Средства безопасности Windows Server 2003

Базовые технологии безопасности, обеспечивающие защиту сетей и доменов Windows Server 2003. Основы шифрования с открытыми ключами. Общие понятия и термины, относящиеся к защите данных и методам шифрования. Алгоритмы шифрования, использование сертификатов.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 02.12.2010
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Дальневосточный государственный технический университет

(ДВПИ им. В.В. Куйбышева)

Кафедра конструирования и производства радиоаппаратуры

Реферат

на тему:

Средства безопасности Windows Server 2003

2010

Содержание

  • Введение
  • Общие понятия безопасности
    • Шифрование с открытым ключом
    • Обеспечение истинности открытых ключей
  • Применение алгоритмов шифрования с открытым ключом в Windows Server 2003
    • Компоненты Windows Server 2003, обеспечивающие шифрование
    • Политики безопасности
  • Протокол аутентификации Kerberos
    • Основные понятия
    • Аутентификация Kerberos в доменах Active Directory
  • Безопасность IP (IPSec)
    • Достоинства IP Security
    • Базовые механизмы и концепции
    • Архитектура безопасности IP
    • Разработка плана безопасности
    • Администрирование безопасности IP
    • Шифрующая файловая система EFS
    • Архитектура EFS
    • Система EFS и Windows Server 2003
    • Работа с EFS
  • Сертификаты
    • Использование сертификатов для обеспечения безопасности
    • Центры сертификации
    • Использование сертификатов в Интернете
    • Хранилища сертификатов
    • Запрос сертификата
    • Установка центра сертификации

Введение

В данной работе описываются базовые технологии безопасности, обеспечивающие защиту сетей и доменов Windows Server 2003. Большое внимание уделяется шифрованию с открытыми ключами, поскольку оно лежит в основе многих решений, примененных как внутри самой операционной системы, так и используемых ею в сетевых взаимодействиях. Рассмотрим сначала некоторые общие понятия и термины, относящиеся к защите данных и методам шифрования, без которых невозможно описывать средства безопасности Windows Server 2003.

Общие понятия безопасности

· Аутентификация (проверка подлинности). Это процесс надежного определения подлинности поддерживающих связь компьютеров. Аутентификация основана на методах криптографии, и это гарантирует, что нападающий или прослушивающий сеть не сможет получить информацию, необходимую для рассекречивания пользователя или другого объекта. Аутентификация позволяет поддерживающему связь объекту доказать свое тождество другому объекту без пересылки незащищенных данных по сети. Без "сильной" (strong) аутентификации и поддержания целостности данных любые данные и компьютер, который их послал, являются подозрительными.

· Целостность (integrity). Правильность данных, т. е. их неизменность по сравнению с первоначально посланными. Службы, поддерживающие целостность, защищают данные от несанкционированного изменения по пути их следования.

· Конфиденциальность (privacy). Гарантия того, что данные будут раскрыты только тем получателем, которому они были предназначены. Это свойство не является обязательным.

· Предотвращение повторного использования (anti-replay). Предотвращение повторного использования гарантирует, что каждая посланная IP-датаграмма (IP-пакет) отличается от любой другой, чтобы помочь предотвратить атаки, в которых сообщение прерывается и сохраняется атакующим, а затем многократно используется им позже для организации попытки нелегального доступа к информации.

Шифрование с открытым ключом

Криптография -- это наука о защите данных. Алгоритмы криптографии с помощью математических методов комбинируют входной открытый текст и ключ шифрования, в результате чего получаются зашифрованные данные. Применение криптографии обеспечивает надежную передачу данных и предотвращение их получение несанкционированной стороной. Применяя хороший алгоритм шифрования, можно сделать практически невозможным, с точки зрения необходимых вычислительных и временных ресурсов, взлом защиты и получение открытого текста подбором ключа. Для быстрого выполнения подобного преобразования необходим расшифровывающий ключ.

В традиционном шифровании с секретным ключом (secret key) (симметричное шифрование) зашифровывающий и расшифровывающий ключи совпадают. Стороны, обменивающиеся зашифрованными данными, должны знать общий секретный ключ. Процесс обмена информацией о секретном ключе представляет собой брешь в безопасности вычислительной системы.

Фундаментальное отличие шифрования с открытым ключом (асимметричное шифрование) заключается в том, что зашифровывающий и расшифровывающий ключи не совпадают. Шифрование информации является односторонним процессом: открытые данные шифруются с помощью зашифровывающего ключа, однако с помощью того же ключа нельзя осуществить обратное преобразование и получить открытые данные. Для этого необходим расшифровывающий ключ, который связан с зашифровывающим ключом, но не совпадает с ним. Подобная технология шифрования предполагает, что каждый пользователь имеет в своем распоряжении пару ключей -- открытый ключ (public key) и личный или закрытый ключ (private key). Свободно распространяя открытый ключ, вы даете возможность другим пользователям посылать вам зашифрованные данные, которые могут быть расшифрованы с помощью известного только вам личного ключа. Аналогично, с помощью личного ключа вы можете преобразовать данные так, чтобы другая сторона убедилась в том, что информация пришла именно от вас. Эта возможность применяется при работе с цифровыми или электронными подписями. Шифрование с открытым ключом имеет все возможности шифрования с закрытым ключом, но может проходить медленнее из-за необходимости генерировать два ключа. Однако этот метод безопаснее.

Появление пары "личный ключ/открытый ключ" привело к возникновению нескольких новых технологий, наиболее важными из которых являются цифровые подписи, распределенная аутентификация, соглашение о секретном ключе, достигаемое с применением открытого ключа, и шифрование больших объемов данных без предварительного соглашения о секретном ключе.

Существует несколько хорошо известных алгоритмов шифрования с открытым ключом. Некоторые из них, например RSA (Rivest-Shamir-Adelman) и шифрование с помощью эллиптической кривой (Elliptic Curve Criptography, ECC), являются алгоритмами общего употребления в том смысле, что они поддерживают все упомянутые выше операции. Другие алгоритмы поддерживают только некоторые операции. К ним относятся: алгоритм цифровой подписи (Digital Signature Algorithm, DSA), используемый только для работы с цифровыми подписями, и алгоритм Diffie-Hellman (D-H), применяемый только для соглашений о секретных ключах. Алгоритмы шифрования, используемые безопасностью IP (IP Security), подробнее описаны в данной главе в разд. "Безопасность IP".

