Исследование математической модели маятника

Анализ преимуществ и недостатков различных численных методов решения дифференциальных уравнений высших порядков. Обоснование выбора метода Рунге-Кутта четвертого порядка. Разработка программы, моделирующей физическое и математическое поведение маятника.

Рубрика Программирование, компьютеры и кибернетика
Предмет Математические методы в РТС
Вид курсовая работа
Язык русский
Прислал(а) Евгений
Дата добавления 11.07.2012
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Составление программы на алгоритмическом языке Turbo Pascal. Разработка блок-схемы алгоритма её решения. Составление исходной Pascal-программы и реализация вычислений по составленной программе. Применение методов Рунге-Кутта и Рунге-Кутта-Мерсона.

    курсовая работа [385,0 K], добавлен 17.09.2009

  • Обыкновенное дифференциальное уравнение первого порядка. Задача Коши, суть метода Рунге-Кутта. Выбор среды разработки. Программная реализация метода Рунге-Кутта 4-го порядка. Определение порядка точности метода. Применение языка программирования C++.

    курсовая работа [163,4 K], добавлен 16.05.2016

  • Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта 4-го порядка. Команды, используемые при решении обыкновенных дифференциальных уравнений в системе вычислений. Результат работы программы.

    курсовая работа [226,6 K], добавлен 05.04.2013

  • Изучение численных методов решения нелинейных уравнений. Построение годографа АФЧХ, графиков АЧХ и ФЧХ с указанием частот. Практическое изучение численных методов интегрирования дифференциальных уравнений высокого порядка, метод Рунге-Кутта 5-го порядка.

    курсовая работа [398,3 K], добавлен 16.06.2009

  • Разработка программы на языке Turbo Pascal 7.0 для преобразования кинетической схемы протекания химических реакций при изотермических условиях в систему дифференциальных уравнений. Ее решение в численном виде методом Рунге-Кутта четвертого порядка.

    курсовая работа [929,7 K], добавлен 06.01.2013

  • Обзор методов решения в Excel. Рекурентные формулы метода Эйлера. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. Метод Эйлера с шагом h/2. Решение дифференциальных уравнений с помощью Mathcad. Модифицированный метод Эйлера.

    курсовая работа [580,1 K], добавлен 18.01.2011

  • Решение дифференциальных уравнений первого порядка. Варианты методов Рунге-Кутта различных порядков. Основные методы численного решения задачи Коши. Повышение точности вычислений и итерационный метод уточнения. Дискретная числовая последовательность.

    лабораторная работа [33,3 K], добавлен 14.05.2012

  • Математическое описание численных методов решения уравнения, построение графика функции. Cтруктурная схема алгоритма с использованием метода дихотомии. Использование численных методов решения дифференциальных уравнений, составление листинга программы.

    курсовая работа [984,2 K], добавлен 19.12.2009

  • Анализ предметной области объектно-ориентированного программирования. Языки Delphi, Object Pascal - объектно-ориентированная среда программирования. Основные алгоритмические решения. Решение дифференциального уравнения методом Рунге-Кутта в среде Excel.

    курсовая работа [1,5 M], добавлен 02.04.2011

  • Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений: Эйлера, Рунге-Кутта, Адамса и Рунге. Техники приближенного решения данных уравнений: метод конечных разностей, разностной прогонки, коллокаций; анализ результатов.

    курсовая работа [532,9 K], добавлен 14.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.