Оперативная память персонального компьютера

Классификация основных видов памяти компьютера. Использование оперативной памяти для временного хранения данных, используемых для работы программного обеспечения. Расчет потребления электроэнергии, формирование квитанции для потребителя в Microsoft Excel.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 23.04.2013
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Теоретическая часть
  • Основные понятия, используемые при изучении объекта
  • Подробная характеристика элементов объекта
  • Выводы
  • 2. Практическая часть
  • Общая характеристика задачи
  • Описание алгоритма решения задачи
  • Список литературы

Введение

В курсовой работе рассматривает теоретический вопрос - Классификация основных видов памяти компьютера, а также практический вопрос - решение задачи в Excel.

Изучение компонентов компьютера является очень важным, так как все больше и больше процессов выполняются на них. Этим и объясняется актуальность темы исследования.

В практической части будет решена задача расчета потребления электроэнергии и формирование квитанции для потребителя.

Для выполнения работы использовался компьютер со следующими параметрами (рис.1):

Рис.1. Параметры компьютера, использованного для выполнения работы

1. Теоретическая часть

Одним из важнейших устройств компьютера является память, или запоминающее Модуль (ОЗУ) Информатика. Базовый курс. / Под ред. С.В. Симоновича. - СПб., 2000 г. .

Оперативная память (ОЗУ - оперативное запоминающее Модуль, в западной терминологии - Random Access Memory, или короче RAM, что обозначает "память с произвольным доступом"), представляет собой область для временного хранения данных, используемых для работы программного обеспечения. Память состоит из ячеек, каждая из которых предназначена для хранения определенного объема данных.

В настоящее время практически вся компьютерная оперативная память является динамической (отсюда - DRAM или Dynamic RAM). Каждая ее ячейка представляет собой конденсатор, заряжаемый в случае необходимости записи логической единицы, и разряжаемый при записи нуля. DRAM характеризуется минимальным размером элементарной ячейки, однако для нормальной работы она требует постоянного обновления хранимой в ней информации.

Объектом исследования выступает Модуль памяти компьютера, а предмет исследования - основные виды памяти, именно они и будут изучены в работе.

Основные понятия, используемые при изучении объекта

Оперативная память - это рабочая область для процессора компьютера. В ней во время работы хранятся программы и данные. Оперативная память часто рассматривается как временное хранилище, потому что данные и программы в ней сохраняются только при включенном компьютере или до нажатия кнопки сброса (reset). Перед выключением или нажатием кнопки сброса все данные, подвергнутые изменениям во время работы, необходимо сохранить на запоминающем устройстве, которое может хранить информацию постоянно (обычно это жесткий диск). При новом включении питания сохраненная информация вновь может быть загружена в память.

Модули оперативной памяти иногда называют запоминающими Модулими с произвольным доступом. Это означает, что обращение к данным, хранящимся в оперативной памяти, не зависит от порядка их расположения в ней.

За несколько лет определение RAM (Random Access Memory) превратилось из обычной аббревиатуры в термин, обозначающий основное рабочее пространство памяти, создаваемое микросхемами динамической оперативной памяти (Dynamic RAM - DRAM) и используемое процессором для выполнения программ. Одним из свойств микросхем DRAM (и, следовательно, оперативной памяти в целом) является динамическое хранение данных, что означает, во-первых, возможность многократной записи информации в оперативную память, а во-вторых, необходимость постоянного обновления данных (т.е., в сущности, их перезапись) примерно каждые 15 мс (миллисекунд). Также существует так называемая статическая оперативная память (Static RAM - SRAM), не требующая постоянного обновления данных. Следует заметить, что данные сохраняются в оперативной памяти только при включенном питании Микляев А.П., Настольная книга пользователя IBM PC 3-издание М.:, "Солон-Р", 2000, 720 с..

Термин оперативная память часто обозначает не только микросхемы, которые составляют модули памяти в системе, но включает и такие понятия, как логическое отображение и размещение. Логическое отображение - это способ представления адресов памяти на фактически установленных микросхемах. Размещение - это расположение информации (данных и команд) определенного типа по конкретным адресам памяти системы.