Ниже кратко рассмотрены основные области применения шифрования с открытым ключом.

Цифровые (электронные) подписи

Наверное, наиболее ярким проявлением всех преимуществ шифрования с открытым ключом является технология цифровых или электронных подписей. Она основана на математическом преобразовании, комбинирующем данные с секретным ключом таким образом, что:

· только владелец секретного ключа может создать цифровую подпись;

· любой пользователь, обладающий соответствующим открытым ключом, может проверить истинность цифровой подписи;

· любая модификация подписанных данных (даже изменение одного бита) делает неверной цифровую подпись.

Цифровые подписи гарантируют целостность (integrity) и подлинность (nonrepudiation) данных. Когда данные распространяются открытым текстом (без шифрования), получатели должны иметь возможность проверки, что данные в сообщении не были изменены. Добавление подписи не изменяет содержания данных: в этом случае генерируется цифровая подпись, которая может быть связана с данными или передаваться отдельно. Для выполнения этой операции клиентская программа создает дайджест, снимок данных, используя метод хэширования (например, MDS). Программа использует ваш личный ключ для шифрования дайджеста и подписывает данные или сообщение с помощью вашего сертификата, добавляя ваш открытый ключ. Соответствующая программа адресата сообщения использует открытый ключ для расшифровки дайджеста, затем использует тот же алгоритм хэширования для создания другого дайджеста данных. Данная программа затем сравнивает два дайджеста сообщений. Если они идентичны, то подтверждаются целостность и подлинность данных сообщения.

Распределенная аутентификация

Шифрование с открытым ключом применяется для создания надежной службы распределенной аутентификации, гарантирующей, что данные пришли получателю от истинного корреспондента. Соглашение о секретном ключе, достигаемое с помощью открытого ключа. Шифрование с открытым ключом позволяет двум сторонам, используя открытый ключ в незащищенной сети, договориться о секретном ключе. Обе стороны посылают друг другу половины секретного ключа, зашифрованного соответствующими открытыми ключами. Каждая из сторон получает возможность расшифровать полученную половину секретного ключа и на ее основе, с учетом своей половины ключа, получить весь секретный ключ.

Обеспечение истинности открытых ключей

При шифровании с открытым ключом жизненно важна абсолютно достоверная ассоциация открытого ключа и передавшей его стороны, поскольку в обратном случае возможна подмена открытого ключа и осуществление несанкционированного доступа к передаваемым зашифрованным данным. Необходим механизм, гарантирующий достоверность корреспондента, например, применение сертификата, созданного авторизованным генератором сертификатов.

Что такое сертификат

Сертификат -- это средство, позволяющее гарантированно установить связь между переданным открытым ключом и передавшей его стороной, владеющей соответствующим личным ключом. Сертификат представляет собой набор данных, зашифрованных с помощью цифровой, или электронной, подписи. Информация сертификата подтверждает истинность открытого ключа и владельца соответствующего личного ключа.

Обычно сертификаты содержат дополнительную информацию, позволяющую идентифицировать владельца личного ключа, соответствующего данному открытому ключу. Сертификат должен быть подписан авторизованным генератором сертификатов.

Наиболее распространенным на данный момент стандартом сертификатов является ITU-T X.509. Эта фундаментальная технология применяется в Windows 2000 и Windows Server 2003. Однако это не единственная форма сертификатов.

Центр сертификации

Центр сертификации (ЦС), или поставщик сертификатов (Certificate Authority, CA), -- это организация или служба, создающая сертификаты. ЦС выступает в качестве гаранта истинности связи между открытым ключом субъекта и идентифицирующей этот субъект информацией, содержащейся в сертификате. Различные ЦС могут применять для проверки связи различные средства, поэтому перед выбором достойного доверия ЦС важно хорошо понять политику данного ЦС и применяемые им процедуры проверки.

Применение алгоритмов шифрования с открытым ключом в Windows Server 2003

Операционные системы Windows 2000 и Windows Server 2003 обладают развитыми средствами шифрования данных с открытым ключом. На данный момент эти системы располагают интегрированным набором служб и инструментов администрирования, предназначенных для создания, реализации и управления приложениями, использующими алгоритмы шифрования с открытым ключом. Это позволит независимым разработчикам программного обеспечения интенсивно применять в своих продуктах технологию общего ключа (shared key).

Компоненты Windows Server 2003, обеспечивающие шифрование

На рис. 1 схематично показана логическая взаимосвязь средств Windows 2000, позволяющих применять шифрование с открытым ключом.

Изображенные на рис. 1 средства необязательно должны размещаться на отдельных компьютерах. Несколько служб могут эффективно работать на одном компьютере. Ключевое звено схемы -- службы сертификатов Microsoft (Microsoft Certificate Services). Они позволяют создать один или несколько ЦС предприятия, поддерживающих создание и отзыв сертификатов. Они интегрированы в Active Directory, где хранится информация о политике ЦС и их местоположении. Кроме того, с помощью Active Directory выполняется публикация информации о сертификатах и их отзыве. Средства работы с открытым ключом не заменяют существующих механизмов доверительных отношений между доменами и аутентификации, реализованных с помощью контроллеров доменов и центров распространения ключей Kerberos (Key Distribution Center, KDC). Напротив, данные средства взаимодействуют с этими службами, что позволяет приложениям безопасно передавать конфиденциальную информацию через Интернет и корпоративным глобальным каналам.

