Протоколы в локальных и глобальных сетях
Способы коммутации компьютеров. Классификация, структура, типы и принцип построения локальных компьютерных сетей. Выбор кабельной системы. Особенности интернета и других глобальных сетей. Описание основных протоколов обмена данными и их характеристика.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 16.06.2015 |
Размер файла | 417,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1) По сети передается широковещательный ARP-запрос.
2) Исходящий IP-пакет ставится в очередь.
Каждый сетевой адаптер принимает широковещательные передачи. Все драйверы Ethernet проверяют поле типа в принятом Ethernet-кадре и передают ARP-пакеты модулю ARP. ARP-запрос можно интерпретировать так: "Если ваш IP-адрес совпадает с указанным, то сообщите мне ваш Ethernet-адрес".
Каждый модуль ARP проверяет поле искомого IP-адреса в полученном ARP-пакете и, если адрес совпадает с его собственным IP-адресом, то посылает ответ прямо по Ethernet-адресу отправителя запроса. ARP-ответ можно интерпретировать так: "Да, это мой IP-адрес, ему соответствует такой-то Ethernet-адрес".
Этот ответ получает машина, сделавшая ARP-запрос. Драйвер этой машины проверяет поле типа в Ethernet-кадре и передает ARP-пакет модулю ARP. Модуль ARP анализирует ARP-пакет и добавляет запись в свою ARP-таблицу.
Продолжение преобразования адресов
Новая запись в ARP-таблице появляется автоматически, спустя несколько миллисекунд после того, как она потребовалась. Как вы помните, ранее на шаге 2 исходящий IP-пакет был поставлен в очередь. Теперь с использованием обновленной ARP-таблицы выполняется преобразование IP-адреса в Ethernet-адрес, после чего Ethernet-кадр передается по сети. Полностью порядок преобразования адресов выглядит так:
1) По сети передается широковещательный ARP-запрос.
2) Исходящий IP-пакет ставится в очередь.
3) Возвращается ARP-ответ, содержащий информацию о соответствии IP- и Ethernet-адресов. Эта информация заносится в ARP-таблицу.
4) Для преобразования IP-адреса в Ethernet-адрес у IP-пакета, поставленного в очередь, используется ARP-таблица.
5) Ethernet-кадр передается по сети Ethernet.
Короче говоря, если с помощью ARP-таблицы не удается сразу осуществить преобразование адресов, то IP-пакет ставится в очередь, а необходимая для преобразования информация получается с помощью запросов и ответов протокола ARP, после чего IP-пакет передается по назначению.
Если в сети нет машины с искомым IP-адресом, то ARP-ответа не будет и не будет записи в ARP-таблице. Протокол IP будет уничтожать IP-пакеты, направляемые по этому адресу. Протоколы верхнего уровня не могут отличить случай повреждения сети Ethernet от случая отсутствия машины с искомым IP-адресом.
Некоторые реализации IP и ARP не ставят в очередь IP-пакеты на то время, пока они ждут ARP-ответов. Вместо этого IP-пакет просто уничтожается, а его восстановление возлагается на модуль TCP или прикладной процесс, работающий через UDP. Такое восстановление выполняется с помощью таймаутов и повторных передач. Повторная передача сообщения проходит успешно, так как первая попытка уже вызвала заполнение ARP-таблицы.
Следует отметить, что каждая машина имеет отдельную ARP-таблицу для каждого своего сетевого интерфейса.[23, с.22-25]
4.4 Межсетевой протокол IP
Модуль IP является базовым элементом технологии internet, а центральной частью IP является его таблица маршрутов. Протокол IP использует эту таблицу при принятии всех решений о маршрутизации IP-пакетов. Содержание таблицы маршрутов определяется администратором сети. Ошибки при установке маршрутов могут заблокировать передачи.
Прямая маршрутизация
Когда A посылает IP-пакет B, то заголовок IP-пакета содержит в поле отправителя IP-адрес узла A, а заголовок Ethernet-кадра содержит в поле отправителя Ethernet-адрес A. Кроме этого, IP-заголовок содержит в поле получателя IP-адрес узла B, а Ethernet-заголовок содержит в поле получателя Ethernet-адрес B.
В этом простом примере протокол IP является излишеством, которое мало что добавляет к услугам, предоставляемым сетью Ethernet. Однако протокол IP требует дополнительных расходов на создание, передачу и обработку IP-заголовка. Когда в машине B модуль IP получает IP-пакет от машины A, он сопоставляет IP-адрес места назначения со своим и, если адреса совпадают, то передает датаграмму протоколу верхнего уровня. В данном случае при взаимодействии A с B используется прямая маршрутизация.
Косвенная маршрутизация
В данном случае сеть internet состоит из трех сетей Ethernet, на базе которых работают три IP-сети, объединенные шлюзом D. Каждая IP-сеть включает четыре машины; каждая машина имеет свои собственные IP- и Ethernet-адреса.
За исключением D все машины имеют стек протоколов. Шлюз D соединяет все три сети и, следовательно, имеет три IP-адреса и три Ethernet-адреса. Машина D имеет стек протоколов TCP/IP, который содержит три модуля ARP и три драйвера Ethernet. Обратим внимание на то, что машина D имеет только один модуль IP.
Менеджер сети присваивает каждой сети Ethernet уникальный номер, называемый IP-номером сети. Когда машина A посылает IP-пакет машине B, то процесс передачи идет в пределах одной сети. При всех взаимодействиях между машинами, подключенными к одной IP-сети, используется прямая маршрутизация, обсуждавшаяся в предыдущем примере.
Когда машина D взаимодействует с машиной A, то это прямое взаимодействие. Когда машина D взаимодействует с машиной E, то это прямое взаимодействие. Когда машина D взаимодействует с машиной H, то это прямое взаимодействие. Это так, поскольку каждая пара этих машин принадлежит одной IP-сети.
Однако когда машина A взаимодействует с машинами, включенными в другую IP-сеть, то взаимодействие уже не будет прямым. Машина A должна использовать шлюз D для ретрансляции IP-пакетов в другую IP-сеть. Такое взаимодействие называется косвенным.
Маршрутизация IP-пакетов выполняется модулями IP и является прозрачной для модулей TCP, UDP и прикладных процессов.
Если машина A посылает машине E IP-пакет, то IP-адрес и Ethernet-адрес отправителя соответствуют адресам A. IP-адрес места назначения является адресом E, но поскольку модуль IP в A посылает IP-пакет через D, Ethernet-адрес места назначения является адресом D.
Модуль IP в машине D получает IP-пакет и проверяет IP-адрес места назначения. Определив, что это не его IP-адрес, шлюз D посылает этот IP-пакет прямо к E.
