Протоколы в локальных и глобальных сетях

Способы коммутации компьютеров. Классификация, структура, типы и принцип построения локальных компьютерных сетей. Выбор кабельной системы. Особенности интернета и других глобальных сетей. Описание основных протоколов обмена данными и их характеристика.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 16.06.2015
Размер файла 417,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Gopher-система. Эта система является предшественником WWW и сейчас утрачивает свое значение, хотя пока и поддерживается в Интернет. Просмотр информации на Gopher-сервере организуется с помощью древовидного меню, аналогичного меню в приложениях Windows или аналогично дереву каталогов (папок) файловой системы. Меню верхнего уровня состоит из перечня крупных тем, например, экономика, культура, медицина и др. Меню следующих уровней детализируют выбранный элемент меню предыдущего уровня. Конечным пунктом движения вниз по дереву (листом дерева) служит документ аналогично тому, как конечным элементом в дереве каталогов является файл.

FTP (File Transfer Protocol) - система, служащая для пересылки файлов. Работа с системой аналогична работе с системой NC. Файлы становятся доступными для работы (чтение, исполнения) только после копирования на собственный компьютер. Хотя пересылка файлов может быть выполнена с помощью WWW, FTP-системы продолжают оставаться весьма популярными ввиду их быстродействия и простоты использования.

Адресация и протоколы в Интернет

Компьютер, подключенный к Интернет, и использующий для связи с другими компьютерами сети специальный протокол TCP/IP, называется хостом. Для идентификации каждого хоста в сети имеются следующие два способа адресации, всегда действующие совместно.

Первый способ адресации, называемый IP-адресом, аналогичен телефонному номеру. IP-адрес хоста назначается провайдером, состоит из четырех групп десятичных цифр (четырех байтов), разделенных точками, заканчивается точкой.

Аналогично телефонам, каждый компьютер в Интернет должен иметь уникальный IP-адрес. Обычно пользователь свой IP-адрес не использует. Неудобство IP-адреса состоит в его безликости, отсутствии смысловой характеристики хоста и потому трудной запоминаемости.

Второй способ идентификации компьютеров называется системой доменных имен, именуемой DNS (Domain Naming System).

DNS-имена назначаются провайдером и, например, имеет вид: win.smtp.dol.ru.

Приведенное выше доменное имя состоит из четырех, разделенных точками, простых доменов (или просто доменов). Число простых доменов в полном доменном имени может быть произвольным. Каждый из простых доменов характеризует некоторое множество компьютеров. Домены в имени вложены друг в друга, так что любой домен (кроме последнего) представляет собой подмножество домена, следующего за ним справа. Так, в приведенном примере DNS-имени домены имеют следующий смысл:

ru - домены страны, в данном случае обозначает все домены в России;

dol - домен провайдера, в данном случае обозначает компьютеры, локальной сети российской фирмы Demos;

smtp - домен группы серверов Demos, обслуживающих систему электронной почты;

win - имя конкретного компьютера из группы smtp[13, с.90].

Таким образом, по всей организации и внутренней структуре DNS-система напоминает полный путь к конкретному файлу в дереве каталогов и файлов. Одно из различий состоит в том, что домен более высокого уровня в DNS-имени находится правее. Так же, как и IP-адрес, DNS-имя должно однозначно идентифицировать компьютер в Интернет. Полное доменное имя должно заканчиваться точкой.

Протокол Frame Relay (FR)

Frame Relay - это протокол, который описывает интерфейс доступа к сетям быстрой коммутации пакетов. Он позволяет эффективно передавать крайне неравномерно распределенный по времени трафик и обеспечивает высокие скорости прохождения информации через сеть, малые времена задержек и рациональное использование полосы пропускания.

По сетям FR возможна передача не только собственно данных, но и также оцифрованного голоса.

Согласно семиуровневой модели взаимодействия открытых систем OSI, FR - протокол второго уровня. Однако он не выполняет некоторых функций, обязательных для протоколов этого уровня, но выполняет функции протоколов сетевого уровня. В то же время FR позволяет устанавливать соединение через сеть, что в соответствии с OSI, относится к функции протоколов третьего уровня[13, с.92].

3.3 Примеры глобальных сетей

В СНГ в последние годы интенсивно внедряется сетевая компьютерная инфраструктура. Независимые государства развивают свои компьютерные сети и активно включаются в мировое информационное сообщество на базе глобальных международных сетей.

В сетях СНГ основными каналами связи являются: коммутируемая телефонная сеть общего пользования, выделенные телефонные линии связи, специальные сети передачи данных (ПД-200, «Искра») и сеть абонентского телеграфа. В последнее время используются также линии связи на оптоволоконных кабелях, сотовая связь и радиосвязь. Основные национальные сети, а также международные сети, услугами которых могут пользоваться граждане СНГ:

БЕЛИКОС - белорусский узел коммерческой сети СИТЕК, работающей на территории СНГ, Балтии и Болгарии.

ИКСМИР (информационно-коммерческая сеть «Мировой информационный рынок») - сеть функционирует в 12 регионах СНГ. Обеспечивает электронную почту, коммерческие предложения, рекламу, курсы валют, биржевые новости, цены на рынках, законодательства стран и расписания движения железнодорожного и авиационного транспорта.

СИТЕК - объединение национальных и региональных сетей коммерческого направления: биржевой и валютный рынки, товары и услуги, законодательство.

ЭСТ - электронная система торгов фондовой биржи дает возможность удаленным клиентам участвовать в торгах биржи.

EUNET / RELCOM - международная коммерческая сеть, ориентированная в основном на предприятия и организации среднего класса. Популярность сети обусловлена приемлемым уровнем сервиса и относительно низкими ценами.

FIDONET - международная некоммерческая сеть, обеспечивающая свободный обмен информацией через BBS - электронные доски объявлений. Абоненты сети пользуются информацией BBS бесплатно.

PAY - система электронных платежей, объединяет многие банки России, Украины, Беларуси, Казахстана и Кыргызстана, а также позволяет производить платежи в Азербайджане, Узбекистане и государствах Балтии.