Рисунок.1. Взаимосвязь средств Windows 2000 и Windows Server 2003, предназначенных для работы с открытым ключом

Поддержка прикладных средств шифрования информации с открытым ключом включена в состав программного обеспечения всех операционных систем Windows. Основой архитектуры поддержки прикладных программ шифрования информации с открытым ключом является библиотека CryptoAPI. Она позволяет работать со всеми устанавливаемыми поставщиками услуг шифрования (Cryptographic Service Providers, CSP) через стандартный интерфейс. CSP могут быть реализованы на программном уровне или с помощью специального оборудования. Они поддерживают различные длины ключей и алгоритмы шифрования. Один из CSP поддерживает смарт-карты. Услугами служб шифрования пользуются службы управления сертификатами. Они соответствуют стандарту Х.509 v3 и позволяют организовывать принудительное хранение, службы подсчета и дешифрования. Кроме того, эти службы предназначены для работы с различными отраслевыми стандартами сообщений. В основном они поддерживают стандарты PKCS и разработанный в IETF (Internet Engineering Task Force) набор предварительных стандартов PKIX (Public Key Infrastructure, X.509). Остальные службы используют CryptoAPI для придания дополнительной функциональности прикладным программам. Защищенный канал (Secure Channel) поддерживает сетевую аутентификацию и шифрование в соответствии со стандартными протоколами TLS и SSL, обращение к которым может быть выполнено с помощью интерфейсов Microsoft Winlnet и SSPI. Служба Authenticode предназначена для проверки и подписи объектов и в основном используется при получении информации через Интернет.

Политики безопасности

Политики безопасности действуют в рамках сайта, домена или контейнера (подразделения, или организационной единицы, OU) и распространяются на группы, компьютеры и пользователей -- т. е. на все объекты администрирования. Безопасность шифрования с открытым ключом является одним из аспектов общей политики безопасности Windows 2000/Server 2003 и интегрирована в ее структуру. Это механизм, с помощью которого можно посредством объектов политики безопасности централизованно осуществлять настройку и управление глобальной политикой работы с открытым ключом. С помощью политики открытого ключа можно определять следующие аспекты безопасности Windows 2000/Server 2003:

· доверенные корни ЦС;

· процесс регистрации и обновления сертификатов;

· регистрация в системе с помощью смарт-карты.

Протокол аутентификации Kerberos

Протокол аутентификации Kerberos является основным механизмом аутентификации, используемым в среде Windows 2000/Server 2003. Этот протокол был разработан в Массачусетском технологическом институте (Massachusetts Institute of Technology, MIT) в начале 1980-х гг. Существует несколько версий протокола Kerberos. В среде Windows 2000/Server 2003 применяется пятая версия протокола Kerberos, спецификация которого определена в стандарте RFC 1510.

Основные понятия

Проблема аутентификации пользователя заключается в необходимости проверки того факта, что он является тем, за кого себя выдает. Наука знает множество различных способов проверки подлинности личности, которые упрощенно можно разделить на две группы:

· проверка личности на факт соответствия некоторым индивидуальным характеристикам человека (проверка отпечатков пальцев, снимков радужки глаза, код ДНК и т. д.). Для применения этой группы методов аутентификации необходимо задействовать специальное оборудование;

· проверка личности на факт знания некоторого секрета (пароли, цифровые комбинации и последовательности). В данном случае под секретом понимается некая символьная или цифровая последовательность, факт знания которой позволяет судить о подлинности пользователя. Указанные методы аутентификации наиболее просты в технологическом исполнении. Именно эти методы получили широкое распространение в современных операционных системах. Протокол аутентификации Kerberos также относится к этой группе методов.

При реализации метода аутентификации, базирующегося на проверке факта знания некоторого секрета, необходимо решить следующие вопросы:

· каким образом клиент будет получать информацию о секрете?

· каким образом клиент будет предоставлять серверу аутентификации информацию о своих полномочиях?

· каким образом клиент будет проверять полномочия сервера?

· каким образом сервер сможет убедиться в том, что полномочия, предоставленные клиентом, подлинные?

· каким образом будет обеспечиваться безопасность взаимодействия сервера и клиента в ходе проверки полномочий?

· каким образом будет исключаться возможность использования перехваченных пакетов?

В процедуре аутентификации участвуют три стороны;

· клиент, запрашивающий соединение и предоставляющий сведения о своих полномочиях. В качестве клиента может рассматриваться любой субъект системы безопасности. Клиент может подключаться к неограниченному числу различных серверов, используя для аутентификации один "секрет";

· сервер, предоставляющий доступ к ресурсу и проверяющий полномочия клиента. К серверу может подключаться неограниченное количество клиентов, каждый из которых предоставляет информацию о собственном "секрете";

· сервер, хранящий информацию о секретах всех клиентов. В терминологии Kerberos этот сервер получил название Центра распределения ключей (Key Distribution Center, KDC). Центр распределения ключей берет на себя роль посредника между серверами и их клиентами. Каждое подключение должно иметь уникальный секрет, поскольку к любому серверу может обращаться произвольное число пользователей. Центр распределения ключей решает эту задачу, обеспечивая каждое подобное подключение собственным уникальным секретом, известным только клиенту и серверу.

Протокол Kerberos представляет собой набор методов идентификации и проверки истинности партнеров по обмену информацией (рабочих станций, пользователей или серверов) в открытой (незащищенной) сети. Процесс идентификации не зависит от аутентификации, выполняемой сетевой операционной системой, не основывается в принятии решений на адресах хостов и не предполагает обязательную организацию физической безопасности всех хостов сети. Кроме того, допускается, что пакеты информации, передаваемые по сети, могут быть изменены, прочитаны и переданы в любой момент времени. Следует, однако, отметить, что большинство приложений использует функции протокола Kerberos только при создании сеансов передачи потоков информации. При этом предполагается, что последующее несанкционированное разрушение потока данных невозможно. Поэтому применяется прямое доверие, основанное на адресе хоста. Kerberos выполняет аутентификацию как доверенная служба третьей стороны, используя шифрование с помощью общего секретного ключа (shared secret key).

Аутентификация выполняется следующим образом: 1. Клиент посылает запрос серверу аутентификации (Authentication Server, AS) на информацию, однозначно идентифицирующую некоторый нужный клиенту сервер. 2. Сервер AS передает требуемую информацию, зашифрованную с помощью известного пользователю ключа. Переданная информация состоит из билета сервера и временного ключа, предназначенного для шифрования (часто называемого ключом сеанса). 3. Клиент пересылает серверу билет, содержащий идентификатор клиента и ключ сеанса, зашифрованные с помощью ключа, известного серверу. 4. Теперь ключ сеанса известен и клиенту, и серверу. Он может быть использован для аутентификации клиента, а также для аутентификации сервера. Ключ сеанса можно применять для шифрования передаваемой в сеансе информации или для взаимного обмена ключами подсеанса, предназначенными для шифрования последующей передаваемой информации. Протокол Kerberos функционирует на одном или нескольких серверах аутентификации, работающих на физически защищенном хосте. Серверы аутентификации ведут базы данных партнеров по обмену информацией в сети (пользователей, серверов и т. д.) и их секретных ключей. Программный код, обеспечивающий функционирование самого протокола и шифрование данных, находится в специальных библиотеках. Для того чтобы выполнять аутентификацию Kerberos для своих транзакций, приложения должны сделать несколько обращений к библиотекам Kerberos. Процесс аутентификации состоит из обмена необходимыми сообщениями с сервером аутентификации Kerberos.