Итак, при прямой маршрутизации IP- и Ethernet-адреса отправителя соответствуют адресам того узла, который послал IP-пакет, а IP- и Ethernet-адреса места назначения соответствуют адресам получателя. При косвенной маршрутизации IP- и Ethernet-адреса не образуют таких пар.
В данном примере сеть internet является очень простой. Реальные сети могут быть гораздо сложнее, так как могут содержать несколько шлюзов и несколько типов физических сред передачи. В приведенном примере несколько сетей Ethernet объединяются шлюзом для того, чтобы локализовать широковещательный трафик в каждой сети.[24]
Правила маршрутизации в модуле IP
Выше мы показали, что происходит при передаче сообщений, а теперь рассмотрим правила или алгоритм маршрутизации.
Для отправляемых IP-пакетов, поступающих от модулей верхнего уровня, модуль IP должен определить способ доставки - прямой или косвенный - и выбрать сетевой интерфейс. Этот выбор делается на основании результатов поиска в таблице маршрутов.
Для принимаемых IP-пакетов, поступающих от сетевых драйверов, модуль IP должен решить, нужно ли ретранслировать IP-пакет по другой сети или передать его на верхний уровень. Если модуль IP решит, что IP-пакет должен быть ретранслирован, то дальнейшая работа с ним осуществляется также, как с отправляемыми IP-пакетами.
Входящий IP-пакет никогда не ретранслируется через тот же сетевой интерфейс, через который он был принят.
Решение о маршрутизации принимается до того, как IP-пакет передается сетевому драйверу, и до того, как происходит обращение к ARP-таблице.
IP-адрес
Менеджер сети присваивает IP-адреса машинам в соответствии с тем, к каким IP-сетям они подключены. Старшие биты 4-х байтного IP-адреса определяют номер IP-сети. Оставшаяся часть IP-адреса - номер узла (хост-номер). Для машины из табл.1 с IP-адресом 223.1.2.1 сетевой номер равен 223.1.2, а хост-номер - 1. Напомним, что IP-адрес узла идентифицирует точку доступа модуля IP к сетевому интерфейсу, а не всю машину.
Существуют 5 классов IP-адресов, отличающиеся количеством бит в сетевом номере и хост-номере. Класс адреса определяется значением его первого октета.
Адреса класса A предназначены для использования в больших сетях общего пользования. Они допускают большое количество номеров узлов. Адреса класса B используются в сетях среднего размера, например, сетях университетов и крупных компаний. Адреса класса C используются в сетях с небольшим числом компьютеров. Адреса класса D используются при обращениях к группам машин, а адреса класса E зарезервированы на будущее.
Некоторые IP-адреса являются выделенными и трактуются по-особому. В выделенных IP-адресах все нули соответствуют либо данному узлу, либо данной IP-сети, а IP-адреса, состоящие из всех единиц, используются при широковещательных передачах. Для ссылок на всю IP-сеть в целом используется IP-адрес с нулевым номером узла. Особый смысл имеет IP-адрес, первый октет которого равен 127. Он используется для тестирования программ и взаимодействия процессов в пределах одной машины. Когда программа посылает данные по IP-адресу 127.0.0.1, то образуется как бы "петля". Данные не передаются по сети, а возвращаются модулям верхнего уровня, как только что принятые. Поэтому в IP-сети запрещается присваивать машинам IP-адреса, начинающиеся со 127.[25]
Выбор адреса
Прежде чем вы начнете использовать сеть с TCP/IP, вы должны получить один или несколько официальных сетевых номеров. Выделением номеров (как и многими другими вопросами) занимается DDN Network Information Center (NIC). Выделение номеров производится бесплатно и занимает около недели. Вы можете получить сетевой номер вне зависимости от того, для чего предназначена ваша сеть. Даже если ваша сеть не имеет связи с объединенной сетью Internet, получение уникального номера желательно, так как в этом случае есть гарантия, что в будущем при включении в Internet или при подключении к сети другой организации не возникнет конфликта адресов.
Одно из важнейших решений, которое необходимо принять при установке сети, заключается в выборе способа присвоения IP-адресов вашим машинам. Этот выбор должен учитывать перспективу роста сети. Иначе в дальнейшем вам придется менять адреса. Когда к сети подключено несколько сотен машин, изменение адресов становится почти невозможным.
Организации, имеющие небольшие сети с числом узлов до 126, должны запрашивать сетевые номера класса C. Организации с большим числом машин могут получить несколько номеров класса C или номер класса B. Удобным средством структуризации сетей в рамках одной организации являются подсети.
Подсети
Адресное пространство сети internet может быть разделено на непересекающиеся подпространства - "подсети", с каждой из которых можно работать как с обычной сетью TCP/IP. Таким образом, единая IP-сеть организации может строиться как объединение подсетей. Как правило, подсеть соответствует одной физической сети, например, одной сети Ethernet.
Конечно, использование подсетей необязательно. Можно просто назначить для каждой физической сети свой сетевой номер, например, номер класса C. Однако такое решение имеет два недостатка. Первый, и менее существенный, заключается в пустой трате сетевых номеров. Более серьезный недостаток состоит в том, что если ваша организация имеет несколько сетевых номеров, то машины вне ее должны поддерживать записи о маршрутах доступа к каждой из этих IP-сетей. Таким образом, структура IP-сети организации становится видимой для всего мира. При каких-либо изменениях в IP-сети информация о них должна быть учтена в каждой из машин, поддерживающих маршруты доступа к данной IP-сети.
Подсети позволяют избежать этих недостатков. Ваша организация должна получить один сетевой номер, например, номер класса B. Стандарты TCP/IP определяют структуру IP-адресов. Для IP-адресов класса B первые два октета являются номером сети. Оставшаяся часть IP-адреса может использоваться как угодно. Например, вы можете решить, что третий октет будет определять номер подсети, а четвёртый октет - номер узла в ней. Вы должны описать конфигурацию подсетей в файлах, определяющих маршрутизацию IP-пакетов. Это описание является локальным для вашей организации и не видно вне ее. Все машины вне вашей организации видят одну большую IP-сеть. Следовательно, они должны поддерживать только маршруты доступа к шлюзам, соединяющим вашу IP-сеть с остальным миром. Изменения, происходящие в IP-сети организации, не видны вне ее. Вы легко можете добавить новую подсеть, новый шлюз и т.п.
