Моделирование системы заданной конфигурации

Разработка системы расчета характеристик разомкнутых экспоненциальных сетевых моделей, выполняющая имитационное моделирование заданной сетевой модели. Построение модели на языке GPSS, анализ эффективности аналитической модели, выполняющей роль эталона.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 01.12.2010
Размер файла 483,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

л2 = л0 * p0,4 + л1 * p1,4 + л2 * p2,4+ л3 * p3,4 .

л3 = л0 * p0,3 + л1 * p1,3 + л2 * p2,3+ л3 * p3,3 ;

А после подстановки значений pi,j из матрицы P

л1 = л0 * 0 + л1 * 0 + л2 * 1+ л3 * 0 ;

л2 = л0 * 0 + л1 * 0 + л2 * 0.5+ л3 * 0.5 ;

л3 = л0 * 1 + л1 * 0 + л2 * 0+ л3 * 0 .

Соответственно

л1 = 0,004;

л2 = 0,008;

л3 = 0,004.

3. Рассчитываем коэффициенты передач (среднее число посещений заявкой каждого устройства) бk = лk / л0 .

б1 = л1 / л0 = 1;

б2 = л2 / л0 = 2;

б3 = л3 / л0 = 1.

4. Рассчитываем коэффициенты загрузок устройств сk = лk * tk.

с1 = л1 * t1 = 0,296;

с2 = л2 * t2 = 0,288;

с3 = л3 * t3 = 0,208.

Так как коэффициенты загрузок меньше 1, то сеть работает в стационарном режиме и можно продолжать расчеты.

5. Рассчитываем узловые характеристики по формулам:

li = сi2 / ( 1 - сi ) ,

mi = сi / ( 1 - сi ) ,

щi = li / лi ,

ui = mi / лi .

Для узла b1 получаем

l1 = 0,124; m1 = 0,42; щ1 = 31; u1 = 105;

для узла b2 получаем

l2 = 0,116; m2 = 0,404; щ2 = 14,5; u2 = 50,5;

для узла b3 получаем

l3 = 0,055; m3 = 0,263; щ3 = 13,75; u3 = 65,75.

Полученные результаты сведем в таблицу 4.4.

Таблица 4.4- Значения характеристик сети МО

Узел

Характеристики

Значение

Узловые

b1

l1

0,124

с1

0,296

m1

0,42

щ1

31

u1

105

б1

1

b2

l2

0,116

с2

0,288

m2

0,404

щ2

14,5

u2

50,5

б2

2

b3

l3

0,055

с3

0,208

m3

0.263

щ3

13,75

u3

65,75

б3

1

Системные

L

0,295

M

1,087

U

221,25

W

59.25

Реализуем имитационный метод расчета полученной АМ в системе GPSS World.

Рисунок 4.3- GPSS-модель сети МО

Построим GPSS-модель по соответствующей ССМ, ориентированной на язык GPSS.

Текст GPSS модели приведен ниже.

Листинг 4.1- Текст GPSS модели

GENERATE (Exponential(1,0,240))

queue U_system

queue w_b_1

queue u_b_1

SEIZE b_1

depart w_b_1

ADVANCE (Exponential(2,0,74))

RELEASE b_1

depart u_b_1

queue u_sum_b_2

Label_1 queue w_b_2

queue u_b_2

SEIZE b_2

depart w_b_2

ADVANCE (Exponential(3,0,36))

RELEASE b_2

depart u_b_2

TRANSFER .5,,Label_1

depart u_sum_b_2

queue u_b_3

queue w_b_3

SEIZE b_3

depart w_b_3

ADVANCE (Exponential(4,0,52))