Протокол Kerberos состоит из нескольких субпротоколов (или протоколов обмена сообщениями). Существует два метода, которыми клиент может запросить у сервера Kerberos информацию, идентифицирующую определенный сервер. Первый способ предполагает, что клиент посылает AS простой текстовый запрос билета для конкретного сервера, а в ответ получает данные, зашифрованные с помощью своего секретного ключа. Как правило, в данном случае клиент посылает запрос на билет, позволяющий получить билет (Ticket Granting Ticket, TGT), который в дальнейшем используется для работы с выдающим билеты сервером (Ticket Granting Server, TGS). Второй способ предполагает, что клиент посылает TGT-билеты на TGS-сервер так же, как будто он обменивается информацией с другим сервером приложений, требующим аутентификации Kerberos.

Информация, идентифицирующая сервер, может быть использована для идентификации партнеров по транзакции, что позволит гарантировать целостность передаваемых между ними сообщений или сохранить в секрете передаваемую информацию.

Для идентификации партнеров по транзакции клиент посылает билет на сервер. Поскольку посылаемый билет "открыт" (некоторые его части зашифрованы, но они не помешают выполнить посылку копии) и может быть перехвачен и использован злоумышленником, для подтверждения истинности партнера, пославшего билет, передается дополнительная информация, называемая аутентификатором. Она зашифрована с помощью ключа сеанса и содержит отсчет времени, подтверждающий, что сообщение было сгенерировано недавно и не является копией оригинальной посылки. Шифрование аутентификатора с помощью ключа сеанса доказывает, что информация была передана истинным партнером по обмену данными. Поскольку, кроме запрашивающего партнера и сервера, никто не знает ключ сеанса (он никогда не посылается по сети в открытом виде), с его помощью можно полностью гарантировать истинность партнера.

Целостность сообщений, которыми обмениваются партнеры, гарантируется с помощью ключа сеанса (передается в билете и содержится в информации идентификации партнера). Этот подход позволяет обнаружить атаки типа посылки злоумышленником перехваченной копии запроса и модификации потока данных. Это достигается генерированием и пересылкой контрольной суммы (хэш-функции) сообщения клиента, зашифрованной с помощью ключа сеанса. Безопасность и целостность сообщений, которыми обмениваются партнеры, может быть обеспечена шифрованием передаваемых данных с помощью ключа сеанса, передаваемого в билете и содержащегося в информации идентификации партнера.

Описанная выше аутентификация требует доступа на чтение к базе данных Kerberos. Однако иногда записи базы данных могут быть модифицированы. Это происходит, например, при добавлении новых партнеров по обмену информацией или при изменении секретного ключа партнера. Изменения базы данных выполняются с помощью специального протокола обмена между клиентом и сервером Kerberos, применяющимся и при поддержке нескольких копий баз данных Kerberos.

Для нормальной работы протокола Kerberos необходимо, чтобы каждый хост сети имел часы, которые были приблизительно синхронизированы с часами других хостов. Синхронизация необходима, чтобы было легче обнаружить факт передачи копии заранее перехваченного сообщения. Степень приблизительности синхронизации может быть установлена индивидуально для каждого сервера. Сам протокол синхронизации серверов сети должен быть защищен от атак злоумышленников.

Аутентификация Kerberos в доменах Active Directory

По мере роста и усложнения компьютерных сетей предприятия, построенных на основе систем Windows, становится необходимым применение протокола, обеспечивающего более совершенную и надежную аутентификацию пользователей при доступе к распределенным ресурсам. В операционных системах Windows 2000 для этих целей начат применяться протокол аутентификации Kerberos версии 5, входящий в систему безопасности доменов Windows 2000, тесно интегрированную с Active Directory. Реализация протокола Kerberos версии 5 в Windows 2000 основана на RFC 1510. Этот документ широко обсуждался и корректировался многими организациями, работающими в области создания и применения защищенных средств передачи информации по компьютерным сетям. Аутентификация Kerberos полностью отвечает требованиям к протоколам подобного назначения и позволяет создать высокопроизводительную и защищенную сеть предприятия. Программное обеспечение Kerberos, созданное Microsoft, поддерживает всех клиентов, удовлетворяющих RFC 1510. Однако полную поддержку сетей Windows 2000 осуществляет только клиент Kerberos, разработанный Microsoft, поскольку версия Kerberos Microsoft обладает рядом расширений.

Системы Windows Server 2003 в полной мере используют все средства распределенной безопасности, внедренные в Windows 2000. Протокол Kerberos интегрирован в существующую модель распределенной безопасности Windows 2000/Server 2003. В этих системах используются расширения протокола Kerberos -- так же, как и другие архитектуры безопасности, например ОСЕ и SESAME. Протокол Kerberos -- один из протоколов безопасности, поддерживаемых Windows 2000/Server 2003. Кроме него, поддерживаются протоколы NTLM для совместимости с предыдущими версиями, SSL и стандарт IETF безопасности транспортного уровня. В качестве механизма безопасности применяется протокол защищенных переговоров (Simple Protected Negotiation, SPNEGO). Для обеспечения безопасности передачи данных на сетевом уровне применяется технология IP Security (IPSec).

Модель распределенной безопасности Windows Server 2003

Модель распределенной безопасности Windows Server 2003 основана на трех основных концепциях.

· Каждая рабочая станция и сервер имеют прямой доверенный путь (trust path) к контроллеру домена, членом которого является данная машина. Доверенный путь устанавливается службой NetLogon с помощью аутентифицированного соединения RPC с контроллером домена. Защищенный канал устанавливается и с другими доменами с помощью междоменных доверительных отношений. Этот канал используется для проверки информации безопасности, включая идентификаторы безопасности (Security Identifiers, SID) пользователей и групп.