SPRINTNET - крупнейшая в мире сеть электронной почты. Основной физической средой передачи данных является оптоволоконный кабель, включая трансатлантический канал. Сеть осуществляет передачу сообщений на факсимильные аппараты, средства телексной и телетексной связи, обеспечивает электронные платежи и международные расчеты. Дает возможность пользователям доступа к большинству мировых сетей,

SWIFT - общество международных межбанковских финансовых телекоммуникаций. Сеть гарантирует оперативную пересылку и безопасное хранение финансовых документов абонентов в 130 странах мира и бесперебойное обслуживание клиентов в течение 24 часов.

Особая роль среди глобальных сетей принадлежит мировому сообществу сетей Internet.[14, с.30]

3.4 Отличия локальных сетей от глобальных сетей

Рассмотрим основные отличия локальных сетей от глобальных более детально. Так как в последнее время эти отличия становятся все менее заметными, то будем считать, что в данном разделе мы рассматриваем сети конца 80-х годов, когда эти отличия проявлялись весьма отчетливо, а современные тенденции сближения технологий локальных и глобальных сетей будут рассмотрены в следующем разделе.

Протяженность, качество и способ прокладки линий связи. Класс локальных вычислительных сетей по определению отличается от класса глобальных сетей небольшим расстоянием между узлами сети. Это в принципе делает возможным использование в локальных сетях качественных линий связи: коаксиального кабеля, витой пары, оптоволоконного кабеля, которые не всегда доступны (из-за экономических ограничений) на больших расстояниях, свойственных глобальным сетям, В глобальных сетях часто применяются уже существующие линии связи (телеграфные или телефонные), а в локальных сетях они прокладываются заново. Топология Локальные сети Распределенная программа

Сложность методов передачи и оборудования. В условиях низкой надежности физических каналов в глобальных сетях требуются более сложные, чем в локальных сетях, методы передачи данных и соответствующее оборудование. Так, в глобальных сетях широко применяются модуляция, асинхронные методы, сложные методы контрольного суммирования, квитирование и повторные передачи искаженных кадров. С другой стороны, качественные линии связи в локальных сетях позволили упростить процедуры передачи данных за счет применения немодулированных сигналов и отказа от обязательного подтверждения получения пакета.

Скорость обмена данными. Одним из главных отличий локальных сетей от глобальных является наличие высокоскоростных каналов обмена данными между компьютерами, скорость которых (10,16и100 Мбит/с) сравнима со скоростями работы устройств и узлов компьютера - дисков, внутренних шин обмена данными и т. п. За счет этого у пользователя локальной сети, подключенного к удаленному разделяемому ресурсу (например, диску сервера), складывается впечатление, что он пользуется этим диском, как «своим». Для глобальных сетей типичны гораздо более низкие скорости передачи данных - 2400,9600,28800,33600 бит/с, 56 и 64 Кбит/с и только на магистральных каналах - до 2 Мбит/с.

Разнообразие услуг. Локальные сети предоставляют, как правило, широкий набор услуг - это различные виды услуг файловой службы, услуги печати, услуги службы передачи факсимильных сообщений, услуги баз данных, электронная почта и другие, в то время как глобальные сети в основном предоставляют почтовые услуги и иногда файловые услуги с ограниченными возможностями - передачу файлов из публичных архивов удаленных серверов без предварительного просмотра их содержания.

Оперативность выполнения запросов. Время прохождения пакета через локальную сеть обычно составляет несколько миллисекунд, время же его передачи через глобальную сеть может достигать нескольких секунд. Низкая скорость передачи данных в глобальных сетях затрудняет реализацию служб для режима on-line, который является обычным для локальных сетей.

Разделение каналов. В локальных сетях каналы связи используются, как правило, совместно сразу несколькими узлами сети, а в глобальных сетях - индивидуально.

Использование метода коммутации пакетов. Важной особенностью локальных сетей является неравномерное распределение нагрузки. Отношение пиковой нагрузки к средней может составлять 100:1 и даже выше. Такой трафик обычно называют пульсирующим. Из-за этой особенности трафика в локальных сетях для связи узлов применяется метод коммутации пакетов, который для пульсирующего трафика оказывается гораздо более эффективным, чем традиционный для глобальных сетей метод коммутации каналов. Эффективность метода коммутации пакетов состоит в том, что сеть в целом передает в единицу времени больше данных своих абонентов. В глобальных сетях метод коммутации пакетов также используется, но наряду с ним часто применяется и метод коммутации каналов, а также некоммутируемые каналы - как унаследованные технологии некомпьютерных сетей.

Масштабируемость. «Классические» локальные сети обладают плохой масштабируемостью из-за жесткости базовых топологий, определяющих способ подключения станций и длину линии. При использовании многих базовых топологий характеристики сети резко ухудшаются при достижении определенного предела по количеству узлов или протяженности линий связи. Глобальным же сетям присуща хорошая масштабируемость, так как они изначально разрабатывались в расчете на работу с произвольными топологиями.[15, с.37-38]

3.5 Тенденция к сближению локальных сетей и глобальных сетей

Если принять во внимание все перечисленные выше различия локальных и глобальных сетей, то становится понятным, почему так долго могли существовать раздельно два сообщества специалистов, занимающиеся этими двумя видами сетей. Но за последние годы ситуация резко изменилась.

Специалисты по локальным сетям, перед которыми встали задачи объединения нескольких локальных сетей, расположенных в разных, географически удаленных друг от друга пунктах, были вынуждены начать освоение чуждого для них мира глобальных сетей и телекоммуникаций. Тесная интеграция удаленных локальных сетей не позволяет рассматривать глобальные сети в виде «черного ящика», представляющего собой только инструмент транспортировки сообщений на большие расстояния. Поэтому все, что связано с глобальными связями и удаленным доступом, стало предметом повседневного интереса многих специалистов по локальным сетям.

С другой стороны, стремление повысить пропускную способность, скорость передачи данных, расширить набор и оперативность служб, другими словами, стремление улучшить качество предоставляемых услуг - все это заставило специалистов по глобальным сетям обратить пристальное внимание на технологии, используемые в локальных сетях. Таким образом, в мире локальных и глобальных сетей явно наметилось движение навстречу друг другу, которое уже сегодня привело к значительному взаимопроникновению технологий локальных и глобальных сетей.