RELEASE b_3

depart u_b_3

depart U_system

TERMINATE 1

start 100000

Листинг 4.2- Статистический отчет выполнения GPSS-модели

FACILITY ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY

B_1 100002 0.308 74.159 1 0 0 0 0 0

B_2 200116 0.300 36.068 1 100002 0 0 0 0

B_3 100001 0.217 52.102 1 100001 0 0 0 0

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY

U_SYSTEM 11 2 100002 0 1.149 276.367 276.367 0

W_B_1 8 0 100002 69323 0.135 32.565 106.148 0

U_B_1 9 0 100002 0 0.444 106.723 106.723 0

U_SUM_B_2 9 1 100002 0 0.428 102.970 102.970 0

W_B_2 9 0 200116 140362 0.128 15.388 51.534 0

U_B_2 9 1 200116 0 0.428 51.456 51.456 0

U_B_3 8 1 100001 0 0.277 66.674 66.674 0

W_B_3 7 1 100001 78392 0.061 14.572 67.437 0

Ниже в таблице 4.5 представлены результаты аналитического и имитационного (с разной длительностью - 10000, 50000, 100000 заявок) моделирования и вычислена погрешность. При этом за эталон взяты характеристики АМ.

Таблица 4.5- Результаты аналитического и имитационного моделирования сети МО

Харак-тика

Значение характеристики

Погрешность, %

АМ

ИМ (10000)

ИМ (50000)

ИМ (100000)

1

2

3

Узел

1

с1

0,296

0,312

0,309

0,308

5,4

4,39

4,05

l1

0,124

0,142

0,135

0,135

14.51

8,87

8,87

m1

0,42

0,454

0,444

0,444

8,09

5,71

5,71

щ1

31

34,11

32,397

32,565

10,03

4,5

5,04

u1

105

108,949

106,336

106,723

3,76

1,27

1,64

2

с2

0,288

0,303

0,301

0,3

5,2

4,51

4,16

l2

0,116

0,135

0,128

0,135

16,38

10,34

16,38

m2

0,404

0,438

0,429

0,428

8,41

6,19

5,94

щ2

14,5

16,159

15,336

15,338

11,44

5,76

5,78

u2

50,5

52,42

51,332

51,456

3,8

1,64

1,89

3

с3

0,208

0,221

0,218

0,217

6,25

4,8

4,32

l3

0,055

0,068

0,062

0,061

23,64

12,73

10,91

m3

0,263

0,289

0,279

0,277

9,88

6,08

5,32

щ3

13,75

16,284

14,86

14,572

18,46

8,07

5,98

u3

65,75

69,288

66,86

66,674

5,38

1,69

1,4

Система

L

0,295

0,375

0,325

0,331

27,12

10,17

12,2

M

1,087

1,181

1,151

1,149

8,65

5,89

5,7

U

221,25

231,806

224,528

224,853

4,77

1,48

1,63

W

59.25

66,553

62,593

62,525

12,33

5,64

5,53

Выводы.

Из полученных данных видно, что расхождения в значениях характеристик вполне приемлемы и имеют тенденцию к уменьшению с ростом длительности имитационного моделирования.

5. РЕАЛИЗАЦИЯ И ИССЛЕДОВАНИЕ ИМИТАЦИОННОЙ МОДЕЛИ

Опишем на языке GPSS ранее разработанную GPSS-ориентированную стохастическую сетевую модель.

Строим модель в соответствии с рисунком 3.1. Учитываем наличие двух потоков заявок, реальные законы распределений и т.д.

Текст программы приведен ниже.

Листинг 5.1- Текст программы

S_5 STORAGE 12

S_6 STORAGE 7

s_1 STORAGE 4

INITIAL X$OTK_,0

GENERATE (POISSON(3,240))

QUEUE U_SISTEM

QUEUE S1_U_SISTEM

ASSIGN 5,(DUNIFORM(2,1,4))

TEST LE P5,R$S_5,OCHER

QUEUE U_S_5

QUEUE S1_U_S_5

ENTER S_5,P5

ASSIGN 2,5

TRANSFER ,DALSHE

OCHER TEST LE P5,R$S_6,OTKAZ

QUEUE U_S_6

QUEUE S1_U_S_6

ENTER S_6,P5

ASSIGN 2,6

DALSHE QUEUE W_B_1

QUEUE S1_W_B_1

QUEUE U_B_1

QUEUE S1_U_B_1

ENTER S_1

DEPART W_B_1

DEPART S1_W_B_1

ADVANCE (UNIFORM(2,250,342))

