Моделирование электрических цепей с нелинейными элементами
Моделирование схем с резистивным нелинейным элементом. Исследование характеристик транзистора. Графический ввод, редактирование и анализ принципиальных схем в режимах анализа переходных процессов, частотного анализа и анализа в режиме постоянного тока.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 12.03.2011 |
Размер файла | 676,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
14
Размещено на http://www.allbest.ru/
Контрольная работа
«Моделирование электрических цепей с нелинейными элементами»
Введение
Цель работы: приобретение навыков графического ввода, редактирования и анализа принципиальных схем в среде Micro-CAP.
Выполнение работы
1. Моделирование схем с резистивным НЭ
Соберём схему с резистивным НЭ. (рис. 1)
Рис. 1
Выберем модель диода 1S2460. В режиме DC Analysis зададим параметры для первой варьируемой переменной: Method - Auto, Name - V1, Range - 2. В качестве независимой переменной укажем напряжение на аноде диода V(1), а в окне X Expression зададим переменную I(D1). Построим ВАХ. (график 1)
График 1
Зададим диапазон измерения температуры -40…+70 С0 и включив линейную шкалу изменения температуры, повторим моделирование в режиме DC. (график 2)
График 2
Заменим диод D1 в схеме на стабилитрон, подсоединив его катодом к плюсу источника (встречное включение). В открывшемся окне задания параметров моделирования диода установим, следующие значения: BV = 3 В, RS = 4 Ом. Построим ВАХ стабилитрона, задав пределы изменения напряжения источника V1 в пределах 0…4 В. Измерить напряжение стабилизации (пробоя). (график 3)
График 3
Соберём схему дифференцирующей RC-цепи. Установим следующие параметры генератора V1: амплитуда импульса - 10 В, начало переднего фронта - 0,1 мкс, длительность импульса TИ = 5R1C1, период повторения T = 2TИ. (рис. 2)
Рис. 2
В режиме Transient построим графики функций: V(1), V(R1), V(3). (график 4)
График 4
Поменяем полярность включения диода и повторим предыдущий пункт.
График 5
Соберём однопериодный выпрямитель переменного тока (рис. 3), подключив к электрической цепи генератор Sine Source. Выберем модель генератора - GENERAL и зададим следующие параметры для моделирования:
F = 1 кГц; A = 10 В; DC = 0; PH = 0; RS = 1 Ом; RP = 0; TAU = 0.
Рис. 3
Построим графики V(1), V(R1) и I(D1), задав максимальное время моделирования 10 мс. Измерим величину пульсаций выходного сигнала в конце переходного процесса. (график 6)
График 6
Проведём многовариантный анализ схемы, задав изменение величины резистора R1 в пределах 10…150 Ом с шагом 100 Ом. (график 7)
График 7
Соберём следующую схему (рис. 4)
Рис. 4
Проведём анализ схемы в режиме Transient, построив графики V(1), V(2), V(3) в одном графическом окне, а график I(D2) - в другом. (график 8)
График 8
Заменим в схеме источник переменного напряжения на источник постоянного напряжения, установив величину напряжения источника 10 В. Проведём анализ схемы в режиме постоянного тока (режим Dynamic DC) при V1 = 10 В. Определим значения узловых потенциалов, токов в ветвях схемы и мощностей, рассеиваемых на элементах схемы. (рис. 5)
Рис. 5
2. Исследование характеристик транзистора
Исследуем вольтамперную характеристику транзистора, для чего соберём схему (рис. 6), установив следующие параметры моделирования: I1 = 1 мА, V1 = 5 В. В качестве транзистора Q1 выбрав модель 2N2368.
Рис. 6
Включим режим DC и в строке Variable 1 зададим имя первой варьируемой переменной - V1 с диапазоном изменения 0…5 В. Для второй переменной (Variable 1) укажем имя I1 с диапазоном изменения 0…5 мА и с шагом 0,5 мА. Установим линейный метод варьирования обеих переменных. (график 9)
График 9
Соберём схему транзисторного усилителя (рис. 7). В качестве источника входного сигнала V1 использован источник Sine Source, выберем модель генератора - «1МГц» и зададим амплитуду синусоидального сигнала 0,1 В.
