих уровней достаточно для доставки кадров в пределах стандартных топологий, которые поддерживают LAN: звезда (общая шина), кольцо и дерево. Однако из этого не следует, что компьютеры, связанные в локальную сеть, не поддерживают протоколы уровней, расположенных выше канального. Эти протоколы также устанавливаются и работают на узлах локальной сети, но выполняемые ими функции не относятся к технологии LAN.

1.3 Общая структура организации локальных вычислительных сетей

Из достаточно ярко выраженных иерархических уровней состоит структура ЛВС - уровня доступа и уровня распределения, а также - магистрали.

Основная магистраль и самый верхний уровень ЛВС - это корпоративная информационная сеть передачи данных, обеспечивающая взаимодействие всех ресурсов.

Затем идут структурные фрагменты, которые можно выделить по какому-нибудь признаку - ЛВС здания, например. В основе - узлы ЛВС здания, которые объединяют с помощью кабельных соединений коммутаторы рабочих групп, что распределены по этажам этого здания. Вот так приблизительно выглядит уровень распределения.

А уровень доступа можно определить, если рассматривать ЛВС здания, состоящую из нескольких коммутаторов, которые подключены к магистрали и осуществляют доступ серверного оборудования и СВТ к сетевым информационным ресурсам. Обязательно надо отметить, что структура ЛВС находится в строгом соответствии с архитектурой построения сети и обеспечивает связь и доступность всех её узлов на всех уровнях. Поэтому проектные работы по построению активного оборудования ЛВС проводят единым циклом.

Структура ЛВС имеет несколько разновидностей. Различают такие виды структур:

· "звезда" - все элементы системы подключены к единому центральному узлу;

· кольцо - все элементы ЛВС связаны друг с другом последовательно, по замкнутой цепи;

· шина (передача информации осуществляется по коммуникационному пути, доступному всем устройствам) Эти виды структуры ЛВС являются базовыми, имеют ряд значительных недостатков и используются в небольших фирмах или зданиях.

Для крупных сетей применяется древовидная структура ЛВС.

Древовидная структура ЛВС содержит несколько иерархических уровней.

На самом высоком уровне находится главная транспортная магистраль ЛВС, с помощью которой взаимодействуют все элементы системы.

На следующем уровне - уровне распределения - расположены коммутаторы групп, выделенных по какому-либо признаку (например ЛВС отдела, ЛВС этажа или здания). На нижнем уровне - уровне доступа - расположены устройства (коммутаторы), осуществляющие доступ серверов к ресурсам сети.

Структура ЛВС обязательно соответствует архитектуре сети и должна обеспечить взаимодействие и доступность всех узлов сети.

1.4 Классификация локальных вычислительных сетей

В настоящее время вопросам классификации ЛВС уделяется серьезное внимание. Это связано с тем, что современные вычислительные сети могут охватывать значительные территории, применяться для решения задач различной сложности и назначения, использовать различные среды и протоколы передачи данных. Таким образом, при проектировании локальной вычислительной сети, перед заказчиком и исполнителем встает вопрос об однозначности применяемой терминологии.

Признаков, по которым осуществляется классификация ЛВС, достаточно много. Ниже приводятся некоторые из них.

1. По расстоянию между узлами (охвату географической территории). Различают местные (ограниченные зданием или группой зданий), территориальные или региональные (действующие в пределах ограниченной территории но охватывающие значительное географическое пространство - город, область, страну) и глобальные (связывающие узлы, находящиеся в различных регионах и точках мира)

2. Классификация ЛВС по способу управления подразделяет их на сети с выделенными серверами, одноранговые сети (все узлы сети равноправны) и терминальные (сети использующие т. н. сетецентрическую концепцию построения, при которой оборудование конечного пользователя предоставляет только функции ввода-вывода, а все запросы на обработку и получение информации выполняет сетевое ядро).

3. 3. Классификация ЛВС по топологии. Этот признак определяет способы соединения узлов сети и обмена информацией между ними. Различают широковещательные, последовательностные и смешанные топологии. К широковещательным топологиям относят архитектуру "шина" или "магистраль" (все узлы присоединяются к магистральному кабельному сегменту, данные передаваемые одной станцией доступны для всех); "звезда" - каждая рабочая станция связана с центральным узлом отдельным каналом, центральный узел осуществляет трансляцию данных одного узла к остальным.