LEAVE S_1

DEPART U_B_1

DEPART S1_U_B_1

NAZAD QUEUE W_B_2

QUEUE S1_W_B_2

QUEUE U_B_2

QUEUE S1_U_B_2

SEIZE S_2

DEPART W_B_2

ADVANCE (UNIFORM(2,16,56))

RELEASE S_2

DEPART S1_W_B_2

DEPART U_B_2

DEPART S1_U_B_2

TRANSFER .5,,NAZAD

QUEUE W_B_3

QUEUE S1_W_B_3

QUEUE U_B_3

QUEUE S1_U_B_3

SEIZE S_3

DEPART W_B_3

ADVANCE (UNIFORM(2,20,84))

RELEASE S_3

DEPART S1_W_B_3

DEPART U_B_3

DEPART S1_U_B_3

TEST E P2,5,OSVOB

LEAVE S_5,P5

DEPART U_S_5

DEPART S1_U_S_5

TRANSFER ,END_11

OSVOB LEAVE S_6,P5

DEPART U_S_6

DEPART S1_U_S_6

TRANSFER ,END_11

OTKAZ SAVEVALUE OTK_+,1

TRANSFER ,END_12

END_11 DEPART U_SISTEM

DEPART S1_U_SISTEM

END_12 TERMINATE 1

;***************************************************************************

GENERATE (UNIFORM(2,200,280))

QUEUE U_SISTEM

QUEUE S2_U_SISTEM

ASSIGN 5,(DUNIFORM(3,1,3))

TEST LE P5,R$S_5,OCHER2

QUEUE U_S_5

QUEUE S2_U_S_5

ENTER S_5,P5

ASSIGN 2,5

TRANSFER ,DALSHE2

OCHER2 TEST LE P5,R$S_6,OTKAZ2

QUEUE U_S_6

QUEUE S2_U_S_6

ENTER S_6,P5

ASSIGN 2,6

DALSHE2 QUEUE W_B_1

QUEUE S2_W_B_1

QUEUE U_B_1

QUEUE S2_U_B_1

ENTER S_1

DEPART W_B_1

DEPART S2_W_B_1

ADVANCE (UNIFORM(2,280,312))

LEAVE S_1

DEPART U_B_1

DEPART S2_U_B_1

NAZAD2 QUEUE W_B_2

QUEUE S2_W_B_2

QUEUE U_B_2

QUEUE S2_U_B_2

SEIZE S_2

DEPART W_B_2

ADVANCE (UNIFORM(3,26,46))

RELEASE S_2

DEPART S2_W_B_2

DEPART U_B_2

DEPART S2_U_B_2

TRANSFER .5,,NAZAD2

QUEUE W_B_3

QUEUE S2_W_B_3

QUEUE U_B_3

QUEUE S2_U_B_3

SEIZE S_3

DEPART W_B_3

ADVANCE (UNIFORM(3,30,74))