· Перед выполнением запрошенных клиентом операций сетевые службы имперсонализируют контекст безопасности этого клиента. Имперсонализация основана на маркере адреса безопасности, созданном локальным администратором безопасности (Local Security Authority, LSA). Он представляет собой авторизацию клиента на сервере. Поток, находящийся на сервере и соответствующий данному клиенту, имперсонализирует контекст безопасности клиента и выполняет операции в соответствии с авторизацией данного клиента, а не в соответствии с идентификатором безопасности сервера. Имперсонализация поддерживается всеми службами Windows Server 2003, включая, например, службу удаленного файлового сервера CIFS/SNB. Аутентифицированный RPC и DCOM поддерживают имперсонализацию для распределенных приложений. Серверы семейства BackOffice: Exchange Server, SNA Server и Internet Information Server также поддерживают имперсонализацию.

· Ядро Windows Server 2003 поддерживает объектно-ориентированное управление доступом, сравнивая SID в маркере доступа с правами доступа, определенными в списке управления доступом данного объекта. Каждый объект Windows Sewer 2003 (ключи реестра, файлы и каталоги NTFS, общие ресурсы, объекты ядра, очереди печати и т. д.) имеют собственные списки управления доступом. Ядро Windows Server 2003 проверяет разрешения при каждой попытке доступа к данному объекту. Управление доступом и аудит осуществляются с помощью настройки свойств безопасности объекта, позволяющих предоставить пользователю или группе доступ к объекту. Управление авторизацией выполняется централизованно посредством включения пользователей в локальные группы системы, которым предоставлены необходимые права доступа. В операционной системе Windows Server 2003 существуют дополнительные средства обеспечения безопасности -- аутентификация клиента с помощью открытого ключа посредством SSL/TLS и протокола Kerberos версии 5, которые интегрированы в систему безопасности.

Интегрированная аутентификация Kerberos

В Windows Server 2003 аутентификация Kerberos реализована на уровне доменов, что позволяет выполнять одну регистрацию в системе при доступе ко всем ресурсам сети и поддерживать модель распределенной безопасности Windows Server 2003. На любом участке дерева доменов Active Directory протокол Kerberos обеспечивает взаимную аутентификацию, ускоренную аутентификацию и транзитное доверие на аутентификацию. Аутентификация Kerberos в Windows Server 2003 используется для выполнения интерактивной регистрации пользователя в домене. Расширение стандартной аутентификации Kerberos для применения открытого ключа позволяет применять регистрацию в Windows Server 2003 с помощью смарт-карты. Протокол Kerberos реачизован в виде поставщика безопасности, доступ к которому осуществляется с применением интерфейса поддержки поставщика безопасности (Security Support Provider Interface, SSPI).

Поставщик безопасности Kerberos используется клиентом и сервером SMB (Server Message Block). Он также доступен для DCOM, авторизованного RPC и любого протокола, использующего SSPI для обеспечения безопасности информации, передаваемой по сети. SSPI -- это интерфейс безопасности Win32, который существует в составе Windows NT, начиная с версии 3.5. Он также поддерживается в Windows 95/98. В SSPI применяются те же архитектурные концепции, что и в наборе программных вызовов общих служб безопасности (Generic Security Services API, GSS-API), соответствующих RFC 1964. SSPI позволяет освободить приложения от непосредственного взаимодействия с протоколами сетевой безопасности. В системах Windows 2000 и Windows Server 2003 реализован Центр распространения ключей Kerberos (Kerberos Key Distribution Center, KDC). На каждом контроллере домена помимо службы Active Directory имеется служба KDC, выполняющаяся вместе с Active Directory как процесс в привилегированном режиме. Оба процесса осуществляют управление жизненно важной информацией, включая пароли учетных записей пользователей. Active Directory выполняет автоматическую репликацию служебной информации на всех контроллерах домена. Поэтому создавать новые учетные записи пользователей, настраивать членство пользователей в группах или переустанавливать пароли можно на любом контроллере домена. Это означает, что в отличие от Windows NT 4,0, где изменить административную информацию можно было только на главном контроллере домена (Primary Domain Controller, PDC) с последующим обновлением доступных только для чтения реплик на резервных контроллерах домена (Backup Domain Controller, BDC), в доменах Active Directory можно изменять любую реплику каталога, хранящуюся на некотором контроллере домена.

Клиенты и серверы используют протокол Kerberos для взаимной аутентификации. Запрос Kerberos содержит билет сеанса и аутентификатор, получаемый в КDС и позволяющий исключить возможность подмены билета сеанса. Поставщик безопасности Kerberos на стороне клиента интегрируется с локальным администратором безопасности, поддерживающим локальный кэш билетов. При инициализации клиентом контекста безопасности поставщик безопасности Kerberos считывает билет сеанса, соответствующий целевой службе, или запрашивает новый билет сеанса в КОС. Сообщение запроса Kerberos, созданного поставщиком безопасности Kerberos, соответствует форматам маркера механизма GSS KerbS, описанным в RFC 1964. Клиенты могут аутентифицироваться для любой службы домена или доверенного владения, поддерживающего механизм GSS. Поставщик безопасности Kerberos может воспринять запрос Kerberos, который сгенерирован любым клиентом, поддерживающим форматы маркера в стандарте GSS, RFC 1964.

Такой уровень взаимодействия позволяет осуществлять поддержку традиционной аутентификации Kerberos, основанной на именах, в многоплатфорных средах. Для имперсонализации и управления доступом в рамках принятой модели распределенной безопасности системным службам достаточно данных авторизации, находящихся в билете сеанса.

Протокол Kerberos и авторизация Windows Server 2003

Имперсонализация Windows Server 2003 требует, чтобы локальный администратор безопасности (LSA) сервера мог безопасно получать SID пользователя и список идентификаторов безопасности членов групп. Идентификаторы безопасности генерируются системой безопасности домена и используются в LSA при создании маркеров доступа для имперсонализации. После создания соединения связанный с ним поток имперсонализирует зарегистрировавшегося пользователя, после чего операционная система сравнивает маркер доступа клиента с ACL объекта, к которому пользователь пытается получить доступ. При аутентификации NTLM идентификаторы безопасности пользователя и группы передаются с помощью защищенного канала Net Logon прямо с контроллера домена или любого доверенного домена. При использовании протокола Kerberos идентификаторы безопасности пользователей и групп передаются в составе данных авторизации билета сеанса Kerberos. Данные авторизации, находящиеся в билете Kerberos, полученном из КDС, содержат список идентификаторов безопасности пользователей и идентификаторов, определяющих членство в группах. Локальному администратору безопасности данные авторизации нужны для поддержки имперсонализации поставщика безопасности Kerberos.