Одним из проявлений этого сближения является появление сетей масштаба большого города (MAN), занимающих промежуточное положение между локальными и глобальными сетями. При достаточно больших расстояниях между узлами они обладают качественными линиями связи и высокими скоростями обмена, даже более высокими, чем в классических локальных сетях. Как и в случае локальных сетей, при построении MAN уже существующие линии связи не используются, а прокладываются заново.

Сближение в методах передачи данных происходит на платформе оптической цифровой (немодулированной) передачи данных по оптоволоконным линиям связи. Из-за резкого улучшения качества каналов связи в глобальных сетях начали отказываться от сложных и избыточных процедур обеспечения корректности передачи данных. Примером могут служить сети frame relay. В этих сетях предполагается, что искажение бит происходит настолько редко, что ошибочный пакет просто уничтожается, а все проблемы, связанные с его потерей, решаются программами прикладного уровня, которые непосредственно не входят в состав сети frame relay.

За счет новых сетевых технологий и, соответственно, нового оборудования, рассчитанного на более качественные линии связи, скорости передачи данных в уже существующих коммерческих глобальных сетях нового поколения приближаются к традиционным скоростям локальных сетей (в сетях frame relay сейчас доступны скорости 2 Мбит/с), а в глобальных сетях АТМ и превосходят их, достигая 622 Мбит/с.

В результате службы для режима on-line становятся обычными и в глобальных сетях. Наиболее яркий пример - гипертекстовая информационная служба World Wide Web, ставшая основным поставщиком информации в сети Internet. Ее интерактивные возможности превзошли возможности многих аналогичных служб локальных сетей, так что разработчикам локальных сетей пришлось просто позаимствовать эту службу у глобальных сетей. Процесс переноса служб и технологий из глобальных сетей в локальные приобрел такой массовый характер, что появился даже специальный термин - intranet-технологии (intra - внутренний), обозначающий применение служб внешних (глобальных) сетей во внутренних - локальных.

Локальные сети перенимают у глобальных сетей и транспортные технологии. Все новые скоростные технологии (Fast Ethernet, Gigabit Ethernet, l00VG-AnyLAN) поддерживают работу по индивидуальным линиям связи наряду с традиционными для локальных сетей разделяемыми линиями. Для организации индивидуальных линий связи используется специальный тип коммуникационного оборудования - коммутаторы. Коммутаторы локальных сетей соединяются между собой по иерархической схеме, подобно тому, как это делается в телефонных сетях: имеются коммутаторы нижнего уровня, к которым непосредственно подключаются компьютеры сети, коммутаторы следующего уровня соединяют между собой коммутаторы нижнего уровня и т. д. Коммутаторы более высоких уровней обладают, как правило, большей производительностью и работают с более скоростными каналами, уплотняя данные нижних уровней. Коммутаторы поддерживают не только новые протоколы локальных сетей, но и традиционные - Ethernet и Token Ring.

В локальных сетях в последнее время уделяется такое же большое внимание методам обеспечения защиты информации от несанкционированного доступа, как и в глобальных сетях. Такое внимание обусловлено тем, что локальные сети перестали быть изолированными, чаще всего они имеют выход в «большой мир» через глобальные связи. При этом часто используются те же методы - шифрование данных, аутентификация пользователей, возведение защитных барьеров, предохраняющих от проникновения в сеть извне.

И наконец, появляются новые технологии, изначально предназначенные для обоих видов сетей. Наиболее ярким представителем нового поколения технологий является технология АТМ, которая может служить основой не только локальных и глобальных компьютерных сетей, но и телефонных сетей, а также широковещательных видеосетей, объединяя все существующие типы трафика в одной транспортной сети.[15, с.41]

Таким образом, классифицируя сети по территориальному признаку, различают локальные (LAN), глобальные (WAN) и городские (MAN) сети.

Локальные компьютерные сети - сосредоточены на территории не более 1-2 км; построены с использованием дорогих высококачественных линий связи, которые позволяют, применяя простые методы передачи данных, достигать высоких скоростей обмена данными порядка 100 Мбит/с. Предоставляемые услуги отличаются широким разнообразием и обычно предусматривают реализацию в режиме on-line.

Глобальные компьютерные сети - объединяют компьютеры, рассредоточенные на расстоянии сотен и тысяч километров. Часто используются уже существующие не очень качественные линии связи. Более низкие, чем в локальных сетях, скорости передачи данных (десятки килобит в секунду) ограничивают набор предоставляемых услуг передачей файлов, преимущественно не в оперативном, а в фоновом режиме, с использованием электронной почты. Для устойчивой передачи дискретных данных применяются более сложные методы и оборудование, чем в локальных сетях.

Городские - занимают промежуточное положение между локальными и глобальными сетями. При достаточно больших расстояниях между узлами (десятки километров) они обладают качественными линиями связи и высокими скоростями обмена, иногда даже более высокими, чем в классических локальных сетях. Как и в случае локальных сетей, при построении MAN уже существующие линии связи не используются, а прокладываются заново.

Мы рассмотрели сравнительные характеристики, достоинства и недостатки наиболее популярных сейчас информационных технологий: локальной компьютерной сети и глобальной компьютерной сети. Существует много других эффективных и полезных технологий, число их увеличивается с каждым днем, поэтому, чтобы не отстать от ритма современной жизни, нужно постоянно быть в курсе новинок технических средств ПЭВМ, системного программного обеспечения и прикладных компьютерных технологий.

4. Основные протоколы обмена в компьютерных сетях

Для обеспечения согласованной работы в сетях передачи данных используются различные коммуникационные протоколы передачи данных - наборы правил, которых должны придерживаться передающая и принимающая стороны для согласованного обмена данными. Протоколы - это наборы правил и процедур, регулирующих порядок осуществления некоторой связи. Протоколы - это правила и технические процедуры, позволяющие нескольким компьютерам при объединении в сеть общаться друг с другом.

Совокупность стандартов, определяющих параметры взаимодействия компьютеров, стали называть протоколом. Протоколы различны в зависимости от структуры сети. Для организации передачи информации в сети, разработали специальные правила - стандарты, затем эти правила объединили в протоколы.

Протокол определяет способ доступа компьютера к кабелю - передающей среде, и также способ передачи информации от одного компьютера к другому.

Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет различные цели, выполняет различные задачи, обладает своими преимуществами и ограничениями.