RELEASE S_3

DEPART S2_W_B_3

DEPART U_B_3

DEPART S2_U_B_3

TEST E P2,5,OSVOB2

LEAVE S_5,P5

DEPART U_S_5

DEPART S2_U_S_5

TRANSFER ,END_21

OSVOB2 LEAVE S_6,P5

DEPART U_S_6

DEPART S2_U_S_6

TRANSFER ,END_21

OTKAZ2 SAVEVALUE OTK_+,1

TRANSFER ,END_22

END_21 DEPART U_SISTEM

DEPART S2_U_SISTEM

END_22 TERMINATE 1

START 100000

Листинг 5.2 - Статистический отчет выполнения GPSS-модели

FACILITY ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY

S_2 199921 0.599 35.959 1 100001 0 0 0 1

S_3 99764 0.432 52.007 1 0 0 0 0 0

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY

U_SISTEM 10 4 100004 236 3.748 450.001 451.066 0

S1_U_SISTEM 5 2 50006 174 1.873 449.717 451.288 0

U_S_5 8 3 93143 0 3.493 450.290 450.290 0

S1_U_S_5 5 2 46024 0 1.727 450.594 450.594 0

W_B_1 1 0 99768 99767 0.000 0.000 6.721 0

S1_W_B_1 1 0 49832 49832 0.000 0.000 0.000 0

U_B_1 5 2 99768 0 2.459 296.026 296.026 0

S1_U_B_1 3 1 49832 0 1.228 296.040 296.040 0

S2_U_SISTEM 6 2 49998 62 1.875 450.285 450.844 0

S2_U_S_5 6 1 47119 0 1.766 449.993 449.993 0

S2_W_B_1 1 0 49936 49935 0.000 0.000 6.721 0

S2_U_B_1 2 1 49936 0 1.231 296.013 296.013 0

W_B_2 6 1 199922 124662 0.215 12.903 34.276 0

S2_W_B_2 4 1 99968 0 0.407 48.857 48.857 0

U_B_2 6 2 199922 0 0.813 48.861 48.861 0

S2_U_B_2 4 1 99968 0 0.407 48.857 48.857 0

S1_W_B_2 4 1 99954 0 0.407 48.866 48.866 0

S1_U_B_2 4 1 99954 0 0.407 48.866 48.866 0

W_B_3 3 0 99764 77547 0.043 5.122 23.001 0

S2_W_B_3 3 0 49934 0 0.237 57.026 57.026 0

U_B_3 4 0 99764 0 0.475 57.130 57.130 0

S2_U_B_3 3 0 49934 0 0.237 57.026 57.026 0

S1_W_B_3 4 0 49830 0 0.237 57.234 57.234 0

S1_U_B_3 4 0 49830 0 0.237 57.234 57.234 0

U_S_6 4 1 6625 0 0.255 461.972 461.972 0

S1_U_S_6 2 0 3808 0 0.146 459.678 459.678 0

S2_U_S_6 3 1 2817 0 0.109 465.072 465.072 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY

S_5 12 6 0 12 204463 1 7.669 0.639 0 0

S_6 7 4 0 7 19820 1 0.761 0.109 0 0

S_1 4 2 0 4 99768 1 2.459 0.615 0 0

SAVEVALUE RETRY VALUE

OTK_ 0 236.000

Ниже в таблице 5.1 представлены результаты аналитического и имитационного моделирования (для каждого из потоков в отдельности и безотносительно к потокам заявок - п_1, п_2, п) и вычислена погрешность аналитической модели. При этом за эталон взяты характеристики ИМ.

Таблица 5.1 - Характеристики ИМ

Характеристика

Значение характеристики

Погрешность, %

АМ

ИМ 1

ИМ 2

ИМ

1

Узел

1

с1

0,296

0.308

0.309

0,615

l1

0,124

0.000

0.000

0,000

m1

0,42

1.234

1.235

2,459

щ1

31

0.000

0.000

0.000

u1

105

296.091

295.939

296.026

181,93

2

с2

0,288

0.3

0.301

0.599

l2

0,116

0.005

0.004

0.215

m2

0,404

0.306

0.306

0.813

щ2

14,5

0.635

0.53

12.901

u2

50,5

36.609

36.507

48.861

3.24

3

с3

0,208

0.217

0.217

0.432

l3

0,055

0.001

0.001

0.043

m3

0,263

0.218

0.218

0.475

щ3

13,75

0.331

0.185

5.112

u3

65,75

52.338

52.159

57.130

13.11

Система

L

0,295

0.006

0.005

0.258

12.54

M

1,087

1.087

1.759

3.747

244,71

U

221,25

385.346

384.605

402.022

81.7

W

59.25

0.966

0.715

18.013

69.6

Выводы. Большие различия в результатах вызваны тем, что при расчете аналитической модели в нее были внесены упрощения:

1. Преобразование исходной ССМ в сеть МО разомкнутого типа.

2. Замена многоканальных узлом одноканальными.

3. Преобразование сети МО в однородную сеть.