Рис. 7
Используя режим Transient построим графики входного (V(V1)) и выходного (Vc(Q1)) напряжений. (график 10)
График 10
В режиме многовариантного анализа познакомимся с работой усилителя, установив вариацию входного напряжения в диапазоне 0.1…0.6 В с шагом 0.3 В. (график 11)
График 11
Построим амплитудно-частотную и фазочастотную характеристики усилителя, установив в режиме AC диапазон изменения частоты 1…100 МГц. (график 12)
График 12
Проведём анализ режима схемы по постоянному току. (рис. 8)
Рис. 8
Вывод
резистивный нелинейный частотный постоянный
На данной контрольной работе мы приобрели навыки графического ввода, редактирования и анализа принципиальных схем в режимах анализа переходных процессов (Transient), частотного анализа (АС) и анализа в режиме постоянного тока (Dynamic DC. Познакомились с характеристиками транзистора в среде программы MICRO-CAP.
Размещено на Allbest.ru
Подобные документы
Рассмотрение методов графического ввода, редактирования и анализа принципиальных схем в режимах анализа переходных процессов (Transient) и частотного анализа (АС). Анализ многовариантного режима (Stepping). Построение годографы в среде программы MICRO-CAP
контрольная работа [360,9 K], добавлен 12.03.2011Особенности графического ввода, редактирования и анализа принципиальных схем в режимах анализа переходных процессов и частотного анализа. Измерение длительности импульса, его фронтов, амплитуды и периода повторения с помощью программы MICRO-CAP.
контрольная работа [159,2 K], добавлен 12.03.2011MicroCAP-8 как универсальный пакет программ схемотехнического анализа. Задание параметров моделирования, характеристика команд. Меню режимов расчета переходных процессов. Расчет частотных характеристик, передаточных функций по постоянному току и режима.
дипломная работа [2,5 M], добавлен 16.03.2011Electronics Workbench – электронная лаборатория на ПК, предназначена для моделирования и анализа электрических схем. Исследование элементов электрических цепей. Идеальный источник ЭДС. Исследование последовательного и параллельного соединений резисторов.
контрольная работа [2,0 M], добавлен 23.07.2012Анализ пакета программ схемотехнического моделирования и проектирования семейства Microcomputer Circuit Analysis Program. Особенности создания чертежа электрической схемы в МС. Общая характеристика и принципы форматов заданий компонентов и переменных.
реферат [581,4 K], добавлен 17.03.2011Простейшие электрические цепи первого порядка. Характеристика электрических цепей второго порядка, их параметры. Элементы нелинейных цепей. Основные этапы моделирования схем с помощью программы схемотехнического проектирования и моделирования Micro-Cap.
контрольная работа [196,6 K], добавлен 17.03.2011Обозначения и термины, характерные для электрических систем при изложении узлового метода. Создание математической модели данного метода в виде системы алгебраических и трансцендентных уравнений. Структура и листинг программы анализа электрических схем.
отчет по практике [1,0 M], добавлен 29.05.2013Нелинейности с симметричными характеристиками, их моделирование и фиксация на входе и выходе каждого звена средствами пакета Matlab. Изучение процессов в нелинейной системе с нелинейным элементом. Исследование систем методом гармонического баланса.
лабораторная работа [1,9 M], добавлен 06.07.2009Графический ввод схемы и симуляция в Quartus II. Основные логические элементы. Описание логических схем при помощи языка AHDL, его элементы. Зарезервированные ключевые слова. Моделирование цифровых схем с использованием параметрических элементов.
курсовая работа [1,7 M], добавлен 07.06.2015Схема простого сетевого источника питания постоянного тока с транзисторным стабилизатором. Измерение относительной нестабильности выходного напряжения блока питания. Влияние значения коэффициента передачи тока базы транзистора на величину напряжения.
лабораторная работа [1,6 M], добавлен 04.02.2013