Протоколы работают на разных уровнях модели взаимодействия открытых систем OSI/ISO. Функции протоколов определяются уровнем, на котором он работает. Несколько протоколов могут работать совместно. Это так называемый стек, или набор, протоколов.

Как сетевые функции распределены по всем уровням модели OSI, так и протоколы совместно работают на различных уровнях стека протоколов. Уровни в стеке протоколов соответствуют уровням модели OSI. В совокупности протоколы дают полную характеристику функций и возможностей стека[16, с.88].

Передача данных по сети, с технической точки зрения, должна состоять из последовательных шагов, каждому из которых соответствуют свои процедуры или протокол. Таким образом, сохраняется строгая очередность в выполнении определенных действий.

Кроме того, все эти действия должны быть выполнены в одной и той же последовательности на каждом сетевом компьютере. На компьютере-отправителе действия выполняются в направлении сверху вниз, а на компьютере-получателе снизу вверх.

Компьютер-отправитель в соответствии с протоколом выполняет следующие действия: Разбивает данные на небольшие блоки, называемыми пакетами, с которыми может работать протокол, добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему, подготавливает данные к передаче через плату сетевого адаптера и далее - по сетевому кабелю.

Компьютер-получатель в соответствии с протоколом выполняет те же действия, но только в обратном порядке: принимает пакеты данных из сетевого кабеля; через плату сетевого адаптера передает данные в компьютер; удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем, копирует данные из пакета в буфер - для их объединения в исходный блок, передает приложению этот блок данных в формате, который оно использует.

И компьютеру-отправителю, и компьютеру-получателю необходимо выполнить каждое действие одинаковым способом, с тем чтобы пришедшие, по сети данные совпадали с отправленными.

Если, например, два протокола будут по-разному разбивать данные на пакеты и добавлять информацию (о последовательности пакетов, синхронизации и для проверки ошибок), тогда компьютер, использующий один из этих протоколов, не сможет успешно связаться с компьютером, на котором работает другой протокол[17, с.123].

До середины 80-ых годов большинство локальных сетей были изолированными. Они обслуживали отдельные компании и редко объединялись в крупные системы. Однако, когда локальные сети достигли высокого уровня развития и объем передаваемой ими информации возрос, они стали компонентами больших сетей. Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными. Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми протоколами.

Windows NT Server содержит несколько протоколов, используемых при взаимодействии компьютеров:

NetBIOS (Network Basic Input/Output System)

NetBEUI (NetBIOS Extended User Interface)

TCP/IP (Transmission Control Protocol/Internet Protocol)

NWLink IPX/SPX (Internetwork Packet Exchange/Sequenced Packet Exchange)

DLC (Data Link Control)

AppleTalk

Streams

PPTP (Point-to-Point Tunneling Protocol)

XNS;

IPX/SPX и NWLmk;

Набор протоколов OSI.

Семейство протоколов TCP/IP широко применяется во всем мире для объединения компьютеров в сеть Internet, реализации обмена данными межу машинами. Основное внимание уделено примерам, основанным на реализации TCP/IP в ОС UNIX. Однако основные положения применимы ко всем реализациям TCP/IP[17, с.124].

Рассмотрим более подробно каждый стек протоколов.

Как говорилось выше, среди множества протоколов можно выделить наиболее распространенные.

NetBIOS (Network Basic Input/Output System)

Впервые протокол NetBIOS появился в 1984 году в качестве интерфейса передачи сообщений по локальной сети, разработанной компаниями IBM и Sytek . NetBIOS позволяет организовывать работу, как одноранговых сетей, так и сетей клиент-сервер.

NetBIOS использует для работы другой разработанный для него протокол NETBEUI . О нем мы поговорим чуть ниже. NetBIOS устанавливается автоматически при инсталляции Windows NT.

Основные особенности протокола NetBIOS:

Каждому компьютеру, который использует протокол NETBEUI присваивается логическое имя, например, BOSS . По этому имени к нему могут обратиться пользователи других компьютеров. Если говорить по другому - протокол NetBIOS использует для своей работы службу имен . Как же происходит это знакомство?

Компьютеры узнают имена друг друга "прослушивая" объявления при подключении каждого из них в сеть или посылая непосредственно запрос на конкретное имя. Например, BOSS заходит в сеть и "говорит": "I'm ready", а потом может дать запрос на поиск имени другого компьютера, например Worker . Каждый компьютер хранит имена других компьютеров у себя в отдельной динамической таблице. В такой сети не нужен отдельный централизованный сервер имен. Но в этом способе знакомства есть и недостатки. Например, когда компьютер начинает "спрашивать" имя компьютера, который еще не объявил себя, он рассылает запрос этого имени по сети, но эта проблема может возникнуть не у одного компьютера. Поэтому все вот такие запросы существенно влияют, в обратную сторону, на производительность сети и даже могут вызывать проблемы перегрузки.

Итак, когда BOSS нашел компьютер Worker . Согласно протоколу NetBIOS он с будет с ним "выясняет отношения" (обмениваться данными) пока кому-то из них не надоест и он "повесит трубку", т.е. другими словами прекратит сеанс общения. В NetBIOS возможен другой способ передачи информации между компьютерами - циркулярная рассылка сообщений или каких-то уведомлений друг другу.

NetBIOS - чрезвычайно быстрый протокол с очень малыми затратами ресурсов компьютера на пересылку данных, поэтому он используется во многих базовых операциях Windows NT. К сожалению, этот протокол не поддерживает маршрутизации, следовательно, он не может использоваться в сетях с возможностями маршрутизации.

Сети, поддерживающие маршрутизацию, используют такие устройства, которые анализируют содержимое пакета информации и определяют точное его место следования. В крупных сетях, которые состоят из несколькими локальных (сети масштаба предприятия) пакеты информации могут следовать не только в пределах одной локальной сети. Таким сетям очень нужна поддержка маршрутизации.[18]

NetBEUI (NetBIOS Extended User Interface)

NetBEUI - простой транспортный сетевой протокол, разработанный для сетей NetBIOS . NetBEUI , как и NetBIOS , не поддерживает маршрутизации, поэтому он не в силах отличит локальное сообщение от не локального. Его не используют в глобальных сетях. Но зато NetBEUI - самый быстрый транспортный протокол из всех протоколов Windows NT. К числу достоинств NetBEUI относятся не только его скорость, но и хорошая защищенность от ошибок, простота реализации и малые затраты ресурсов компьютера. Самый главный недостаток NetBEUI - отсутствие маршрутизации, но у него есть и несколько других специфических недостатков.