Как назначать номера сетей и подсетей
После того, как решено, использовать подсети или множество IP-сетей, вы должны решить, как назначать им номера. Обычно это довольно просто. Каждой физической сети, например, Ethernet или Token Ring, назначается отдельный номер подсети или номер сети. В некоторых случаях имеет смысл назначать одной физической сети несколько подсетевых номеров. Например, предположим, что имеется сеть Ethernet, охватывающая три здания. Ясно, что при увеличении числа машин, подключенных к этой сети, придется ее разделить на несколько отдельных сетей Ethernet. Для того чтобы избежать необходимости менять IP-адреса, когда это произойдет, можно заранее выделить для этой сети три подсетевых номера - по одному на здание. (Это полезно и в том случае, когда не планируется физическое деление сети. Просто такая адресация позволяет сразу определить, где находится та или иная машина). Однако прежде, чем выделять три различных подсетевых номера одной физической сети, тщательно проверьте, что все ваши программы способны работать в такой среде.
Вы также должны выбрать "маску подсети". Она используется сетевым программным обеспечением для выделения номера подсети из IP-адресов. Биты IP-адреса, определяющие номер IP-сети, в маске подсети должны быть равны 1, а биты, определяющие номер узла, в маске подсети должны быть равны 0. Как уже отмечалось, стандарты TCP/IP определяют количество октетов, задающих номер сети. Часто в IP-адресах класса B третий октет используется для задания номера подсети. Это позволяет иметь 256 подсетей, в каждой из которых может быть до 254 узлов. Маска подсети в такой системе равна 255.255.255.0. Но, если в вашей сети должно быть больше подсетей, а в каждой подсети не будет при этом более 60 узлов, то можно использовать маску 255.255.255.192. Это позволяет иметь 1024 подсети и до 62 узлов в каждой. (Напомним, что номера узлов 0 и "все единицы" используются особым образом.)
Обычно маска подсети указывается в файле стартовой конфигурации сетевого программного обеспечения. Протоколы TCP/IP позволяют также запрашивать эту информацию по сети.
Имена. Людям удобнее называть машины по именам, а не числами. Например, у машины по имени alpha может быть IP-адрес 223.1.2.1. В маленьких сетях информация о соответствии имен IP-адресам хранится в файлах "hosts" на каждом узле. Конечно, название файла зависит от конкретной реализации. В больших сетях эта информация хранится на сервере и доступна по сети. Несколько строк из файла "hosts" могут выглядеть примерно так:
223.1.2.1 alpha
223.1.2.2 beta
223.1.2.3 gamma
223.1.2.4 delta
223.1.3.2 epsilon
223.1.4.2 iota
В первом столбце - IP-адрес, во втором - название машины.
В большинстве случаев файлы "hosts" могут быть одинаковы на всех узлах. Заметим, что об узле delta в этом файле есть всего одна запись, хотя он имеет три IP-адреса. Узел delta доступен по любому из этих IP-адресов. Какой из них используется, не имеет значения. Когда узел delta получает IP-пакет и проверяет IP-адрес места назначения, то он опознает любой из трех своих IP-адресов.
IP-сети также могут иметь имена. Если у вас есть три IP-сети, то файл "networks" может выглядеть примерно так:
223.1.2 development
223.1.3 accounting
223.1.4 factory
В первой колонке - сетевой номер, во второй - имя сети.
В данном примере alpha является узлом номер 1 в сети development, beta является узлом номер 2 в сети development и т.д.
Показанный выше файл hosts удовлетворяет потребности пользователей, но для управления сетью internet удобнее иметь названия всех сетевых интерфейсов. Менеджер сети, возможно, заменит строку, относящуюся к delta:
223.1.2.4 devnetrouter delta
223.1.3.1 accnetrouter
223.1.4.1 facnetrouter
Эти три строки файла hosts задают каждому IP-адресу узла delta символьные имена. Фактически, первый IP-адрес имеет два имени: "devnetrouter" и "delta", которые являются синонимами. На практике имя "delta" используется как общеупотребительное имя машины, а остальные три имени - для администрирования сети.
Файлы hosts и networks используются командами администрирования и прикладными программами. Они не нужны собственно для работы сети internet, но облегчают ее использование.[25]
IP-таблица маршрутов
Как модуль IP узнает, какой именно сетевой интерфейс нужно использовать для отправления IP-пакета? Модуль IP осуществляет поиск в таблице маршрутов. Ключом поиска служит номер IP-сети, выделенный из IP-адреса места назначения IP-пакета.
Таблица маршрутов содержит по одной строке для каждого маршрута. Основными столбцами таблицы маршрутов являются номер сети, флаг прямой или косвенной маршрутизации, IP-адрес шлюза и номер сетевого интерфейса. Эта таблица используется модулем IP при обработке каждого отправляемого IP-пакета.
В большинстве систем таблица маршрутов может быть изменена с помощью команды "route". Содержание таблицы маршрутов определяется менеджером сети, поскольку менеджер сети присваивает машинам IP-адреса.
Порядок прямой маршрутизации
Узел alpha посылает IP-пакет узлу beta. Этот пакет находится в модуле IP узла alpha, и IP-адрес места назначения равен IP-адресу beta (223.1.2.2). Модуль IP с помощью маски подсети выделяет номер сети из IP-адреса и ищет соответствующую ему строку в таблице маршрутов. В данном случае подходит первая строка.
Остальная информация в найденной строке указывает на то, что машины этой сети доступны напрямую через интерфейс номер 1. С помощью ARP-таблицы выполняется преобразование IP-адреса в соответствующий Ethernet-адрес, и через интерфейс 1 Ethernet-кадр посылается узлу beta.
Если прикладная программа пытается послать данные по IP-адресу, который не принадлежит сети development, то модуль IP не сможет найти соответствующую запись в таблице маршрутов. В этом случае модуль IP отбрасывает IP-пакет. Некоторые реализации протокола возвращают сообщение об ошибке "Сеть не доступна".
Порядок косвенной маршрутизации
Узел alpha посылает IP-пакет узлу epsilon. Этот пакет находится в модуле IP узла alpha, и IP-адрес места назначения равен IP-адресу узла epsilon (223.1.3.2). Модуль IP выделяет сетевой номер из IP-адреса (223.1.3) и ищет соответствующую ему строку в таблице маршрутов. Соответствие находится во второй строке.
Запись в этой строке указывает на то, что машины требуемой сети доступны через шлюз devnetrouter. Модуль IP в узле alpha осуществляет поиск в ARP-таблице, с помощью которого определяет Ethernet-адрес, соответствующий IP-адресу devnetrouter. Затем IP-пакет, содержащий IP-адрес места назначения epsilon, посылается через интерфейс 1 шлюзу devnetrouter.
IP-пакет принимается сетевым интерфейсом в узле delta и передается модулю IP. Проверяется IP-адрес места назначения, и, поскольку он не соответствует ни одному из собственных IP-адресов delta, шлюз решает ретранслировать IP-пакет.