Протокол Kerberos позволяет обращаться к данным авторизации билета Kerberos, которые определяются приложением. Они полностью соответствуют RFC 1510. Кроме того, их структура преобразована для уменьшения проблем, возникающих при совместной работе с другими операционными системами.

При первоначальной регистрации пользователя в домене КDС помещает в TGT данные авторизации, включающие идентификаторы безопасности пользователей или групп домена учетных записей (account domain). Членство в группах также определяется при первоначальной регистрации. После этого КDС копирует данные авторизации из ТОТ в билеты сеанса, применяемые для аутентификации серверов приложений. В сети с несколькими доменами КОС, управляющий запросами на получение билетов сеанса, может добавлять в данные авторизации дополнительные группы целевого домена, к которым может принадлежать пользователь. По мере развития ОС Windows Server 2003 формат данных авторизации может изменяться. Но в любом случае эти данные будут содержать список идентификаторов безопасности, предназначенных для поддержки аутентификации Kerberos в много платформенных системах, а также подпись, обеспечивающую целостность данных и устанавливаемую КОС.

Применение Kerberos в сетях Windows 2000/Server 2003

Аутентификация Kerberos используется многими службами домена Active Directory. Интерфейс SSPI применяется для аутентификации в большинстве системных служб, поэтому их перевод с аутентификации NTLM на Kerberos требует минимальных усилий. Более сложные изменения необходимы на сервере SMB, который не использовал SSPI до версии Windows 2000. Многие новые распределенные службы Windows 2000 используют аутентификацию Kerberos. Примеры областей применения аутентификации Kerberos в Windows 2000/Server 2003:

· аутентификация в Active Directory с применением LDAP для запросов или управления каталогом;

· протокол удаленного доступа к файлам CIFS/SMB;

· управление распределенной файловой системой DFS;

· защищенное обновление адресов DNS;

· службы печати;

· необязательная взаимная аутентификация IPSec-хостов при работе протоколов ISAKMP/Oakley;

· запросы резервирования для службы качества обслуживания (Quality of Service);

· аутентификация интрасети в службах Internet Information Services;

· аутентификация запросов сертификата открытого ключа, приходящих от пользователей и компьютеров домена, в службах Certificate Services;

· удаленное управление сервером или рабочей станцией с помощью аутентифицированного RPC и DCOM.

Это первый шаг к основной цели, поставленной в Windows 2000, -- полному исключению аутентификации NTLM в компьютерных сетях, основанных на этой операционной системе.

Совместная работа средств обеспечения безопасности сети

Домены Active Directory должны иметь возможность одновременно поддерживать клиентские компьютеры и серверы, на которых работает программное обеспечение Windows NT 3.x--4.0, Windows 9х/МЕ, а также Windows 2000/XP и Windows Server 2003. Для этого в Windows Server 2003 остается поддержка аутентификации NTLM, обеспечивающей совместимость с операционными системами более ранних версий. Обновленные версии клиента Active Directory обеспечивают расширенные возможности аутентификации по протоколу NTLM v.2; хотя протокол Kerberos не поддерживается.

Безопасность IP (IPSec)

Средства безопасности протокола IP позволяют управлять защитой всего IP-трафика от источника информации до ее получателя. Возможности технологии IP Security Management (Управление безопасностью IP) в Windows Server 2003 позволяют назначать и применять политику безопасности IP, которая гарантирует защищенный обмен информацией для всей сети. Механизм безопасности IP представляет собой прозрачную для пользователя реализацию протокола безопасности IP (IP Security, IPSec), причем администрирование безопасности централизовано и совмещает гарантии безопасного обмена информацией с легкостью применения. Потребность в защите сетей, основанных на протоколе IP, достаточно велика и растет с каждым годом. В настоящее время в тесно взаимосвязанном деловом мире сетей Интернет, интранет, экстранет (extranet -- корпоративная сеть, части которой связаны через открытые сети, например, через Интернет), филиалов и удаленного доступа по сетям передается важная информация, конфиденциальность которой нельзя нарушать. Одним из основных требований, предъявляемых к сети со стороны сетевых администраторов и прочих профессионалов, обслуживающих и использующих сети, является требование гарантии, что этот трафик будет защищен от:

· доступа субъектов, не имеющих на это прав;

· перехвата, просмотра или копирования;

· модификации данных во время пути по сети.

Эти проблемы характеризуются такими показателями, как целостность данных, конфиденциальность и подлинность. Кроме того, защита от повторного использования (replay protection) предотвращает принятие повторно посланного пакета.

Примечание Реализация безопасности IP в Windows Server 2003 основана на стандартах RFC, разработанных консорциумом Internet Engineering Task Force (IETF), рабочей группой IP Security (IPSEC).

Достоинства IP Security

Сетевые атаки могут привести к неработоспособности системы, считыванию конфиденциальных данных и другим дорогостоящим нарушениям. Для защиты информации требуются методы "сильного" шифрования и сертификации, основанные на криптографических алгоритмах. Однако высокий уровень безопасности не должен ухудшать производительность труда пользователей или увеличивать затраты на администрирование. IP Security в системах Windows 2000 и Windows Server 2003 обеспечивает следующие преимущества, которые помогают достичь высокого уровня безопасности взаимодействия при низких затратах.

· Централизованное администрирование политикой безопасности, что уменьшает затраты на административные издержки. Политика IPSec может быть создана и назначена на уровне домена (при этом она хранится в Active Directory), что устраняет необходимость индивидуального конфигурирования каждого компьютера. Однако, если компьютер имеет уникальные требования, или это автономный компьютер, политика может быть назначена непосредственно.

· Прозрачность безопасности IP для пользователей и прикладных программ. Не нужно иметь отдельные программные средства безопасности для каждого протокола в стеке TCP/IP, поскольку приложения, использующие TCP/IP, передают данные уровню протокола IP, где они шифруются. Установленная и настроенная служба IPSec прозрачна для пользователя и не требует обучения.