4. Преобразование сети МО в экспоненциальную сеть.

Исследование свойств модели

Значения параметров модели обеспечивают ее работу в стационарном режиме, то есть без нарастающих очередей. Значения коэффициентов загрузки обслуживающих узлов, устройств, памятей различны и лежат в пределах 0,4-0,7 Длительность моделирования достаточна для обработки 100000 заявок. Оценка зависимости точности моделирования от его длительности.

В качестве шага изменения длительности моделирования будем использовать число обработанных заявок (10000 - 100000 заявок).

Соответственно выполняется моделирование с разной длительностью (например обрабатывается 5000, 10000, 15000, 20000 заявок). Фиксируем значения 1 узловой и 1 системной характеристик. Строим графики зависимости их значений от числа обработанных заявок.

Таблица 5.2 - Зависимости значений характеристик от числа обработанных заявок

Количество транзактов

Длина очереди к устройству b4

Среднее времени пребывания в системе

10000

3,487

450,885

20000

3,502

452,128

50000

3,496

450,636

100000

3,493

450.001

Рисунок 5.1 - Зависимость длины очереди к устройству b5 от числа обработанных заявок

Рисунок 5.2 - Зависимость среднего времени пребывания в системе от числа обработанных заявок

Как видно из графиков зависимостей, с увеличением числа обработанных заявок характеристики системы улучшаются.

6. ИССЛЕДОВАНИЕ СВОЙСТВ СИСТЕМЫ

Анализ исходного состояния системы

Анализ характеристик, полученных для исходных данных, показывает:

1) система работает в установившемся стационарном режиме, т.к. коэффициенты загрузки всех обслуживающих узлов меньше 1 (с1 = 0,615; с2 = 0,599; с3 = 0,432, с5 =0.639, с6 =0.109);

2) узел 6 не догружен;

3) система разбалансирована, т.к. коэффициенты загрузки обслуживающих узлов значительно отличаются (идеальная балансировка, когда с1 = с2 = с3= с4= с5= с6);

4) потенциальное “узкое” место - узел 1.

Т.е. при росте числа обслуживаемых заявок (их интенсивностей) именно узел 1 первым достигнет загрузки близкой к полной (с коэффициентом загрузки близким к единице). И именно это станет ограничивающим фактором в работе системы.

Сеть будет перегружена, т.е. перейдет из устойчивого стационарного режима работы в режим насыщения. В системе возникнет тенденция к бесконечному нарастанию числа потерянных (не обслуженных) заявок с течением времени моделирования;

5) Вышесказанное означает, что система работает не эффективно и требует настройки, модификации.

Прогнозирование характеристик системы при росте интенсивностей потоков заявок

Проанализировав схему исследуемой системы легко можно сделать вывод, что узел b1 является самым загруженным узлом, а узел b6 не догружен. Поэтому проведем исследование системных характеристик в зависимости от интенсивности поступления заявок в системе. Оставив неизменными интенсивности поступления сохранением заданного соотношения интенсивностей отдельных потоков.

Фиксируем значения 1 узловой и 1системной характеристик. Строим график зависимости их значений от значений интенсивностей потока заявок.

Таблица 6.1 - Зависимости значений характеристик от интенсивности потока заявок

mT(0)

Коэффициент загрузки узла b1

Среднее времени пребывания в системе

240

0.616

450.885

180

0.795

472.119

120

0.930

474.820

60

0.974

350.432

Строим графики зависимости их значений от числа обработанных заявок.

Рисунок 6.2 - Зависимость коэффициента загрузки узла b1 от интенсивности поступления заявок

Рисунок 6.3 - Зависимость среднего времени пребывания в системе от интенсивности поступления заявок

При увеличении интенсивности поступления заявок загрузка узла b1 приближается к критической (с1=0,974), а при уменьшении интенсивности поступления заявок загрузка узла b1 очень уменьшается (с1=0,616). Наилучшими являются интенсивности, заданные в системе и близкие к ним (например л1 =275 и л2=183,3).