Модуль IP в узле delta выделяет сетевой номер из IP-адреса места назначения IP-пакета (223.1.3) и ищет соответствующую запись в таблице маршрутов. Таблица маршрутов в узле delta выглядит так:
Соответствие находится во второй строке. Теперь модуль IP напрямую посылает IP-пакет узлу epsilon через интерфейс номер 3. Пакет содержит IP- и Ethernet-адреса места назначения равные epsilon.
Узел epsilon принимает IP-пакет, и его модуль IP проверяет IP-адрес места назначения. Он соответствует IP-адресу epsilon, поэтому содержащееся в IP-пакете сообщение передается протокольному модулю верхнего уровня.
Установка маршрутов
До сих пор мы рассматривали то, как используется таблица маршрутов для маршрутизации IP-пакетов. Но откуда берется информация в самой таблице маршрутов?
Фиксированные маршруты Простейший способ проведения маршрутизации состоит в установке маршрутов при запуске системы с помощью специальных команд. Этот метод можно применять в относительно маленьких IP-сетях, в особенности, если их конфигурации не часто меняются.
На практике большинство машин автоматически формирует таблицы маршрутов. Например, UNIX добавляет записи о IP-сетях, к которым есть непосредственный доступ. Стартовый файл может содержать команды
ifconfig ie0 128.6.4.4 netmask 255.255.255.0
ifconfig ie1 128.6.5.35 netmask 255.255.255.0
Они показывают, что существуют два сетевых интерфейса, и устанавливают их
IP-адреса. Система может автоматически создать две записи в таблице маршрутов. Эти записи определяют, что IP-пакеты для локальных подсетей 128.6.4 и 128.6.5 должны посылаться через указанные интерфейсы. В стартовом файле могут быть команды, определяющие маршруты доступа к другим IP-сетям. Например:
route add 128.6.2.0 128.6.4.1 1
route add 128.6.6.0 128.6.5.35 0
Эти команды показывают, что в таблицу маршрутов должны быть добавлены две записи. Первый адрес в командах является IP-адресом сети, второй адрес указывает шлюз, который должен использоваться для доступа к данной IP-сети, а третий параметр является метрикой. Метрика показывает, на каком "расстоянии" находится описываемая IP-сеть. В данном случае метрика - это количество шлюзов на пути между двумя IP-сетями. Маршруты с метрикой 1 и более определяют первый шлюз на пути к IP-сети. Маршруты с метрикой 0 показывают, что никакой шлюз не нужен - данный маршрут задает дополнительный сетевой номер локальной IP-сети.
Таким образом, команды, приведенные в примере, говорят о том, что для доступа к IP-сети 128.6.2 должен использоваться шлюз 128.6.4.1, а IP-сеть 128.6.6 - это просто дополнительный номер для физической сети, подключенной к интерфейсу 128.6.5.35.
Можно определить маршрут по умолчанию, который используется в тех случаях, когда IP-адрес места назначения не встречается в таблице маршрутов явно. Обычно маршрут по умолчанию указывает IP-адрес шлюза, который имеет достаточно информации для маршрутизации IP-пакетов со всеми возможными адресами назначения.
Если ваша IP-сеть имеет всего один шлюз, тогда все, что нужно сделать, - это установить единственную запись в таблице маршрутов, указав этот шлюз как маршрут по умолчанию. После этого можно не заботиться о формировании маршрутов в других узлах. (Конечно, сам шлюз требует больше внимания.)[26, с.114]
Перенаправление маршрутов
Большинство экспертов по межсетевому взаимодействию рекомендуют оставлять решение проблем маршрутизации шлюзам. Плохо иметь на каждой машине большую таблицу маршрутов. Дело в том, что при каких-либо изменениях в IP-сети приходится менять информацию во всех машинах. Например, при отключении какого-нибудь канала связи для восстановления нормальной работы нужно ждать, пока кто-то заметит это изменение в конфигурации IP-сети и внесет исправления во все таблицы маршрутов.
Простейший способ поддержания адекватности маршрутов заключается в том, что изменение таблицы маршрутов каждой машины выполняется по командам только одного шлюза. Этот шлюз должен быть установлен как маршрут по умолчанию. (В ОС UNIX это делается командой "route add default 128.6.4.27 1", где 128.6.4.27 является IP-адресом шлюза.) Как было описано выше, каждая машина посылает IP-пакет шлюзу по умолчанию в том случае, когда не находит лучшего маршрута. Однако когда в IP-сети есть несколько шлюзов, этот метод работает не так хорошо. Кроме того, если таблица маршрутов имеет только одну запись о маршруте по умолчанию, как использовать другие шлюзы, если это более выгодно? Ответ состоит в том, что большинство шлюзов способны выполнять "перенаправление" в тех случаях, когда они получают IP-пакеты, для которых существуют более выгодные маршруты. "Перенаправление" является специальным типом сообщения протокола ICMP (Internet Control Message Protocol - протокол межсетевых управляющих сообщений). Сообщение о перенаправлении содержит информацию, которую можно интерпретировать так: "В будущем для IP-адреса XXXX используйте шлюз YYYY, а не меня". Корректные реализации TCP/IP должны использовать сообщения о перенаправлении для добавления записей в таблицу маршрутов. Предположим, таблица маршрутов в начале выглядит следующим образом:
Эта таблица содержит запись о локальной IP-сети 128.6.4 и маршрут по умолчанию, указывающий шлюз 128.6.4.27. Допустим, что существует шлюз 128.6.4.30, который является лучшим путем доступа к IP-сети 128.6.7. Как им воспользоваться? Предположим, что нужно посылать IP-пакеты по IP-адресу 128.6.7.23. Первый IP-пакет пойдет на шлюз по умолчанию, так как это единственный подходящий маршрут, описанный в таблице. Однако шлюз 128.6.4.27 знает, что существует лучший маршрут, проходящий через шлюз 128.6.4.30. (Как он узнает об этом, мы сейчас не рассматриваем. Существует довольно простой метод определения лучшего маршрута.) В этом случае шлюз 128.6.4.27 возвращает сообщение перенаправления, где указывает, что IP-пакеты для узла 128.6.7.23 должны посылаться через шлюз 128.6.4.30. Модуль IP на машине-отправителе должен добавить запись в таблицу маршрутов:
Все последующие IP-пакеты для узла 128.6.7.23 будут посланы прямо через указанный шлюз.