4. К последовательностным топологиям относят архитектуру "кольцо" - каждый узел "слышит" только данные от двух соседних узлов. При необходимости осуществляет их дальнейшую трансляцию.

5. По используемой физической среде.

6. В настоящее время в этом способе классификации выделяют проводные кабельные сети, оптоволоконные кабельные сети и беспроводные сети.

5. По методу доступа. Различают случайные и детерминированные методы доступа рабочих станций к среде передачи данных. Наиболее известными из них являются метод множественного доступа с контролем несущей и обнаружением конфликтов (Carrier Sense Multiple Access /Collision Detection CSMA/CD), который регламентируется стандартом IEEE 802.3 (Ethernet) и метод передачи маркера - стандарт IEEE 802.5 (Token Ring).

1.5 Адресация в локальных вычислительных сетях

В локальных сетях, основанных на протоколе IPv4, могут использоваться специальные адреса, назначенные IANA (стандарты RFC 1918 и RFC 1597):

§ 10.0.0.0-10.255.255.255;

§ 172.16.0.0-172.31.255.255;

§ 192.168.0.0-192.168.255.255.

Такие адреса называют частными, внутренними, локальными или "серыми"; эти адреса не доступны из сети Интернет. Необходимость использовать такие адреса возникла из-за того, что при разработке протокола IP не предусматривалось столь широкое его распространение, и постепенно адресов стало не хватать. Для решения этой проблемы был разработан протокол IPv6, однако он пока малопопулярен. В различных непересекающихся локальных сетях адреса могут повторяться, и это не является проблемой, так как доступ в другие сети происходит с применением технологий, подменяющих или скрывающих адрес внутреннего узла сети за её пределами - NAT или прокси дают возможность подключить ЛВС к глобальной сети (WAN). Для обеспечения связи локальных сетей с глобальными применяются маршрутизаторы (в роли шлюзов и файрволов).

Конфликт IP адресов - распространённая ситуация в локальной сети, при которой в одной IP-подсети оказываются два или более компьютеров с одинаковыми IP-адресами. Для предотвращения таких ситуаций и облегчения работы сетевых администраторов применяется протокол DHCP, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP.

1.5 Топология локальных сетей

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

В настоящее время в локальных сетях используются следующие физические топологии:

физическая "шина" (bus);

физическая "звезда” (star);

физическое "кольцо” (ring);

физическая "звезда" и логическое "кольцо" (Token Ring).

Шинная топология

Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т-разъема (Т - коннектор). Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных. Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

Преимущества сетей шинной топологии:

отказ одного из узлов не влияет на работу сети в целом;

сеть легко настраивать и конфигурировать;

сеть устойчива к неисправностям отдельных узлов.

Недостатки сетей шинной топологии:

разрыв кабеля может повлиять на работу всей сети;

ограниченная длина кабеля и количество рабочих станций;

трудно определить дефекты соединений

Топология типа "звезда”

В сети построенной по топологии типа "звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или хабу (hub). Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.

Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet.

Преимущества сетей топологии звезда:

легко подключить новый ПК;

имеется возможность централизованного управления;

сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии звезда:

отказ хаба влияет на работу всей сети;

большой расход кабеля;

Топология "кольцо”

В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо.

Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

Как правило, в чистом виде топология "кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

Топология Token Ring

Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.

Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии "звезда”.

Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не вличет за собой отказ сети как в топологии кольцо, потому что концентратор отключет неисправную станцию и замкнет кольцо передачи данных.

В архитектуре Token Ring маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции.

Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные.

Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.

Преимущества сетей топологии Token Ring:

топология обеспечивает равный доступ ко всем рабочим станциям;

высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций.

Недостатки сетей топологии Token Ring: большой расход кабеля и соответственно дорогостоящая разводка линий связи.

1.7 Методы доступа и протоколы передачи данных в локальных сетях

В различных сетях применяются различные сетевые протоколы (протоколы передачи данных) для обмена данными между рабочими станциями.