· Гибкость конфигурирования политики безопасности, которая помогает решать задачи в различных конфигурациях. Внутри каждой политики можно настроить службы безопасности, чтобы обеспечить потребности на всех уровнях, начиная с уровня индивидуального пользователя и заканчивая уровнем серверов или предприятия. Политику можно сконфигурировать в соответствии с экспортными правилами и ограничениями.

· Конфиденциальные службы, предотвращающие попытки несанкционированного доступа к важным данным во время передачи этих данных между поддерживающими связь сторонами.

· Туннелирование. Данные могут быть посланы через безопасные туннели для обмена информацией в Интернете и корпоративных сетях.

· Усиленная служба аутентификации, которая предотвращает перехват данных путем подмены идентификаторов.

· Ключи большой длины и динамический повторный обмен ключами в течение текущих сеансов связи, что помогает защитить соединение от атак.

· Безопасная связь от начала до конца для частных пользователей сети внутри одного и того же домена или через любой доверенный (trusted) домен внутри корпоративной сети.

· Безопасная связь между пользователями в любом домене корпоративной сети, основанной на протоколе IP.

· Отраслевой стандарт IPSec открыт для реализации других технологий шифрования IP, что позволяет взаимодействовать с другими платформами и продуктами.

· Сертификаты с -открытым ключом и поддержка ключей pre-shared (заранее известных). Это требуется для разрешения установления безопасной связи с компьютерами, которые не являются частью доверенного домена.

· IPSec работает во взаимодействии с другими механизмами защиты, сетевыми протоколами и базовыми механизмами безопасности операционной системы.

· Поддерживается шифрование сообщений RSVP для реализации служб QoS и ACS, т. е. IPSec не мешает использовать все преимущества приоритетного управления шириной полосы пропускания, обеспечиваемые этими службами.

Возможности стандарта IPSec и подробности реализации очень сложны и описаны подробно в ряде RFC и проектов IETF, а также в документах Microsoft. IPSec использует криптографическую защиту для обеспечения управления доступом, целостности без установления логического соединения, удостоверения подлинности данных, защиты от повторного использования, полной и ограниченной конфиденциальности потока данных. Поскольку протокол IPSec работает на уровне IP, его услуги доступны протоколам верхнего уровня в стеке и, очевидно, существующим приложениям.

IPSec дает системе возможность выбрать протоколы защиты, решить, какой (какие) алгоритм(ы) использовать для служб(ы), а также устанавливать и поддерживать криптографические ключи для каждой защищенной связи.

IPSec может защищать пути между компьютерами, между шлюзами защиты или между шлюзами защиты и компьютерами. Услуги, доступные и требуемые для трафика, настраиваются с использованием политики IPSec. Политика IPSec может быть настроена локально на отдельном компьютере или может быть назначена через механизм групповых политик в Active Directory. Политика IPSec определяет, как компьютеры доверяют друг другу. Самое простое -- полагаться на применение доменов доверия Active Directory, основанных на протоколе Kerberos. Для того чтобы доверять компьютерам в том же самом или в другом доверенном домене, задается предопределенная политика IPSec.

Каждая датаграмма на уровне протокола IP сравнивается с набором фильтров, предоставляемых политикой безопасности, которая поддерживается администратором для компьютера, пользователя, организационной единицы (OU) или всего домена. С любой датаграммой службы IP могут выполнить одно из трех действий:

· передать на обработку службам IPSec;

· передать ее без изменений;

· игнорировать ее.

Установка IPSec включает описание характеристик трафика для фильтрации (IP-адрес источника/адресата, протокол, порт и т. д.) и определение того, какие механизмы требуется применить для трафика, соответствующего фильтру (фильтрам). Например, в очень простом случае два автономных компьютера могут быть сконфигурированы для использования IPSec между ними в одном и том же домене Active Directory и активизации политики блокировки (lockdown). Если два компьютера -- не элементы одного и того же или доверенного домена, то доверие должно быть сконфигурировано с использованием пароля или ключа pre-shared в режиме "закрытый". Для этого выполняются операции:

· установка фильтра, который определяет весь трафик между двумя компьютерами;

· выбор метода опознавания (выбор ключа pre-shared или ввод пароля);

· выбор политики переговоров (в режиме "закрытый", при этом весь трафик, соответствующий фильтру (фильтрам), должен использовать IPSec);

· определение типа подключения (ЛВС, коммутируемое соединение или оба типа подключения).

Применение политики блокировки также ограничит все другие типы трафика от достижимых адресатов, которые не понимают IPSec или не являются частью той же самой доверенной группы. Безопасная политика инициатора обеспечивает установки, применяемые лучше всего к тем серверам, для которых предпринята защита трафика, но если клиент "не понимает" IPSec, то результатом переговоров будет возобновление посылки "чистых" текстовых пакетов. Когда IPSec применяется для шифрования данных, производительность сети понижается из-за непроизводительных затрат на обработку и шифрование. Один из возможных методов уменьшения воздействия этих непроизводительных затрат -- обработка на аппаратном уровне. Поскольку интерфейс NDIS 5.1 поддерживает такую функцию, можно включить аппаратные средства шифрования в сетевой адаптер. Адаптер, обеспечивающий перегрузку IPSec на аппаратные средства, скоро представят на рынке несколько поставщиков аппаратного обеспечения.

Базовые механизмы и концепции

Алгоритмы шифрования

Для защиты данных применяются математические алгоритмы шифрования. Безопасность IP в Windows 2000/Server 2003 использует стандартные криптографические алгоритмы, перечисленные ниже.

· Методика Diffie-Hellman (D-H). Алгоритм шифрования с открытым ключом (названный по имени изобретателей -- Diffie и Hellman), который позволяет двум поддерживающим связь объектам договариваться об общедоступном ключе без требования шифрования во время порождения ключа. Процесс начинают два объекта, обменивающиеся общедоступной информацией. Затем каждый объект объединяет общую информацию другой стороны со своей собственной секретной информацией, чтобы сгенерировать секретное общедоступное значение.