Протокол NetBIOS работает совместно NetBEUI. Это основной протокол Windows NT, поскольку вся сетевая архитектура разработана на его основе, самый основной кирпичик этой архитектуры - поддержка службы имен. В Windows NT даже есть такой термин - NetBIOS-имя. NetBIOS устанавливается автоматически с Windows NT, кроме этого он самый простой, надежный и быстрый сетевой протокол

Кроме этого, NetBEUI используется в сетях Windows for Workgroups, Windows 3.x, DOS.

TCP/IP (Transmission Control Protocol/Internet Protocol)

TCP/IP это не один протокол, хотя часто его называют именно так. Это целое семейство протоколов. А в целом TCP/IP - единый промышленный стандарт, разработанный для глобальных сетей (Wide Area Networks, WAN). Протокол TCP/IP , начал свое развитие еще со времени создания первого протокола работающего в сети ARPAnet, но окончательно создан был агентством DARPA (U.S. Department of Defence Advanced Research Projects Agency) в конце 60-х - начале 70-х годов как результат исследования сетей с коммутацией пакетов (т.е. распределения пакетов по сети с точной доставкой на нужное место). TCP/IP поддерживает маршрутизацию.

В этом моменте необходимо отметить следующую особенность. Дело в том, что сетевая плата, которая установлена на каждый компьютер в сети имеет определенный физический адрес. Так вот протокол NETBIOS для организации пересылки сообщений использует именно это реальный физический адрес сетевой платы. TCP/IP используют второй адрес, именно адрес станции назначения пакета информации - сетевой адрес. По этому адресу он и определяет локальное это сообщение, или глобальное.

Все стандарты для TCP/IP публикуются в серии специальных документов называемых RFC (Request for Comments) под соответствующими номерами.

В эволюции TCP/IP было много этапов. Приведу тут некоторые исторические данные:

1970 Узлы сети ARPANET начали использовать первый сетевой протокол

1972 Первая спецификация Telnet оформлена как RFC 318 .

1973 Введен протокол File Transfet Protocol , RFC 454 .

1974 Представлена программа Transmission Control Program (TCP) .

1981 В RFC 791 опубликован стандарт IP .

1982 Агентство DCA (Defence Communications Agency) и агентство ARPA объединили протокол TCP (Transmission Control Protocol) и IP (Internet Protocol) в набор TCP/IP .

1983 Сеть ARPANET переключилась на протокол TCP/IP .

1984 Введена доменная система имен (Domain Name System, DNS).

В наше время развитием семейства протоколов TCP/IP управляет Международная общественная организация, именуемая Сообществом Интернета (Internet Society, ISOC).[19, с.55]

Протокол TCP/IP в Windows NT обеспечивает сетевое взаимодействие компьютеров, работающих не только под управлением Windows NT , но и возможность подключения к ним сетевых устройств и компьютеров под управлением других операционных систем. Добавление протокола TCP/IP в конфигурацию Windows обеспечивает ряд преимуществ.

Основной плюс - TCP/IP оправданно считается наиболее совершенным и распространенным протоколом из всех доступных на сегодняшний день.

Все современные операционные системы поддерживают протокол TCP/IP , и почти все крупные сети используют его для приема/передачи данных. Кроме того, протокол TCP/IP является стандартным для Интернет. Поэтому если в сети используется доступ в Интернет, что сейчас встречается на каждом шагу, то тут только один выход - непременно устанавливать протокол TCP/IP. TCP/IP очень хорош и для расширения сети. С его использованием локальные сети "легко превращаются ..." в глобальные[19, с.57]

Другое преимущество TCP/IP - возможность объединения неоднородных систем. Сегодня существует множество утилит доступа и передачи данных, позволяющих взаимодействовать самым различным системам. Некоторые из них, например FTP (File Transfer Protocol) и Telnet , поставляются с Windows NT Server . Об этих особенностях мы поговорим позже.

Протокол TCP/IP - каркас для разработки приложений, которые используют архитектуру клиент/сервер. Но эта особенность нужна скорее программистам, а не системным администраторам.

Для организации централизованной системы управления сетью Windows NT с возможностью подключения к Интернет наилучшим решением является использование протокола TCP/IP. Кроме того, TCP/IP обладает большим количеством служб, которые делают его простым в повседневном управлении и обслуживанииNWLink IPX/SPX (Internetwork Packet Exchange/Sequenced Packet Exchange)

NWLink (IPX/SPX) представляет собой разработанную в Microsoft "чистую" реализацию семейства протоколов IPX/SPX для сетей NetWare фирмы Novell .

IPX/SPX (Internetwork Packet eXchange/Sequenced Packed eXcange) в сущности, состоит из двух протоколов IPX и SPX . IPX - протокол без подтверждения приема/передачи информации в сети, а SPX - позволяет получить подтверждение. IPX/SPX быстродействующий и производительный протокол, так же как и NETBIOS .

NWLink (IPX/SPX) протокол был включен в Windows NT для организации взаимодействия с серверами NetWare . NWLink позволяет клиентам Windows NT работать с ресурсами, находящимися на серверах NetWare , и наоборот. Иначе говоря, наличие протокола NWLink на сервере Windows NT необходимо для взаимодействия с клиентами и серверами NetWare .

Кроме этого, да будет вам известно, что некоторые сетевые игрушки, типа DOOM, использует именно протокол IPX!

DLC Протокол DLC (Data Link Control) используется в Windows NT в первую очередь для подключения к большим машинам IBM и, что еще важнее, - для подключения к сетевым принтерам (имеется в виду принтеры со встроенной сетевой платой).

AppleTalk Протокол AppleTalk используется для взаимодействия с компьютерами Macintosh . Включая поддержку AppleTalk , вы разрешаете клиентам Macintosh читать и записывать файлы на сервере Windows NT, печатать на принтерах Windows NT, и наоборот.