В 1980 году в Международном институте инженеров по электротехнике и радиоэлектронике (Institute of Electronics Engineers-IEEE) был организован комитет 802 по стандартизации локальных сетей. Комитет 802 разработал семейство стандартов IЕЕЕ802. x, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Стандарты семейства IЕЕЕ802. x охватывают только два нижних уровня семиуровневой модели OSI - физический и канальный, так как именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты, как для локальных, так и глобальных сетей.

К наиболее распространенным методам доступа относятся: Ethernet, ArcNet и Token Ring, которые реализованы соответственно в стандартах IЕЕЕ802.3, IЕЕЕ802.4 и IЕЕЕ802.5 Кроме того, для локальных сетей, работающих на оптическом волокне, американским институтом по стандартизации ASNI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мбит/с.

В этих стандартах канальный уровень разделяется на два подуровня, которые называются уровнями:

управление логическим каналом (LCC - Logical Link Control)

управление доступом к среде (MAC - Media Access Control)

Уровень управления доступом к среде передачи данных (MAC) появился, так как в локальных сетях используется разделяемая среда передачи данных. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих разные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий локальных сетей, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI.

После того, как доступ к среде получен, ею может воспользоваться более высокий канальный уровень - уровень LCC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг.

1.8 Методы доступа к каналам связи

В локальных сетях, использующих разделяемую среду передачи данных (например, локальные сети с топологией шина и физическая звезда), актуальным является доступ рабочих станций к этой среде, так как если два ПК начинают одновременно передавать данные, то в сети происходит столкновение.

Для того чтобы избежать этих столкновений необходим специальный механизм, способный решить эту проблему. Шинный арбитраж - это механизм призванный решить проблему столкновений. Он устанавливает правила, по которым рабочие станции определяют, когда среда свободна, и можно передавать данные. Существуют два метода шинного арбитража в локальных сетях:

обнаружение столкновений

передача маркера

Обнаружение столкновений.

Когда в локальных сетях работает метод обнаружения столкновений, компьютер сначала слушает, а потом передает. Если компьютер слышит, что передачу ведет кто-то другой, он должен подождать окончания передачи данных и затем предпринять повторную попытку.

В этой ситуации (два компьютера, передающие в одно и то же время) система обнаружения столкновений требует, чтобы передающий компьютер продолжал прослушивать канал и, обнаружив на нем чужие данные, прекращал передачу, пытаясь возобновить ее через небольшой (случайный) промежуток времени. Прослушивание канала до передачи называется "прослушивание несущей" (carrier sense), а прослушивание во время передачи - обнаружение столкновений (collision detection). Компьютер, поступающий таким образом, использует метод, называющийся "обнаружение столкновений с прослушиванием несущей”, сокращенно CSCD.

Передача маркера в локальных сетях

Системы с передачей маркера работают иначе. Для того чтобы передать данные, компьютер сначала должен получить разрешение. Это значит, он должен "поймать" циркулирующий в сети пакет данных специального вида, называемый маркером. Маркер перемещается по замкнутому кругу, минуя поочередно каждый сетевой компьютер.

Каждый раз, когда компьютер должен послать сообщение, он ловит и держит маркер у себя. Как только передача закончилась, он посылает новый маркер в путешествие дальше по сети. Такой подход дает гарантию, что любой компьютер рано или поздно получит право поймать и удерживать маркер до тех пор, пока его собственная передача не закончится.

1.9 Методы обмена данными в локальных сетях

Для управления обменом (управления доступом к сети, арбитражу сети) используются различные методы, особенности которых в значительной степени зависят от топологии сети.

Существует несколько групп методов доступа, основанных на временном разделении канала:

централизованные и децентрализованные

детерминированные и случайные

Централизованный доступ управляется из центра управления сетью, например от сервера. Децентрализованный метод доступа функционирует на основе протоколов без управляющих воздействий со стороны центра.

Детерминированный доступ обеспечивает каждой рабочей станции гарантированное время доступа (например, время доступа по расписанию) к среде передачи данных. Случайный доступ основан на равноправности всех станций сети и их возможности в любой момент обратиться к среде с целью передачи данных.