· Код аутентификации хэшированного сообщения (НМАС, Hash Message Authentication Code). НМАС -- алгоритм шифрования с закрытым ключом, обеспечивающий целостность сообщений, установление их подлинности и предотвращение повторного использования. Установление подлинности, использующее функции хэширования (перемешивания), объединено с методом закрытого ключа. Хэшированное значение, известное также как дайджест (digest), или выборка сообщений, используется для создания и проверки цифровой подписи. Это уникальное значение намного меньше, чем первоначальное сообщение, созданное из цифровой копии кадра данных. Если передаваемое сообщение изменилось по пути следования, то хэшированное значение будет отличаться от оригинала, а IP-пакет будет отброшен.

· HMAC-MD5. Дайджест сообщений-5 (MD5, Message Digest) -- функция хэширования, которая порождает 128-разрядное значение, являющееся подписью данного блока данных. Эта подпись служит для установления подлинности, целостности и предотвращения повторного использования.

· HMAC-SHA. Безопасный алгоритм хэширования (SHA, Secure Hash Algorithm) -- еще одна функция хэширования, которая порождает 160-разрядное значение подписи, необходимое для установления подлинности, целостности и предотвращения повторного использования.

· DES-CBC. Стандарт шифрования данных (Data Encryption Standard, DES) -- формирование цепочки шифрованных блоков (Cipher Block Chaining, CBC) -- алгоритм шифрования с закрытым ключом, обеспечивающий конфиденциальность. Генерируется случайное число, которое используется совместно с закрытым ключом для шифрования данных.

Ключи

Для обеспечения безопасности данных в криптографии совместно с алгоритмами используются ключи. Ключ -- это некоторое значение, применяемое для шифрования или дешифрования информации. Для шифрования в системах безопасности могут использоваться как закрытые, так и открытые ключи. Даже если алгоритм известен, без ключа данные нельзя просмотреть или изменить. Безопасность IP в Windows Server 2003 использует ключи большой длины, чтобы обеспечить повышенную безопасность. Если длину ключа увеличить на один бит, число возможных комбинаций удваивается. Безопасность IP в Windows Server 2003 также применяет динамическое обновление ключей; это означает, что после определенного интервала для продолжения обмена данными генерируется новый ключ. Такое решение позволяет защититься от злоумышленника, который получил доступ к части информации во время ее передачи.

Протоколы безопасности

На базе протоколов безопасности реализуются различные службы, обеспечивающие безопасный обмен информацией по сети. Windows 2000 и Windows Server 2003 используют протоколы безопасности, описанные далее.

· Протокол ассоциаций безопасности и управления ключами Интернет (ISAKMP, Internet Security Association and Key Management Protocol) Прежде чем IP-пакеты будут переданы от одного компьютера другому, должна быть установлена ассоциация, или сопоставление, безопасности (Security Association, SA). SA -- набор параметров, который определяет необходимые для защищенной связи услуги и механизмы, типы ключей для безопасных протоколов. SA должна существовать между двумя поддерживающими связь сторонами, использующими безопасность IP. ISAKMP определяет основу для поддержки и установления ассоциаций безопасности. Протокол ISAKMP не связан ни с одним конкретным алгоритмом, методом порождения ключей или протоколом безопасности.


Подобные документы

  • Общие сведения о безопасности, угрозы и уязвимости MS SQL Server. Предопределенные роли базы данных. Изучение компонента резервного копирования и восстановления. Иерархия средств шифрования. Служба хранилищ больших двоичных объектов Windows Azure.

    курсовая работа [425,2 K], добавлен 03.03.2014

  • Описание преимуществ использования серверной системы Windows Server 2003. Усовершенствования служб Active Directory и приложений. Новшества технологий кластеризации, файловых и корпоративных служб, работы в сети и связи, в управлении хранилищами.

    реферат [108,2 K], добавлен 25.11.2010

  • Семейство ОС Windows 2000. Windows 2000 Server. Windows 2000 Advanced Server. Windows 2000 Datacenter Server. ОС Windows Server 2003. Организация сети на основе Windows 2000. Службы каталогов, DHCP, DNS, WINS. Конфигурирование сервера.

    курсовая работа [307,1 K], добавлен 06.10.2006

  • Изучение возможностей операционной системы Windows Server 2003 - ОС семейства Windows NT от компании Microsoft, предназначенной для работы на серверах. Анализ основных изданий ОС: Web Edition, Standard Edition, Еnterprise Edition, Datacenter Edition.

    презентация [3,4 M], добавлен 23.05.2010

  • Универсальная многоцелевая сетевая операционная система Windows NT Server. Использование Windows NT Workstation как невыделенного сервера в одноранговых сетях и в качестве клиента сетей. Операционные системы Windows 2003, Windows Vista и Windows 7.

    презентация [6,2 K], добавлен 23.10.2013

  • Автоматизация процесса шифрования на базе современных информационных технологий. Криптографические средства защиты. Управление криптографическими ключами. Сравнение симметричных и асимметричных алгоритмов шифрования. Программы шифрования информации.

    курсовая работа [795,7 K], добавлен 02.12.2014

  • Понятие системного администрирования, задачи и функции сетевых операционных систем, их внедрение. Особенности, возможности и инструменты Windows Server 2003, понятие "роли", управление носителями ролей FSMO. Функции набора утилит командной строки.

    курсовая работа [35,3 K], добавлен 04.10.2010

  • Ubuntu — операційна система для робочих станцій, серверів. Короткі теоретичні відомості операційної системи Microsoft Windows Server 2003 та Linux Ubuntu. Встановлення операційної системи Microsoft Windows Server 2003 та Linux Ubuntu на віртуальну машину.

    лабораторная работа [3,6 M], добавлен 02.06.2011

  • Создание виртуальной машины для гостевой операционной системы Microsoft Windows Server 2003. Первоначальная настройка установленной операционной системы. Создание DHCP-сервера с диапазоном рабочих адресов. Настройка доменного имени для IP-адреса сервера.

    лабораторная работа [3,2 M], добавлен 20.12.2012

  • Общая характеристика Microsoft Windows Server 2008: особенности, гибкость, защита, контроль. Усовершенствования операционной системы: Server Core, службы терминалов, Windows PowerShell, самовосстанавливающаяся NTFS, Server Manager, улучшение надежности.

    реферат [452,3 K], добавлен 15.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.