До сих пор мы рассматривали способы добавления маршрутов в IP-таблицу, но не способы их исключения. Что случится, если шлюз будет выключен? Хотелось бы иметь способ возврата к маршруту по умолчанию после того, как какой-либо маршрут разрушен. Однако если шлюз вышел из строя или был выключен, то он уже не может послать сообщение перенаправления. Поэтому должен существовать метод определения работоспособности шлюзов, с которыми ваша машина связана непосредственно. Лучший способ обнаружения неработающих шлюзов основан на выявлении "плохих" маршрутов. Модуль TCP поддерживает различные таймеры, которые помогают ему определить разрыв соединения. Когда случается сбой, то можно пометить маршрут как "плохой" и вернуться к маршруту по умолчанию. Аналогичный метод может использоваться при обработке ошибок шлюза по умолчанию. Если два шлюза отмечены как шлюзы по умолчанию, то машина может использовать их по очереди, переключаясь между ними при возникновении сбоев[27].
Слежение за маршрутизацией
Заметим, что сообщения перенаправления не могут использоваться самими шлюзами. Перенаправление - это просто способ оповещения обычного узла о том, что нужно использовать другой шлюз. Сами шлюзы должны иметь полную картину о положении дел в сети internet и уметь вычислять оптимальные маршруты доступа к каждой подсети. Обычно они поддерживают эту картину, обмениваясь информацией между собой. Для этой цели существуют несколько специальных протоколов маршрутизации. Один из способов, с помощью которого узлы могут определять действующие шлюзы, состоит в слежении за обменом сообщениями между ними. Для большинства протоколов маршрутизации существует программное обеспечение, позволяющее обычным узлам осуществлять такое слежение. При этом на узлах поддерживается полная картина положения дел в сети internet точно так же, как это делается в шлюзах. Динамическая корректировка таблицы маршрутов позволяет посылать IP-пакеты по оптимальным маршрутам.
Таким образом, слежение за маршрутизацией в некотором смысле "решает" проблему поддержания корректности таблиц маршрутов. Однако существуют несколько причин, по которым этот метод применять не рекомендуется. Наиболее серьезной проблемой является то, что протоколы маршрутизации пока еще подвергаются частым пересмотрам и изменениям. Появляются новые протоколы маршрутизации. Эти изменения должны учитываться в программном обеспечении всех машин.
Несколько более специальная проблема связана с бездисковыми рабочими станциями. По своей природе бездисковые машины сильно зависят от сети и от файл-серверов, с которых они осуществляют загрузку программ, и где располагается их область своппинга. Исполнение программ, следящих за широковещательными передачами в сети, на бездисковых машинах связано с большими трудностями. Протоколы маршрутизации построены в основном на широковещательных передачах. Например, все сетевые шлюзы могут широковещательно передавать содержание своих таблиц маршрутов через каждые 30 секунд. Программы, которые следят за такими передачами, должны быть загружены на бездисковые станции через сеть. На достаточно занятой машине программы, которые не используются в течение нескольких секунд, обычно отправляются в область своппинга. Поэтому программы, следящие за маршрутизацией, большую часть времени находятся в своппинге. Когда они вновь активизируются, должна производиться подкачка из своппинга. Как только посылается широковещательное сообщение, все машины активизируют программы, следящие за маршрутизацией. Это приводит к тому, что многие бездисковые станции будут выполнять подкачку из своппинга в одно и тоже время. Поэтому в сети возникнет временная перегрузка. Таким образом, исполнение программ, прослушивающих широковещательные передачи, на бездисковых рабочих станциях очень нежелательно[28, с.9].
Протокол ARP с представителем
Протокол ARP с представителем является альтернативным методом, позволяющим шлюзам принимать все необходимые решения о маршрутизации. Он применяется в сетях с широковещательной передачей, где для отображения IP-адресов в сетевые адреса используется протокол ARP или ему подобный. Здесь мы вновь будем предполагать, что имеем дело с сетью Ethernet.
Во многом метод, реализуемый протоколом ARP с представителем, аналогичен использованию маршрутов по умолчанию и сообщений перенаправления. Но протокол ARP с представителем не затрагивает таблиц маршрутов, все делается на уровне адресов Ethernet. Протокол ARP с представителем может использоваться либо для маршрутизации IP-пакетов ко всем сетям, либо только в локальной сети, либо в какой-то комбинации подсетей. Проще всего продемонстрировать его использование при работе со всеми адресами.
Чтобы использовать протокол, нужно настроить узел так, будто все машины в мире подключены непосредственно к вашей локальной сети Ethernet. В ОС UNIX это делается командой "route add default 128.6.4.2 0", где 128.6.4.2 - IP-адрес вашего узла. Как уже отмечалось, метрика 0 говорит о том, что все IP-пакеты, которым подходит данный маршрут, должны посылаться напрямую по локальной сети.
Когда нужно послать IP-пакет узлу в локальной сети Ethernet, ваша машина должна определить Ethernet-адрес этого узла. Для этого она использует ARP-таблицу. Если в ARP-таблице уже есть запись, соответствующая IP-адресу места назначения, то из нее просто берется Ethernet-адрес, и кадр, содержащий IP-пакет, отправляется. Если такой записи нет, то посылается широковещательный ARP-запрос. Узел с искомым IP-адресом назначения принимает его и в ARP-ответе сообщает свой Ethernet-адрес. Эти действия соответствуют обычному протоколу ARP, описанному выше.
Протокол ARP с представителем основан на том, что шлюзы работают как представители удаленных узлов. Предположим, в подсети 128.6.5 имеется узел 128.6.5.2 (узел A). Он желает послать IP-пакет узлу 128.6.4.194, который подключен к другой сети Ethernet (узел B). Существует шлюз с IP-адресом 128.6.5.1, соединяющий две подсети (шлюз R).
Если в ARP-таблице узла A нет маршрута доступа к узлу B, то узел A посылает ARP-запрос узлу B. Фактически машина A спрашивает: "Если кто-нибудь знает Ethernet-адрес узла 128.6.4.194, сообщите мне его". Узел B не может ответить на запрос самостоятельно. Он подключен к другой сети Ethernet и никогда даже не увидит этот ARP-запрос. Однако шлюз R может работать от его имени. Шлюз R отвечает: "Я здесь, IP-адресу 128.6.4.194 соответствует Ethernet-адрес 2:7:1:0:EB:CD", где 2:7:1:0:EB:CD в действительности является Ethernet-адресом шлюза. Это создает иллюзию, что узел 128.6.4.194 подключен непосредственно к той же локальной сети Ethernet, что и узел A, и имеет Ethernet-адрес 2:7:1:0:EB:CD. Когда узел A захочет послать новый IP-пакет узлу B, он использует указанный Ethernet-адрес. Кадр, содержащий IP-пакет, попадет к шлюзу R, а он переправит его по назначению.
Заметим, что полученный эффект такой же, как если бы в таблице маршрутов была запись за исключением того, что маршрутизация выполняется на уровне модуля ARP, а не модуля IP.