Централизованный доступ к моноканалу

В сетях с централизованным доступом используются два способа доступа: метод опроса и метод передачи полномочий. Эти методы используются в сетях с явно выраженным центром управления.

Метод опроса.

Обмен данными в ЛВС с топологией звезда с активным центром (центральным сервером). При данной топологии все станции могут решить передавать информацию серверу одновременно. Центральный сервер может производить обмен только с одной рабочей станцией. Поэтому в любой момент надо выделить только одну станцию, ведущую передачу.

Центральный сервер посылает запросы по очереди всем станциям. Каждая рабочая станция, которая хочет передавать данные (первая из опрошенных), посылает ответ или же сразу начинает передачу. После окончания сеанса передачи центральный сервер продолжает опрос по кругу. Станции, в данном случае, имеют следующие приоритеты: максимальный приоритет у той из них, которая ближе расположена к последней станции, закончившей обмен.

Обмен данными в сети с топологией шина. В этой топологии, возможно, такое же централизованное управление, как и в "звезде”. Один из узлов (центральный) посылает всем остальным запросы, выясняя, кто хочет передавать, и затем разрешает передачу тому из них, кто после окончания передачи сообщает об этом.

Метод передачи полномочий (передача маркера)

Маркер - служебный пакет определенного формата, в который клиенты могут помещать свои информационные пакеты. Последовательность передачи маркера по сети от одной рабочей станции к другой задается сервером. Рабочая станция получает полномочия на доступ к среде передачи данных при получении специального пакета-маркера. Данный метод доступа для сетей с шинной и звездной топологией обеспечиваетcя протоколом ArcNet.

Децентрализованный доступ к моноканалу.

Рассмотрим децентрализованный детерминированный и случайный методы доступа к среде передачи данных. К децентрализованному детерминированному методу относится метод передачи маркера. Метод передачи маркера использует пакет, называемый маркером. Маркер - это не имеющий адреса, свободно циркулирующий по сети пакет, он может быть свободным или занятым.

Обмен данными в сети с топологией кольцо (децентрализованный детерминированный методдоступа)

1. В данной сети применяется метод доступа "передача маркера”. Алгоритм передачи следующий:

а) узел, желающий передать, ждет свободный маркер, получив который помечает его как занятый (изменяет соответствующие биты), добавляет к нему свой пакет и результат отправляет дальше в кольцо;

б) каждый узел, получивший такой маркер, принимает его, проверяет, ему ли адресован пакет;

в) если пакет адресован этому узлу, то узел устанавливает в маркере специально выделенный бит подтверждения и отправляет измененный маркер с пакетом дальше;

г) передававший узел получает обратно свою посылку, прошедшую через все кольцо, освобождает маркер (помечает его как свободный) и снова посылает маркер в сеть. При этом передававший узел знает, была ли получена его посылка или нет.

Для нормального функционирования данной сети необходимо, чтобы один из компьютеров или специальное устройство следило за тем, чтобы маркер не потерялся, а в случае пропажи маркера данный компьютер должен создать его и запустить в сеть.

Обмен данными в сети с топологией шина (децентрализованный случайный метод доступа)

В этом случае все узлы имеют равный доступ к сети и решение, когда можно передавать, принимается каждым узлом на месте, исходя из анализа состояния сети. Возникает конкуренция между узлами за захват сети, и, следовательно, возможны конфликты между ними, а также искажения передаваемых данных из-за наложения пакетов.

Рассмотрим наиболее часто применяющийся метод множественного доступа с контролем несущей и обнаружением коллизий (столкновений) (CSMA/CD). Суть алгоритма в следующем:

1) узел, желающий передавать информацию, следит за состоянием сети, и как только она освободится, то начинает передачу;

2) узел передает данные и одновременно контролирует состояние сети (контролем несущей и обнаружением коллизий). Если столкновений не обнаружилось, передача доводится до конца;

3) если столкновение обнаружено, то узел усиливает его (передает еще некоторое время) для гарантии обнаружения всеми передающими узлами, а затем прекращает передачу. Также поступают и другие передававшие узлы;

4) после прекращения неудачной попытки узел выдерживает случайно выбираемый промежуток времени tзад, а затем повторяет свою попытку передать, при этом контролируя столкновения.