Streams Протокол Streams является специальным интерфейсом для разработки специальных сетевых утилит. Это интерфейс общего назначения, который используется другими протоколами.

Протоколы DLC , AppleTalk , Streams это специальные протоколы и они не поддерживают передачи по сети информации так, как это делает NETBIOS . Для их работы нужно и специальное программное обеспечение, которое не поставляется с Windows NT.

PPTP (Point-to-Point Tunneling Protocol) Этот протокол специально разработан, чтобы организовывать защищенные локальные передачи информации по глобальным сетям. Его применение тесно связано с использованием специальной службы удаленного доступа, с которой мы с вами познакомимся в следующем уроке.

Xerox Network System (XNS) был разработан фирмой Xerox для своих сетей Ethernet. Его широкое применение началось с 80=ых годов, но постепенно он был вытеснен протоколом TCP/IP. XNS - большой и медленный протокол, к тому же он применяет значительное количество широковещательных сообщений, что увеличивает трафик сети.

Набор протоколов OSI - полный стек протоколов, где каждый протокол соответствует конкретному уровню модели OSI. Набор содержит маршрутизируемые и транспортные протоколы, серии протоколов IEEE Project 802, протокол сеансового уровня, представительского уровня и нескольких протоколов прикладного уровня. Они обеспечивают полнофункциональность сети, включая доступ к файлам, печать и т.д. [20, с.79]

Особенно следует остановиться на стеке протоколов IPX/SPX. Этот стек является оригинальным стеком протоколов фирмы Novell, который она разработала для своей сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали имя стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньше степени, чем IPX/SPX. По количеству установок протоколы IPX/SPX лидируют, и это обусловлено тем, что сама ОС NetWare занимает лидирующее положение с долей установок в мировом масштабе примерно в 65%.

На физическом и канальном уровнях в сетях Novell используются все популярные протоколы этих уровней (Ethernet, Token Ring, FDDI и другие).

На сетевом уровне в стеке Novell работает протокол IPX, а также протоколы обмена маршрутной информацией RIP и NLSP. IPX является протоколом, который занимается вопросами адресации и маршрутизации пакетов в сетях Novell. Маршрутные решения IPX основаны на адресных полях в заголовке его пакета, а также на информации, поступающей от протоколов обмена маршрутной информацией. Например, IPX использует информацию, поставляемую либо протоколом RIP, либо протоколом NLSP (NetWare Link State Protocol) для передачи пакетов компьютеру назначения или следующему маршрутизатору. Протокол IPX поддерживает только дейтаграммный способ обмена сообщениями, за счет чего экономно потребляет вычислительные ресурсы. Итак, протокол IPX обеспечивает выполнение трех функций: задание адреса, установление маршрута и рассылку дейтаграмм.

Транспортному уровню модели OSI в стеке Novell соответствует протокол SPX, который осуществляет передачу сообщений с установлением соединений.

На верхних прикладном, представительном и сеансовом уровнях работают протоколы NCP и SAP. Протокол NCP (NetWare Core Protocol) является протоколом взаимодействия сервера NetWare и оболочки рабочей станции. Этот протокол прикладного уровня реализует архитектуру клиент-сервер на верхних уровнях модели OSI. С помощью функций этого протокола рабочая станция производит подключение к серверу, отображает каталоги сервера на локальные буквы дисководов, просматривает файловую систему сервера, копирует удаленные файлы, изменяет их атрибуты и т.п., а также осуществляет разделение сетевого принтера между рабочими станциями.

SAP (Service Advertising Protocol) - протокол объявления о сервисе - концептуально подобен протоколу RIP. Подобно тому, как протокол RIP позволяет маршрутизаторам обмениваться маршрутной информацией, протокол SAP дает возможность сетевым устройствам обмениваться информацией об имеющихся сетевых сервисах.

Серверы и маршрутизаторы используют SAP для объявления о своих сервисных услугах и сетевых адресах. Протокол SAP позволяет сетевым устройствам постоянно корректировать данные о том, какие сервисные услуги имеются сейчас в сети. При старте серверы используют SAP для оповещения оставшейся части сети о своих услугах. Когда сервер завершает работу, то он использует SAP для того, чтобы известить сеть о прекращении действия своих услуг.

В сетях Novell серверы NetWare 3.x каждую минуту рассылают широковещательные пакеты SAP. Пакеты SAP в значительной степени засоряют сеть, поэтому одной из основных задач маршрутизаторов, выходящих на глобальные связи, является фильтрация трафика SAP-пакетов и RIP-пакетов.

Особенности стека IPX/SPX обусловлены особенностями ОС NetWare, а именно ориентацией ее ранних версий на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Поэтому Novell нужны были протоколы, на реализацию которых требовалось минимальное количество оперативной памяти и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате, протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами).

Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать у нее лицензию, долгое время ограничивали распространенность его только сетями NetWare. Однако к моменту выпуска версии NetWare 4.0, Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на приспособление их для работы в корпоративных сетях. Сейчас стек IPX/SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС - SCO UNIX, Sun Solaris, Microsoft Windows NT. [21]

Вот мы с вами и немного разобрались с существующими сетевыми протоколами. Но, кроме просто установки соответствующего протокола для корректной работы сети в целом, протокола в частности существуют еще и сетевые службы. Например, как вы уже теперь знаете, протокол TCP/IP включает в себя много утилит, которые поддерживают те или иные возможности его работы. Так вот для их работы в Windows NT Server включены специальные службы. Наряду с этими есть и другие сетевые службы. Некоторые из этих служб уже встроены в Windows NT Server после инсталляции.

4.1 Характеристика протокола TCP/IP

Термин "TCP/IP" обычно обозначает все, что связано с протоколами TCP и IP. Он охватывает целое семейство протоколов, прикладные программы и даже саму сеть. В состав семейства входят протоколы UDP, ARP, ICMP, TEL-NET, FTP и многие другие. TCP/IP - это технология межсетевого взаимодействия, технология internet. Сеть, которая использует технологию internet, называется "internet". Если речь идет о глобальной сети, объединяющей множество сетей с технологией internet, то ее называют Internet.

Модуль IP создает единую логическую сеть

Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети, могут обмениваться пакетами.