ЗАКЛЮЧЕНИЕ

В ходе данного курсового проекта была разработана система расчета характеристик разомкнутых экспоненциальных сетевых моделей. Данная система выполняет имитационное моделирование заданной сетевой модели.

Для проверки правильности работы программы были построены модели на языке GPSS и аналитическая модель, выполняющие роль эталона, т.е. характеристики, полученные на этих моделях считаются характеристиками реального объекта. В результате оценки характеристик рассчитанных программой было выяснено, что погрешность при расчетах находится в допустимых пределах.

ЛИТЕРАТУРА

1. Советов Б.Я., С.А. Яковлев. Моделирование систем. - М.: Высшая школа, 2001.

2. Основы теории вычислительных систем под ред. Майорова. - М.: Высшая школа, 1985.

3. Советов Б.Я., С.А. Яковлев. Моделирование систем: курсовое проектирование. - М.: Высшая школа, 1988.

4. Муравьев Г.Л. Моделирование систем: Курс лекций по дисциплине “Моделирование систем” для студентов специальностей “АСОИ”, “ЭВМиС”. - Брест: БГТУ, 2003.


Подобные документы

  • Разработка концептуальной модели системы обработки информации для узла коммутации сообщений. Построение структурной и функциональной блок-схем системы. Программирование модели на языке GPSS/PC. Анализ экономической эффективности результатов моделирования.

    курсовая работа [802,8 K], добавлен 04.03.2015

  • Построение концептуальной модели системы и ее формализация. Алгоритмизация модели системы и ее машинная реализация. Построение логической схемы модели. Проверка достоверности модели системы. Получение и интерпретация результатов моделирования системы.

    курсовая работа [67,9 K], добавлен 07.12.2009

  • Использование языка GPSS для описания модели автосервиса, обслуживающего автомобили различных моделей с учетом их приоритета. Сущность и возможности имитационного моделирования. Разработка GPSS-модели функционирования ремонтных работ в автосервисе.

    курсовая работа [259,4 K], добавлен 08.05.2013

  • Разработка модели, имитирующей работу экономической системы (станции технического обслуживания автомобилей). Определение вероятностных характеристик системы; закрепление навыков в построении имитационной модели с помощью языка моделирования GPSS.

    курсовая работа [713,6 K], добавлен 05.06.2013

  • Имитационное моделирование кредитной системы коммерческого банка с применением экспоненциального, дискретного равномерного и нормального распределения. Создание и программная реализация математической модели на языке С++ и ее построение в MathCad.

    курсовая работа [319,1 K], добавлен 13.02.2013

  • Разработка решения задачи имитационного моделирования системы массового обслуживания (СМО), на примере склада продукции. Построение концептуальной модели системы. Сравнение результатов имитационного моделирования и аналитического расчета характеристик.

    курсовая работа [75,5 K], добавлен 26.06.2011

  • Структурная схема, классификация устройств СМО и анализ динамики ее функционирования. Формализация модели СМО средствами GPSS World. Модификация имитационной модели. Реализация модельных экспериментов. Имитационное моделирование СМО в среде GPSS World.

    курсовая работа [504,6 K], добавлен 14.12.2012

  • Методы материального моделирования в среде GPSS. Построение и разработка концептуальной модели. Алгоритмизация модели и ее машинная реализация. Экспериментальное моделирование на ЭВМ. Определение максимальной длины очереди готовых к обработке пакетов.

    курсовая работа [189,0 K], добавлен 14.09.2011

  • Понятие компьютерной модели и преимущества компьютерного моделирования. Процесс построения имитационной модели. История создания системы GPSS World. Анализ задачи по прохождению турникета на стадион посредством языка имитационного моделирования GPSS.

    курсовая работа [291,3 K], добавлен 11.01.2012

  • Процесс моделирования имитационной модели функционирования класса персональных компьютеров на языке GPSS World. Поиск линейной зависимости и оценка полученного уравнения. Отчет по результатам работы имитационной модели. Листинг разработанной программы.

    курсовая работа [49,2 K], добавлен 07.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.