При повторном столкновении tзад увеличивается. В конечном счете, один из узлов опережает другие узлы и успешно передает данные. Метод CSMA/CD часто называют методом состязаний. Этот метод для сетей с шиной топологией реализуется протоколом Ethernet.

1.10 Сравнение технологий и определение конфигурации

Характеристики

FDDI

Ethernet

Token Ring

ArcNet

Скорость передачи

100 Мбит/с

10 (100) Мбит/с

16 Мбит/с

2,5 Мбит/с

Топология

кольцо

шина

кольцо/звезда

шина, звезда

Среда передачи

оптоволокно, витая пара

коаксиальный кабель, витая пара, оптоволокно

витая пара, оптоволокно

коаксиальный кабель, витая пара, оптоволокно

Метод доступа

маркер

CSMA/CD

маркер

маркер

Максимальная протяженность сети

100 км

2500 м

4000 м

6000 м

Максимальное количество узлов

500

1024

260

255

Максимальное расстояние между узлами

2 км

2500 м

100 м

600 м

На данной страничке представлены сравнительные характеристики наиболее распространенных технологий ЛВС.

Определение конфигурации сетей

Перед проектированием ЛВС необходимо определить цели создания сети, особенности ее организационного и технического использования:

1. Какие проблемы предполагается решать при использовании ЛВС? 2. Какие задачи планируется решать в будущем?

3. Кто будет выполнять техническую поддержку и обслуживание ЛВС?

4. Нужен ли доступ из ЛВС к глобальной сети?

5. Какие требования предъявляются к секретности и безопасности информации? Необходимо учитывать и другие проблемы, которые влияют на цели создания сетей и особенности ее организационного и технического использования.

При построении сети конфигурация сети определяется требованиями, предъявляемыми к ней, а также финансовыми возможностями компании и базируется на существующих технологиях и на принятых во всем мире стандартах построения ЛВС.

Исходя из требований, в каждом отдельном случае выбирается топология сети, кабельная структура, протоколы и методы передачи данных, способы организации взаимодействия устройств, сетевая операционная система.

Эффективность функционирования ЛВС определяется параметрами, выбранными при конфигурировании сети:

типом (одноранговая или с выделенным сервером);

топологией;

типом доступа к среде передачи данных;

максимальной пропускной способностью сети;

максимальным количеством рабочих станций;

типом компьютеров в сети (однородные или неоднородные сети);

максимальной допустимой протяженностью сети;

максимальным допустимым удалением рабочих станций друг от друга;

качеством и возможностями сетевой операционной системы;

объемом и технологией использования информационного обеспечения (баз данных);

средствами и методами защиты информации в сети;

средствами и методами обеспечения отказоустойчивости ЛВС;

И другими параметрами, которые влияют на эффективность функционирования ЛВС.

Многослойная модель сети

Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью, состоящей из слоев:

компьютеры или компьютерные платформы;

коммуникационное оборудование;

операционные системы;

сетевые приложения.

Компьютеры

В основе любой сети лежит аппаратный слой стандартизированных компьютерных платформ. В настоящее время широко используются компьютерные платформы различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Компьютеры подключаются к сети с помощью сетевой карты.

Коммуникационное оборудование

Ко второму слою относится коммуникационное оборудование, которое играет не менее важную роль, чем компьютеры. Коммуникационное оборудование сетей можно разделить на три группы:

1) сетевые адаптеры (карты);

2) сетевые кабели;

3) промежуточное коммуникационное оборудование (трансиверы, повторители, концентраторы, коммутаторы, мосты, маршрутизаторы и шлюзы).

Операционные системы

Третьим слоем, образующим программную платформу сети, являются операционные системы. В зависимости от того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работу всей сети.

Сетевые приложения

Четвертый слой - это сетевые приложения. К сетевым приложениям относятся такие приложения как сетевые базы данных, почтовые приложения, системы автоматизации коллективной работы и т.д.