Обычно рекомендуется использовать таблицу маршрутов, так как архитектура протоколов TCP/IP предусматривает выполнение маршрутизации на межсетевом уровне. Однако иногда протокол ARP с представителем очень полезен. Он может помочь в следующих случаях:
1)в IP-сети есть узел, который не умеет работать с подсетями;
2)в IP-сети есть узел, который не может соответствующим образом реагировать на сообщения перенаправления;
3)нежелательно выбирать какой-либо шлюз как маршрут по умолчанию;
4)программное обеспечение не способно восстанавливаться при сбоях на маршрутах.
Иногда протокол ARP с представителем выбирают из-за удобства. Дело в том, что он упрощает работу по начальной установке таблицы маршрутов. Даже в простейших IP-сетях требуется устанавливать маршрут по умолчанию, то есть использовать команду типа "route add default ...", как в ОС UNIX. При изменении IP-адреса шлюза эту команду приходится менять во всех узлах. Если же использовать протокол ARP с представителем, т.е. в команде установки маршрута по умолчанию указать метрику 0, то при замене IP-адреса шлюза команду начальной установки менять не придется, так как протокол ARP с представителем не требует явного задания IP-адресов шлюзов. Любой шлюз может ответить на ARP-запрос[28, с.12].
Для того, чтобы избавить пользователей от обязательной начальной установки маршрутов, некоторые реализации TCP/IP используют протокол ARP с представителем по умолчанию в тех случаях, когда не находят подходящих записей в таблице маршрутов.
4.5 Протокол UDP
Протокол UDP (User Datagram Protocol - протокол пользовательских датаграмм) является одним из двух основных протоколов, расположенных непосредственно над IP. Он предоставляет прикладным процессам транспортные услуги, которые не многим отличаются от услуг, предоставляемых протоколом IP. Протокол UDP обеспечивает ненадежную доставку датаграмм и не поддерживает соединений из конца в конец. К заголовку IP-пакета он добавляет два поля, одно из которых, поле "порт", обеспечивает мультиплексирование информации между разными прикладными процессами, а другое поле - "контрольная сумма" - позволяет поддерживать целостность данных.
Примерами сетевых приложений, использующих UDP, являются NFS (Network File System - сетевая файловая система) и SNMP (Simple Network Management Protocol - простой протокол управления сетью).
Порты Взаимодействие между прикладными процессами и модулем UDP осуществляется через UDP-порты. Порты нумеруются начиная с нуля. Прикладной процесс, предоставляющий некоторые услуги другим прикладным процессам (сервер), ожидает поступления сообщений в порт, специально выделенный для этих услуг. Сообщения должны содержать запросы на предоставление услуг. Они отправляются процессами-клиентами.
Например, сервер SNMP всегда ожидает поступлений сообщений в порт 161. Если клиент SNMP желает получить услугу, он посылает запрос в UDP-порт 161 на машину, где работает сервер. В каждом узле может быть только один сервер SNMP, так как существует только один UDP-порт 161. Данный номер порта является общеизвестным, то есть фиксированным номером, официально выделенным для услуг SNMP. Общеизвестные номера определяются стандартами Internet.
Данные, отправляемые прикладным процессом через модуль UDP, достигают места назначения как единое целое. Например, если процесс-отправитель производит 5 записей в UDP-порт, то процесс-получатель должен будет сделать 5 чтений. Размер каждого записанного сообщения будет совпадать с размером каждого прочитанного. Протокол UDP сохраняет границы сообщений, определяемые прикладным процессом. Он никогда не объединяет несколько сообщений в одно и не делит одно сообщение на части.
Контрольное суммирование
Когда модуль UDP получает датаграмму от модуля IP, он проверяет контрольную сумму, содержащуюся в ее заголовке. Если контрольная сумма равна нулю, то это означает, что отправитель датаграммы ее не подсчитывал, и, следовательно, ее нужно игнорировать. Если два модуля UDP взаимодействуют только через одну сеть Ethernet, то от контрольного суммирования можно отказаться, так как средства Ethernet обеспечивают достаточную степень надежности обнаружения ошибок передачи. Это снижает накладные расходы, связанные с работой UDP. Однако рекомендуется всегда выполнять контрольное суммирование, так как возможно в какой-то момент изменения в таблице маршрутов приведут к тому, что датаграммы будут посылаться через менее надежную среду.
Если контрольная сумма правильная (или равна нулю), то проверяется порт назначения, указанный в заголовке датаграммы. Если к этому порту подключен прикладной процесс, то прикладное сообщение, содержащееся в датаграмме, становится в очередь для прочтения. В остальных случаях датаграмма отбрасывается. Если датаграммы поступают быстрее, чем их успевает обрабатывать прикладной процесс, то при переполнении очереди сообщений поступающие датаграммы отбрасываются модулем UDP[29].
4.6 Протокол TCP
Протокол TCP предоставляет транспортные услуги, отличающиеся от услуг UDP. Вместо ненадежной доставки датаграмм без установления соединений, он обеспечивает гарантированную доставку с установлением соединений в виде байтовых потоков.
Протокол TCP используется в тех случаях, когда требуется надежная доставка сообщений. Он освобождает прикладные процессы от необходимости использовать таймауты и повторные передачи для обеспечения надежности. Наиболее типичными прикладными процессами, использующими TCP, являются FTP (File Transfer Protocol - протокол передачи файлов) и TELNET. Кроме того, TCP используют система X-Window, rcp (remote copy - удаленное копирование) и другие "r-команды". Большие возможности TCP даются не бесплатно. Реализация TCP требует большой производительности процессора и большой пропускной способности сети. Внутренняя структура модуля TCP гораздо сложнее структуры модуля UDP.
Прикладные процессы взаимодействуют с модулем TCP через порты. Для отдельных приложений выделяются общеизвестные номера портов. Например, сервер TELNET использует порт номер 23. Клиент TELNET может получать услуги от сервера, если установит соединение с TCP-портом 23 на его машине.
Когда прикладной процесс начинает использовать TCP, то модуль TCP на машине клиента и модуль TCP на машине сервера начинают общаться. Эти два оконечных модуля TCP поддерживают информацию о состоянии соединения, называемого виртуальным каналом. Этот виртуальный канал потребляет ресурсы обоих оконечных модулей TCP. Канал является дуплексным; данные могут одновременно передаваться в обоих направлениях. Один прикладной процесс пишет данные в TCP-порт, они проходят по сети, и другой прикладной процесс читает их из своего TCP-порта.