Когда необходимо передать пакет между машинами, подключенными к разным подсетям, то машина-отправитель посылает пакет в соответствующий шлюз (шлюз подключен к подсети также как обычный узел). Оттуда пакет направляется по определенному маршруту через систему шлюзов и подсетей, пока не достигнет шлюза, подключенного к той же подсети, что и машина-получатель; там пакет направляется к получателю. Объединенная сеть обеспечивает датаграммный сервис.

Проблема доставки пакетов в такой системе решается путем реализации во всех узлах и шлюзах межсетевого протокола IP. Межсетевой уровень является по существу базовым элементом во всей архитектуре протоколов, обеспечивая возможность стандартизации протоколов верхних уровней[22].

Структура связей протокольных модулей

Логическая структура сетевого программного обеспечения, реализующего протоколы семейства TCP/IP в каждом узле сети internet, выглядит следующим образом. Прямоугольники обозначают обработку данных, а линии, соединяющие прямоугольники, - пути передачи данных. Горизонтальная линия внизу рисунка обозначает кабель сети Ethernet, которая используется в качестве примера физической среды; "o" - это трансивер. Знак "*" - обозначает IP-адрес, а "@" - адрес узла в сети Ethernet (Ethernet-адрес). Понимание этой логической структуры является основой для понимания всей технологии internet. В дальнейшем мы будем часто ссылаться на эту схему.

Введем ряд базовых терминов, которые мы будем использовать в дальнейшем.

Драйвер - это программа, непосредственно взаимодействующая с сетевым адаптером.

Модуль - это программа, взаимодействующая с драйвером, сетевыми прикладными программами или другими модулями.

Драйвер сетевого адаптера и, возможно, другие модули, специфичные для физической сети передачи данных, предоставляют сетевой интерфейс для протокольных модулей семейства TCP/IP.

Название блока данных, передаваемого по сети, зависит от того, на каком уровне стека протоколов он находится. Блок данных, с которым имеет дело сетевой интерфейс, называется кадром; если блок данных находится между сетевым интерфейсом и модулем IP, то он называется IP-пакетом; если он между модулем IP и модулем UDP, то - UDP-датаграммой; если между модулем IP и модулем TCP, то - TCP-сегментом (или транспортным сообщением); наконец, если блок данных находится на уровне сетевых прикладных процессов, то он называется прикладным сообщением.

Потоки данных

В случае использования протокола TCP (Transmission Control Protocol - протокол управления передачей), данные передаются между прикладным процессом и модулем TCP. Типичным прикладным процессом, использующим протокол TCP, является модуль FTP (File Transfer Protocol - протокол передачи файлов). Стек протоколов в этом случае будет FTP/TCP/IP/ENET. При использовании протокола UDP (User Datagram Protocol - протокол пользовательских датаграмм), данные передаются между прикладным процессом и модулем UDP. Например, SNMP (Simple Network Management Protocol - простой протокол управления сетью) пользуется транспортными услугами UDP. Его стек протоколов выглядит так: SNMP/UDP/IP/ENET.

Модули TCP, UDP и драйвер Ethernet являются мультиплексорами. Действуя как мультиплексоры, они переключают несколько входов на один выход. Они также являются демультиплексорами. Как демультиплексоры, они переключают один вход на один из многих выходов в соответствии с полем типа в заголовке протокольного блока данных.

Когда Ethernet-кадр попадает в драйвер сетевого интерфейса Ethernet, он может быть направлен либо в модуль ARP (Address Resolution Protocol - адресный протокол), либо в модуль IP (Internet Protocol - межсетевой протокол). На то, куда должен быть направлен Ethernet-кадр, указывает значение поля типа в заголовке кадра.

Если IP-пакет попадает в модуль IP, то содержащиеся в нем данные могут быть переданы либо модулю TCP, либо UDP, что определяется полем "протокол" в заголовке IP-пакета.

Если UDP-датаграмма попадает в модуль UDP, то на основании значения поля "порт" в заголовке датаграммы определяется прикладная программа, которой должно быть передано прикладное сообщение. Если TCP-сообщение попадает в модуль TCP, то выбор прикладной программы, которой должно быть передано сообщение, осуществляется на основе значения поля "порт" в заголовке TCP-сообщения.

Мультиплексирование данных в обратную сторону осуществляется довольно просто, так как из каждого модуля существует только один путь вниз. Каждый протокольный модуль добавляет к пакету свой заголовок, на основании которого машина, принявшая пакет, выполняет демультиплексирование.

Данные от прикладного процесса проходят через модули TCP или UDP, после чего попадают в модуль IP и оттуда - на уровень сетевого интерфейса.

Хотя технология internet поддерживает много различных сред передачи данных, здесь мы будем предполагать использование Ethernet, так как именно эта среда чаще всего служит физической основой для IP-сети. Шестибайтный Ethernet-адрес является уникальным для каждого сетевого адаптера и распознается драйвером. Машина имеет также четырехбайтный IP-адрес. Этот адрес обозначает точку доступа к сети на интерфейсе модуля IP с драйвером. IP-адрес должен быть уникальным в пределах всей сети Internet.

Работающая машина всегда знает свой IP-адрес и Ethernet-адрес.

Работа с несколькими сетевыми интерфейсами

Машина может быть подключена одновременно к нескольким средам передачи данных. Для машин с несколькими сетевыми интерфейсами модуль IP выполняет функции мультиплексора и демультиплексора.

Таким образом, он осуществляет мультиплексирование входных и выходных данных в обоих направлениях. Модуль IP в данном случае сложнее, чем в первом примере, так как может передавать данные между сетями. Данные могут поступать через любой сетевой интерфейс и быть ретранслированы через любой другой сетевой интерфейс. Процесс передачи пакета в другую сеть называется ретрансляцией IP-пакета. Машина, выполняющая ретрансляцию, называется шлюзом. Ретранслируемый пакет не передается модулям TCP или UDP. Некоторые шлюзы вообще могут не иметь модулей TCP и UDP.

4.2 Протокол Ethernet

Кадр Ethernet содержит адрес назначения, адрес источника, поле типа и данные. Размер адреса в Ethernet - 6 байт. Каждый сетевой адаптер имеет свой Ethernet-адрес. Адаптер контролирует обмен информацией, про исходящий в сети, и принимает адресованные ему Ethernet-кадры, а также Ethernet-кадры с адресом "FF:FF:FF:FF:FF:FF" (в 16-ричной системе), который обозначает "всем", и используется при широковещательной передаче.