Техническое обеспечение вычислительных систем Рассмотрим более подробно аппаратные средства сетей - компьютеры. Архитектура компьютера включает в себя как структуру, отражающую аппаратный состав ПК, так и программно - математическое обеспечение. Все компьютеры сетей можно разделить на два класса: серверы и рабочие станции.

Сервер (server) - это многопользовательский компьютер, выделенный для обработки запросов от всех рабочих станций. Это мощный компьютер или мэйнфрейм, предоставляющий рабочим станциям доступ к системным ресурсам и распределяющий эти ресурсы. Сервер имеет сетевую операционную систему, под управлением, которой происходит совместная работа всей сети.

Основными требованиями, которые предъявляются к серверам, являются высокая производительность и надежность их работы. Серверы в больших сетях стали специализированными и, как правило, используются для управления сетевыми базами данных, организации электронной почты, управления многопользовательскими терминалами (принтерами, сканерами, плоттерами) и т.д.

Существует несколько типов серверов:

Файл-серверы. Управляют доступом пользователей к файлам и программам.

Принт-серверы. Управляют работой системных принтеров.

Серверы приложений. Серверы приложений - это работающий в сети мощный компьютер, имеющий прикладную программу, с которой могут работать клиенты. Приложения по запросам пользователей выполняются непосредственно на сервере, а на рабочую станцию передаются лишь результаты запроса.

Почтовые серверы. Данный сервер используется для организации электронной корреспонденции с электронными почтовыми ящиками.

Прокси-сервер. Это эффективное средство подключения локальных сетей к сети Интернет. Прокси-сервер - компьютер, постоянно подключенный к сети Интернет, через который происходит общение пользователей локальной сети с сетью Интернетом.

1.11 Протоколы, интерфейсы, стеки протоколов

Компьютерные сети, как правило, состоят из различного оборудования разных производителей, и без принятия всеми производителями общепринятых правил построения ПК и сетевого оборудования, обеспечить нормальное функционирование сетей было бы невозможно. То есть для обеспечения нормального взаимодействия этого оборудования в сетях необходим единый унифицированный стандарт, который определял бы алгоритм передачи информации в сетях. В современных вычислительных сетях роль такого стандарта выполняют сетевые протоколы.

В связи с тем, что описать единым протоколом взаимодействия между устройствами в сети не представляется возможным, то необходимо разделить процесс сетевого взаимодействия на ряд концептуальных уровней (модулей) и определить функции для каждого модуля и порядок их взаимодействия, применив метод декомпозиции.

Используется многоуровневый подход метода декомпозиции, в соответствии с которым множество модулей решающих частные задачи упорядочивают по уровням образующим иерархию, процесс сетевого взаимодействия можем представить в виде иерархически организованного множества модулей.

1.12 Коммуникационное оборудование вычислительных сетей

Сетевые адаптеры - это коммуникационное оборудование Сетевой адаптер (сетевая карта) - это устройство двунаправленного обмена данными между ПК и средой передачи данных вычислительной сети. Кроме организации обмена данными между ПК и вычислительной сетью, сетевой адаптер выполняет буферизацию (временное хранение данных) и функцию сопряжения компьютера с сетевым кабелем. Сетевыми адаптерами реализуются функции физического уровня, а функции канального уровня семиуровневой модели ISO реализуются сетевыми адаптерами и их драйверами.

Адаптеры снабжены собственным процессором и памятью. Карты классифицируются по типу порта, через который они соединяются с компьютером: ISA, PCI, USB. Наиболее распространенные из них - это сетевые карты PCI. Карта, как правило, устанавливается в слот расширения PCI, расположенный на материнской плате ПК, и подключается к сетевому кабелю разъемами типа: RJ-45 или BNC.

Сетевые карты можно разделить на два типа:

адаптеры для клиентских компьютеров;

адаптеры для серверов.

В зависимости от применяемой технологии вычислительных сетей Ethernet, Fast Ethernet или Gigabit Ethernet, сетевые карты обеспечивают скорость передачи данных: 10, 100 или 1000 Мбит/с.

