Решение задачи с помощью программ Mathcad и Matlab
Расчет в программах Mathcad и Matlab связи между глубиной залегания подводной лодки, временем поражения цели и расстоянием, который корабль успеет пройти по горизонтали. При условии, что пуск торпеды производится в момент прохождения корабля над лодкой.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 31.05.2010 |
Размер файла | 102,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Контрольная работа
Решение задачи с помощью программ Mathcad и Matlab
Содержание
Задание
1. Текст программы в среде MathCAD
2. Текст программы в среде MatLAB
Часть 1
Часть 2
Задание
Торпеда, снабжённая разгонным двигателем, нацеливается с лежащей на дне подводной лодки на поражение движущегося надводного корабля. Пуск торпеды производится в момент прохождения корабля над лодкой. Исследовать связь между глубиной залегания лодки, временем поражения цели и расстоянием, который корабль успеет пройти по горизонтали.
1. Текст программы в среде MathCAD
- глубина залегания подводной лодки
- скорость корабля
- скорость торпеды
Х - расстояние, которое пройдёт корабль до взрыва
У- расстояние, которое пройдёт торпеда до взрыва
По теореме Пифагора свяжем между собой величины x, y и d следующим выражением:
2. Текст программы в среде MatLAB
Часть 1:
hold on;
grid on;
Vt=300/3.6;
Vk=50/3.6;
d=50:10:200;
t=(d.^2/(Vt^2-Vk^2)).^0.5;
plot(d,t);
title('Grafik');
xlabel('d');
ylabel('t');
График:
Часть 2:
hold on;
grid on;
Vt=300/3.6;
Vk=50/3.6;
d=50:10:200;
t=(d.^2/(Vt^2-Vk^2)).^0.5;
x=Vk*t;
plot(d,x);
title('Grafik');
xlabel('d');
ylabel('x');
График:
Подобные документы
Исследование связи между временем достижения торпеды, снабжённой разгонным двигателем (глубинной бомбы) заданной глубины и формой корпуса противолодочного корабля: сферической, полусферической, каплевидной. Представление этой зависимости графически.
контрольная работа [110,6 K], добавлен 31.05.2010Моделирование движения заряженной частицы, падающей вертикально вниз на одноименно заряженную пластину, с помощью программ Mathcad и Matlab. Построение графика зависимости высоты, на которой находится точка, от времени и скорости движения этой частицы.
контрольная работа [79,2 K], добавлен 31.05.2010Разработка модели движения практически невесомой заряженной частицы в электрическом поле, созданном системой нескольких фиксированных в пространстве заряженных тел. При условии, что тела находятся в одной плоскости, но частица находится вне плоскости.
контрольная работа [60,7 K], добавлен 31.05.2010Определение зависимости горизонтальной длины полета тела и максимальной высоты траектории от одного из коэффициентов сопротивления среды, фиксировав все остальные параметры. Представление этой зависимости графически и подбор подходящей формулы.
контрольная работа [119,1 K], добавлен 31.05.2010Метод наименьших квадратов. Возможные варианты расположения экспериментальных точек. Аппроксимация экспериментальных данных в программах Microsoft Excel, MathCAD и MatLAB. Вычисление средних значений и их сумм. Коэффициенты корреляции и детерминации.
курсовая работа [890,9 K], добавлен 30.10.2012Использование таблиц Excel и математической программы Mathcad при решении инженерных задач. Сравнение принципов работы этих пакетов программ при решении одних и тех же задач, их достоинства и недостатки. Обоснование преимуществ Mathcad над Excel.
курсовая работа [507,0 K], добавлен 15.12.2014Системы компьютерной математики: Mathcad - интегрированный пакет, включающий связанные компоненты (текстовый редактор, вычислительный процессор, символьный процессор). MatLab – система, построенная на представлении и применении матричных операций.
контрольная работа [473,2 K], добавлен 09.01.2012Методика решения некоторых геодезических задач с помощью программ MS Excel, MathCad, MatLab и Visual Basic. Расчет неприступного расстояния. Решение прямой угловой засечки по формулам Юнга и Гаусса. Решение обратной засечки по формулам Пранис-Праневича.
курсовая работа [782,2 K], добавлен 03.11.2014Решение нелинейного уравнения вида f(x)=0 с помощью программы Excel. Построение графика данной функции и ее табулирование. Расчет матрицы по исходным данным. Проведение кусочно-линейной интерполяции таблично заданной функции с помощью программы Mathcad.
контрольная работа [1,8 M], добавлен 29.07.2013Сравнение эффективности программ Excel и Mathcad при решении задач нахождения корней нелинейного уравнения и поиска экстремумов функции. Проведение табулирования функции на заданном интервале. Построение графика двухмерной поверхности в Excel и Mathcad.
курсовая работа [1,4 M], добавлен 07.05.2013