В документации по TCP/IP термины шлюз (gateway) и IP-маршрутизатор (IP-router) часто используются как синонимы. Мы сочли возможным использовать более распространенный термин "шлюз".

Ethernet реализует метод МДКН/ОС (множественный доступ с контролем несущей и обнаружением столкновений). Метод МДКН/ОС предполагает, что все устройства взаимодействуют в одной среде, в каждый момент времени может передавать только одно устройство, а принимать могут все одновременно. Если два устройства пытаются передавать одновременно, то происходит столкновение передач, и оба устройства после случайного (краткого) периода ожидания пытаются вновь выполнить передачу.

Аналогия с разговором

Хорошей аналогией взаимодействиям в среде Ethernet может служить разговор группы вежливых людей в небольшой темной комнате. При этом аналогией электрическим сигналам в коаксиальном кабеле служат звуковые волны в комнате.

Каждый человек слышит речь других людей (контроль несущей). Все люди в комнате имеют одинаковые возможности вести разговор (множественный доступ), но никто не говорит слишком долго, так как все вежливы. Если человек будет невежлив, то его попросят выйти (т.е. удалят из сети). Все молчат, пока кто-то говорит. Если два человека начинают говорить одновременно, то они сразу обнаруживают это, поскольку слышат друг друга (обнаружение столкновений). В этом случае они замолкают и ждут некоторое время, после чего один из них вновь начинает разговор. Другие люди слышат, что ведется разговор, и ждут, пока он кончится, а затем могут начать говорить сами. Каждый человек имеет собственное имя (аналог уникального Ethernet-адреса). Каждый раз, когда кто-нибудь начинает говорить, он называет по имени того, к кому обращается, и свое имя, например, "Слушай Петя, это Андрей, /*текст сообщения*/" Если кто-то хочет обратиться ко всем, то он говорит: "Слушайте все, это Андрей, /*текст сообщения*/" (широковещательная передача).

4.3 Протокол ARP

При посылке IP-пакета определяется Ethernet-адрес назначения следующим образом: для отображения IP-адресов в Ethernet адреса используется протокол ARP (Address Resolution Protocol - адресный протокол). Отображение выполняется только для отправляемых IP-пакетов, так как только в момент отправки создаются заголовки IP и Ethernet.

ARP-таблица для преобразования адресов

Преобразование адресов выполняется путем поиска в таблице. Эта таблица, называемая ARP-таблицей, хранится в памяти и содержит строки для каждого узла сети. В двух столбцах содержатся IP- и Ethernet-адреса. Если требуется преобразовать IP-адрес в Ethernet-адрес, то ищется запись с соответствующим IP-адресом.

Принято все байты 4-байтного IP-адреса записывать десятичными числами, разделенными точками. При записи 6-байтного Ethernet-адреса каждый байт указывается в 16-ричной системе и отделяется двоеточием.

ARP-таблица необходима потому, что IP-адреса и Ethernet-адреса выбираются независимо, и нет какого-либо алгоритма для преобразования одного в другой. Поэтому для определения искомого Ethernet-адреса используется ARP-таблица.

Запросы и ответы протокола ARP

Как же заполняется ARP-таблица? Она заполняется автоматически модулем ARP, по мере необходимости. Когда с помощью существующей ARP-таблицы не удается преобразовать IP-адрес, то происходит следующее:


Подобные документы

  • Создание компьютерных сетей с помощью сетевого оборудования и специального программного обеспечения. Назначение всех видов компьютерных сетей. Эволюция сетей. Отличия локальных сетей от глобальных. Тенденция к сближению локальных и глобальных сетей.

    презентация [72,8 K], добавлен 04.05.2012

  • Официальные международные организации, выполняющие работы по стандартизации информационных сетей, протоколы IP, ARP, RARP, семиуровневая модель OSI. TCP/IP, распределение протоколов по уровням ISO в локальных и в глобальных сетях, разделение IP-сетей.

    шпаргалка [50,0 K], добавлен 24.06.2010

  • Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.

    реферат [134,0 K], добавлен 21.10.2013

  • Теоретические основы организации локальных сетей. Общие сведения о сетях. Топология сетей. Основные протоколы обмена в компьютерных сетях. Обзор программных средств. Аутентификация и авторизация. Система Kerberos. Установка и настройка протоколов сети.

    курсовая работа [46,3 K], добавлен 15.05.2007

  • Понятие и структура компьютерных сетей, их классификация и разновидности. Технологии, применяемые для построения локальных сетей. Безопасность проводных локальных сетей. Беспроводные локальные сети, их характерные свойства и применяемые устройства.

    курсовая работа [441,4 K], добавлен 01.01.2011

  • Системы пакетной обработки данных. Появление первых глобальных и локальных компьютерных сетей. Классификационные признаки компьютерных сетей. Четыре основных вида компьютерных преступлений, их характеристика. Распространение вирусов через Интернет.

    реферат [32,6 K], добавлен 29.03.2014

  • Основные признаки классификации компьютерных сетей как нового вида связи и информационного сервиса. Особенности локальных и глобальных сетей. Объекты информационных сетевых технологий. Преимущества использования компьютерных сетей в организации.

    курсовая работа [1,9 M], добавлен 23.04.2013

  • Описание функций и видов (вычислительные, информационные, смешанные) компьютерных сетей. Изучение архитектурного построения и топологии локальных сетей. Характеристика, структура и типы (коммутация каналов, пакетов) глобального соединения компьютеров.

    курсовая работа [452,1 K], добавлен 24.02.2010

  • Передача информации между компьютерами. Анализ способов и средств обмена информацией. Виды и структура локальных сетей. Исследование порядка соединения компьютеров в сети и её внешнего вида. Кабели для передачи информации. Сетевой и пакетный протоколы.

    реферат [1,9 M], добавлен 22.12.2014

  • Общие сведения о глобальных сетях с коммутацией пакетов, построение и возможности сетей, принцип коммутации пакетов с использованием техники виртуальных каналов. Характеристики и возможности коммутаторов сетей, протоколы канального и сетевого уровней.

    курсовая работа [2,0 M], добавлен 26.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.