Сетевые кабели вычислительных сетей

В качестве кабелей соединяющих отдельные ПК и коммуникационное оборудование в вычислительных сетях применяются: витая пара, коаксиальный кабель, оптический кабель, свойства которых изложены в разделе "Линии связи и каналы передачи данных"

Промежуточное коммуникационное оборудование вычислительных сетей В качестве промежуточного коммуникационного оборудования применяются: трансиверы (transceivers), повторители (repeaters), концентраторы (hubs), коммутаторы (switches), мосты (bridges), маршрутизаторы (routers) и шлюзы (gateways).

Промежуточное коммуникационное оборудования вычислительных сетей используется для усиления и преобразования сигналов, для объединения ПК в физические сегменты, для разделения вычислительных сетей на подсети (логические сегменты) с целью увеличения производительности сети, а также для объединения подсетей (сегментов) и сетей в единую вычислительную сеть.

Физическая структуризация вычислительных сетей объединяет ПК в общую среду передачи данных, т.е. образует физические сегменты сети, но при этом не изменяет направление потоков данных. Физические сегменты упрощают подключение к сети большого числа ПК.

Логическая структуризация разделяет общую среду передачи данных на логические сегменты и тем самым устраняет столкновения (коллизии) данных в вычислительных сетях. Логические сегменты или подсети могут работать автономно и по мере необходимости компьютеры из разных сегментов могут обмениваться данными между собой. Протоколы управления в вычислительных сетях остаются теми же, какие применяются и в неразделяемых сетях.

Трансиверы и повторители обеспечивают усиление и преобразование сигналов в вычислительных сетях. Концентраторы и коммутаторы служат для объединения нескольких компьютеров в требуемую конфигурацию локальной вычислительной сети.

Концентраторы являются средством физической структуризации вычислительной сети, так как разбивают сеть на сегменты. Коммутаторы предназначены для логической структуризации вычислительной сети, так как разделяют общую среду передачи данных на логические сегменты и тем самым устраняют столкновения.

Для соединения подсетей (логических сегментов) и различных вычислительных сетей между собой в качестве межсетевого интерфейса применяются коммутаторы, мосты, маршрутизаторы и шлюзы.

Повторители - это аппаратные устройства, предназначенные для восстановления и усиления сигналов в вычислительных сетях с целью увеличения их длины.

Трансиверы или приемопередатчики - это аппаратные устройства, служащие для двунаправленной передачи между адаптером и сетевым кабелем или двумя сегментами кабеля. Основной функцией трансивера является усиление сигналов. Трансиверы применяются и в качестве конверторов для преобразование электрических сигналов в другие виды сигналов (оптические или радиосигналы) с целью использования других сред передачи информации.

Концентраторы - это аппаратные устройства множественного доступа, которые объединяют в одной точке отдельные физические отрезки кабеля, образуют общую среду передачи данных или физические сегменты сети.

Коммутаторы - это программно - аппаратные устройства, которые делят общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов с помощью концентраторов. Каждый логический сегмент подключается к отдельному порту коммутатора.

Мосты - это программно - аппаратные устройства, которые обеспечивают соединение нескольких локальных сетей между собой или несколько частей одной и той же сети, работающих с разными протоколами. Мосты предназначены для логической структуризации сети или для соединения в основном идентичных сетей, имеющих некоторые физические различия. Мост изолирует трафик одной части сети от трафика другой части, повышая общую производительность передачи данных.

Маршрутизаторы. Это коммуникационное оборудование, которое обеспечивает выбор маршрута передачи данных между несколькими сетями, имеющими различную архитектуру или протоколы. Маршрутизаторы применяют только для связи однородных сетей и в разветвленных сетях, имеющих несколько параллельных маршрутов. Маршрутизаторами и программными модулями сетевой операционной системы реализуются функции сетевого уровня.

Шлюзы - это коммуникационное оборудование (например, компьютер), служащее для объединения разнородных сетей с различными протоколами обмена. Шлюзы полностью преобразовывают весь поток данных, включая коды, форматы, методы управления и т.д.

Коммуникационное оборудование: мосты, маршрутизаторы и шлюзы в локальной вычислительной сети - это, как правило, выделенные компьютеры со специальным программным обеспечением.