Протокол TCP разбивает поток байт на пакеты; он не сохраняет границ между записями. Например, если один прикладной процесс делает 5 записей в TCP-порт, то прикладной процесс на другом конце виртуального канала может выполнить 10 чтений для того, чтобы получить все данные. Но этот же процесс может получить все данные сразу, сделав только одну операцию чтения. Не существует зависимости между числом и размером записываемых сообщений с одной стороны и числом и размером считываемых сообщений с другой стороны.
Протокол TCP требует, чтобы все отправленные данные были подтверждены принявшей их стороной. Он использует таймауты и повторные передачи для обеспечения надежной доставки. Отправителю разрешается передавать некоторое количество данных, не дожидаясь подтверждения приема ранее отправленных данных. Таким образом, между отправленными и подтвержденными данными существует окно уже отправленных, но еще неподтвержденных данных. Количество байт, которые можно передавать без подтверждения, называется размером окна. Как правило, размер окна устанавливается в стартовых файлах сетевого программного обеспечения. Так как TCP-канал является дуплексным, то подтверждения для данных, идущих в одном направлении, могут передаваться вместе с данными, идущими в противоположном направлении. Приемники на обеих сторонах виртуального канала выполняют управление потоком передаваемых данных для того, чтобы не допускать переполнения буферов.
Подробное описание протокола TCP
TCP (Transmission Control Protocol, Протокол управления передачей) был спроектирован в качестве связующего протокола для обеспечения интерактивной работы между компьютерами. TCP обеспечивает надежность и достоверность обмена данными между процессами на компьютерах, входящих в общую сеть. TCP, с одной стороны, взаимодействует с прикладным протоколом пользовательского приложения, а с другой, с протоколом, обеспечивающим "низкоуровневые" функции: маршрутизацию и адресацию пакетов, которые, как правило, выполняет IP.
В операционной системе реализация TCP представляет собой отдельный системный модуль (драйвер), через который, как правило, проходят все вызовы функций протокола. Интерфейс между прикладным процессом и TCP представляет собой библиотеку вызовов, такую же как библиотека системных вызовов, например, для работы с файлами. Вы можете открыть или закрыть соединение (как открыть или закрыть файл) и отправить или принять данные из установленного соединения (аналогично операциям чтения и записи файла). Вызовы TCP могут работать с прикладным приложением в асинхронном режиме. Безусловно, реализация TCP в каждой системе может осуществлять множество собственных функций, но любая из этих реализации должна обеспечивать минимум функциональности, которая требуется стандартами TCP.
Схема работы пользовательского приложения с TCP, в общих чертах, состоит в следующем. Для передачи данных пользовательскому процессу надо вызвать соответствующую функцию TCP, с указанием на буфер передаваемых данных. TCP упаковывает эти данные в сегменты своего стека и вызывает функцию передачи протокола нижнего уровня, например IP.
На другом конце, получатель TCP группирует поступившие от протокола нижнего уровня данные в принимающие сегменты своего буфера, проверяет целостность данных, передает данные пользовательскому процессу и уведомляет отправителя об их получении.
Пользовательский интерфейс с TCP может выполнять такие команды как открыть (OPEN) или закрыть (CLOSE) соединение, отправить (SEND) или принять (RECEIVE) данные, или получить статус соединения (STATUS). Эти вызовы подобны любым другим вызовам функций операционной системы из пользовательской программы, таким как открытие, чтение или закрытие файла.
В модели межсетевого соединения взаимодействие TCP и протоколов нижнего уровня, как правило, не специфицировано, за исключением того, что должен существовать механизм, который обеспечивал бы асинхронную передачу информации от одного уровня к другому. Результатом работы этого механизма является инкапсуляция протокола более высокого уровня в тело протокола более низкого уровня. Реализуется этот механизм через интерфейс вызовов между TCP и IP.
В результате работы этого механизма каждый TCP-пакет вкладывается в "конверт" протокола нижнего уровня, например, IP. Получившаяся таким образом дейтаграмма содержит в себе TCP-пакет так же как TCP-пакет содержит пользовательские данные.
Простейшая модель работы TCP-протокола выглядит обманчиво гладко, поскольку на самом деле реальная работа изобилует множеством деталей и тонкостей.
Прямоугольники обозначают обработку данных, а линии, соединяющие прямоугольники, - пути передачи данных. Горизонтальная линия внизу рисунка обозначает кабель сети Ethernet, которая используется в качестве примера физической среды. Понимание этой логической структуры является основой для понимания всей технологии TCP/IP.
Далее более подробно рассмотрим возможности, принципы построения и основные функции протокола TCP:
Потоки данных, стек протоколов, механизм гнезд и мультиплексирование соединений
Процедура установления соединения и передача данных
Механизмы обеспечения достоверности передаваемых данных
Механизм контроля потока данных
Флаг важности пакета, средства обеспечения безопасности протокола
Потоки данных, стек протоколов, механизм гнезд и мультиплексирование соединений
Для установления соединения между двумя процессами на различных компьютерах сети необходимо знать не только Internet-адреса компьютеров, но и номер ТСР-порта, который процесс использует на данном компьютере. В совокупности с Internet-адресом компьютера порты образуют систему гнезд (sockets). Пара гнезд уникально идентифицирует каждое соединение или поток данных в сети Internet, а порт обеспечивает независимость каждого ТСР-канала на данном компьютере. Безусловно, несколько процессов на машине могут использовать один и тот же ТСР-порт, но с точки зрения удаленного процесса между этими процессами не будет никакой разницы.
Рассмотрим потоки данных, проходящие через протоколы. При использовании протокола TCP данные передаются между прикладным процессом и модулем TCP. Типичным прикладным процессом, использующим протокол TCP, является модуль FTP (File Transfer Protocol, Протокол передачи фай-лов). Стек протоколов в этом случае будет FTP/TCP/IP/ENET. При использовании протокола UDP (User Datagram Protocol, Протокол дейтаграмм пользователя) данные передаются между прикладным процессом и модулем UDP. Например, SNMP (Simple Network Management Protocol, Простой протокол управления сетью) пользуется транспортными услугами UDP. Его стек протоколов выглядит так: SNMP/UDP/IP/ENET.
Одно гнездо на компьютере может быть задействовано в соединениях с несколькими гнездами на удаленных компьютерах. Кроме того, одно и то же гнездо может передавать поток данных в обоих направлениях. Таким образом, механизм гнезд позволяет на одном компьютере одновременно работать нескольким приложениям и уникально идентифицирует каждый поток данных сети. Это называется мультиплексированием соединений.