1.13 Доступ к сетевым ресурсам локальной вычислительной сети

Для работы в локальной сети служит системная папка Сетевое окружение, в которой отображаются все доступные ресурсы ЛВС.

Для отображения списка всех компьютеров, входящих в рабочую группу, необходимо щелкнуть мышью на пункте "Отобразить компьютеры рабочей группы" в командной панели "Сетевые задачи" окна "Сетевое окружение".

Дважды щелкнув мышью на значке любого из удаленных компьютеров в окне "Сетевое окружение", можно увидеть, какие его ресурсы доступны для работы. С этими удаленными ресурсами можно работать так же, как с файлами локальных дисков в программе Проводник.

Управление сетевым доступом к дискам, папкам, принтеру

Для того чтобы другие пользователи ЛВС могли обращаться к ресурсам вашего ПК, таким как принтер, логические диски, папки и файлы, необходимо открыть сетевой доступ к этим ресурсам и установить права пользователей для работы с каждым из этих ресурсов.


Подобные документы

  • Способы связи разрозненных компьютеров в сеть. Основные принципы организации локальной вычислительной сети (ЛВС). Разработка и проектирование локальной вычислительной сети на предприятии. Описание выбранной топологии, технологии, стандарта и оборудования.

    дипломная работа [2,3 M], добавлен 19.06.2013

  • Создание локальной вычислительной сети, ее топология, кабельная система, технология, аппаратное и программное обеспечение, минимальные требования к серверу. Физическое построение локальной сети и организация выхода в интернет, расчет кабельной системы.

    курсовая работа [749,1 K], добавлен 05.05.2010

  • Понятие локальной вычислительной сети, архитектура построения компьютерных сетей. Локальные настройки компьютеров. Установка учетной записи администратора. Настройка антивирусной безопасности. Структура подразделения по обслуживанию компьютерной сети.

    дипломная работа [2,1 M], добавлен 15.01.2015

  • Локальная вычислительная сеть, узлы коммутации и линии связи, обеспечивающие передачу данных пользователей сети. Канальный уровень модели OSI. Схема расположения компьютеров. Расчет общей длины кабеля. Программное и аппаратное обеспечение локальной сети.

    курсовая работа [55,0 K], добавлен 28.06.2014

  • Обоснование модернизации локальной вычислительной сети (ЛВС) предприятия. Оборудование и программное обеспечение ЛВС. Выбор топологии сети, кабеля и коммутатора. Внедрение и настройка Wi-Fi - точки доступа. Обеспечение надежности и безопасности сети.

    дипломная работа [2,4 M], добавлен 21.12.2016

  • Выбор и обоснование архитектуры локальной вычислительной сети образовательного учреждения СОС Ubuntu Server. Описание физической схемы телекоммуникационного оборудования проектируемой сети. Настройка сервера, компьютеров и программного обеспечения сети.

    курсовая работа [2,8 M], добавлен 12.06.2014

  • Структура локальной компьютерной сети организации. Расчет стоимости построения локальной сети. Локальная сеть организации, спроектированная по технологии. Построение локальной сети Ethernet организации. Схема локальной сети 10Base-T.

    курсовая работа [126,7 K], добавлен 30.06.2007

  • Способы классификации сетей. Разработка и описание структуры локальной вычислительной сети, расположенной в пятиэтажном здании. Технические сведения, топология иерархической звезды. Клиентское аппаратное обеспечение. Установка и настройка сервера.

    курсовая работа [58,1 K], добавлен 27.07.2011

  • Расчеты параметров проектируемой локальной вычислительной сети. Общая длина кабеля. Распределение IP-адресов для спроектированной сети. Спецификация оборудования и расходных материалов. Выбор операционной системы и прикладного программного обеспечения.

    курсовая работа [940,7 K], добавлен 01.11.2014

  • Проектирование локальной сети для предоставления телекоммуникационных услуг пользователям. Структурированные кабельные системы, их функции. Рабочее место, телекоммуникационный шкаф. Методика прокладки и монтажа кабеля, используемого в проектируемой ЛВС.

    дипломная работа [2,4 M], добавлен 14.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.