Модули TCP, UDP и драйвер Ethernet являются мультиплексорами типа n x
Действуя как мультиплексоры, они переключают несколько входов на один выход. Они также являются демультиплексорами типа 1 х n. Как демультиплексоры, они переключают один вход на один из многих выходов в соответствии с полем типа в заголовке протокольного блока данных. Когда Ethernet-кадр попадает в драйвер сетевого интерфейса Ethernet, он может быть направлен либо в модуль ARP, либо в модуль IP. (Значение поля типа в заголовке кадра указывает, куда должен быть направлен Ethernet-кадр).
Если IP-пакет попадает в модуль IP, то содержащиеся в нем данные могут быть переданы либо модулю TCP, либо UDP, что определяется полем "Protocol" в заголовке IP-пакета. Если TCP-сообщение попадает в модуль TCP, то выбор прикладной программы, которой должно быть передано сообщение, осуществляется на основе значения поля "порт" в заголовке TCP-сообщения.
Мультиплексирование данных в обратную сторону осуществляется довольно просто, так как из каждого модуля существует только один путь вниз. Каждый протокольный модуль добавляет к пакету свой заголовок, на основании которого машина, принявшая пакет, выполняет демультиплексирование.
Назначение портов приложениям на каждом компьютере происходит независимо друг от друга. TCP может самостоятельно выбирать порт, с которым будет работать приложение, или приложение укажет, с каким портом на данном компьютере оно будет работать. Однако, как правило, часто используемые приложения - сервисы используют одни и те же номера портов, которые уже стали общеизвестными, например, такие как HTTP, FTP, SMTP и др., для того, чтобы к данному процессу на компьютере можно было присоединиться, указывая только адрес машины. Например, Internet браузер, если ему не указать дополнительно, ищет по указанному адресу приложение, работающее с портом 80, - это наиболее распространенный порт для серверов WWW.
Кроме того, машина может быть снабжена несколькими сетевыми интерфейсами, тогда она должна осуществлять мультиплексирование типа пхт, т.е. между несколькими прикладными программами и сетевыми интерфейсами.
Установление соединения и передача данных
Соединение определяется вызовом команды OPEN с аргументами в виде номера локального порта и гнезда (IP-адрес + порт) удаленного процесса. Функция OPEN вызывается и в том случае, когда данный процесс намерен передавать информацию (активный OPEN), и когда процесс ожидает поступления информации (пассивный OPEN). Функция возвращает идентификатор соединения, по которому пользователь может ссылаться в своих последующих вызовах. Идентификатор соединения указывает на структуру данных, в которой хранятся переменные и информация данного TCP-соединения. Эта структура данных называется Управляющая Структура Передачи - Transmission Control Block (TCB).
ТСВ хранит такие параметры соединения, как адреса локального и удаленного гнезд, указатели на полученные и отправляемые пользовательские данные, указатели на очередь блоков для повторной отправки, номер текущего сегмента и т. д., то есть всю информацию, используемую данным соединением.[29]
Как уже отмечено выше, открытие соединения может быть активным и пассивным. Пассивное открытие обозначает, что процесс ожидает поступления сигнала открытия соединения и не пытается открыть канал самостоятельно. Иными словами, канал, открытый с одного конца как пассивный, ожидает инициирующего сигнала от какого-либо из хостов. Этот тип открытия канала используется процессами, которые предоставляют свой сервис через заранее известный номер своего порта (например, HTTP, SMTP и т. д.) и работают с механизмом общеизвестных гнезд.
Процесс может вызвать функцию пассивного открытия канала и ждать получения сигнала активного открытия канала от другого процесса, и только после получения такого сигнала соединение будет установлено. Соединение будет так же установлено, если два процесса активно откроют канал навстречу друг другу. Эта гибкость в установлении соединения особенно важна в распределенных сетях, когда компьютеры работают асинхронно.
Только в двух случаях принципиально важно, чтобы гнездо на данном компьютере было открыто как пассивное, а на другой стороне как активное:
1. Когда локальное пассивное открытие соединения полностью определяет гнездо на другой стороне.
2. Локальное пассивное открытие гнезда не предполагает каких-либо ограничений на гнездо с другой стороны, т. е. любое гнездо может присоединиться к данному сервису.
Подобные документы
Создание компьютерных сетей с помощью сетевого оборудования и специального программного обеспечения. Назначение всех видов компьютерных сетей. Эволюция сетей. Отличия локальных сетей от глобальных. Тенденция к сближению локальных и глобальных сетей.
презентация [72,8 K], добавлен 04.05.2012Официальные международные организации, выполняющие работы по стандартизации информационных сетей, протоколы IP, ARP, RARP, семиуровневая модель OSI. TCP/IP, распределение протоколов по уровням ISO в локальных и в глобальных сетях, разделение IP-сетей.
шпаргалка [50,0 K], добавлен 24.06.2010Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.
реферат [134,0 K], добавлен 21.10.2013Теоретические основы организации локальных сетей. Общие сведения о сетях. Топология сетей. Основные протоколы обмена в компьютерных сетях. Обзор программных средств. Аутентификация и авторизация. Система Kerberos. Установка и настройка протоколов сети.
курсовая работа [46,3 K], добавлен 15.05.2007Понятие и структура компьютерных сетей, их классификация и разновидности. Технологии, применяемые для построения локальных сетей. Безопасность проводных локальных сетей. Беспроводные локальные сети, их характерные свойства и применяемые устройства.
курсовая работа [441,4 K], добавлен 01.01.2011Системы пакетной обработки данных. Появление первых глобальных и локальных компьютерных сетей. Классификационные признаки компьютерных сетей. Четыре основных вида компьютерных преступлений, их характеристика. Распространение вирусов через Интернет.
реферат [32,6 K], добавлен 29.03.2014Основные признаки классификации компьютерных сетей как нового вида связи и информационного сервиса. Особенности локальных и глобальных сетей. Объекты информационных сетевых технологий. Преимущества использования компьютерных сетей в организации.
курсовая работа [1,9 M], добавлен 23.04.2013Описание функций и видов (вычислительные, информационные, смешанные) компьютерных сетей. Изучение архитектурного построения и топологии локальных сетей. Характеристика, структура и типы (коммутация каналов, пакетов) глобального соединения компьютеров.
курсовая работа [452,1 K], добавлен 24.02.2010Передача информации между компьютерами. Анализ способов и средств обмена информацией. Виды и структура локальных сетей. Исследование порядка соединения компьютеров в сети и её внешнего вида. Кабели для передачи информации. Сетевой и пакетный протоколы.
реферат [1,9 M], добавлен 22.12.2014Общие сведения о глобальных сетях с коммутацией пакетов, построение и возможности сетей, принцип коммутации пакетов с использованием техники виртуальных каналов. Характеристики и возможности коммутаторов сетей, протоколы канального и сетевого уровней.
курсовая работа [2,0 M], добавлен 26.08.2010