Во время выполнения программы в оперативной памяти хранятся ее данные. Микросхемы оперативной памяти (RAM) иногда называют энергозависимой памятью: после выключения компьютера данные, хранимые в них, будут потеряны, если они предварительно не были сохранены на диске или другом устройстве внешней памяти. Чтобы избежать этого, некоторые приложения автоматически делают резервные копии данных.

Файлы компьютерной программы при ее запуске загружаются в оперативную память, в которой хранятся во время работы с указанной программой. Процессор выполняет программно-реализованные команды, содержащиеся в памяти, и сохраняет их результаты. Оперативная память хранит коды нажатых клавиш при работе с текстовым редактором, а также величины математических операций. При выполнении команды Сохранить (Save) содержимое оперативной памяти сохраняется в виде файла на жестком диске.

Физически оперативная память в системе представляет собой набор микросхем или модулей, содержащих микросхемы, которые обычно подключаются к системной плате. Эти микросхемы или модули могут иметь различные характеристики и, чтобы функционировать правильно, должны быть совместимы с системой, в которую устанавливаются.

В настоящее время новые типы памяти разрабатываются значительно быстро, и вероятность того, что в новые компьютеры нельзя будет установить память устаревшего типа, как никогда велика. Поэтому при замене системной платы зачастую приходится заменять и память.

Классификация элементов объекта

В современных компьютерах используются запоминающие Модули трех основных типов.

· ROM (Read Only Memory). Постоянное запоминающее Модуль - ПЗУ, не способное выполнять операцию записи данных.

· DRAM (Dynamic Random Access Memory). Динамическое запоминающее устройство с произвольным порядком выборки.

· SRAM (Static RAM). Статическая оперативная память.

В 2000 году чаще всего применялась память PC 100 или PC 133, которая работает на частоте 100 или 133 МГц соответственно. Начиная с 2001 года, память стандартов DDR (200 и 266 МГц) и RDRAM (800 МГц) стала завоевывать все большую популярность. В 2002 году появились модули памяти стандарта DDR с частотой 333 и 400 МГц (на сегодня, DDR2 с частотой 800 МГц не Находка), а также стандарта RDRAM с частотой 1 066 МГц. Как правило, компьютер работает гораздо быстрее, если пропускная способность шины памяти соответствует пропускной способности шины процессора. Сравнивая скорость шины памяти с быстродействием шины процессора, можно заметить, что между этими параметрами существует определенное соответствие. Тип памяти, пропускная способность которой соответствует скорости передачи данных процессора, является наиболее приемлемым вариантом для систем, использующих соответствующий процессор.

Если скорость шины памяти равняется частоте шины процессора, быстродействие памяти в такой системе будет оптимальным.

Подробная характеристика элементов объекта

В памяти типа ROM (Read Only Memory), или ПЗУ (постоянное запоминающее Модуль), данные можно только хранить, изменять их нельзя. Именно поэтому такая память используется только для чтения данных. ROM также часто называется энергонезависимой памятью, потому что любые данные, записанные в нее, сохраняются при выключении питания. Поэтому в ROM помещаются команды запуска персонального компьютера, т.е. программное обеспечение, которое загружает систему.

ROM и оперативная память - не противоположные понятия. На самом деле ROM представляет собой часть оперативной памяти системы. Другими словами, часть адресного пространства оперативной памяти отводится для ROM. Это необходимо для хранения программного обеспечения, которое позволяет загрузить операционную систему.

Основной код BIOS содержится в микросхеме ROM на системной плате, но на платах адаптеров также имеются аналогичные микросхемы. Они содержат вспомогательные подпрограммы базовой системы ввода-вывода и драйверы, необходимые для конкретной платы, особенно для тех плат, которые должны быть активизированы на раннем этапе начальной загрузки, например видеоадаптер. Платы, не нуждающиеся в драйверах на раннем этапе начальной загрузки, обычно не имеют ROM, потому, что их драйверы могут быть загружены с жесткого диска позже - в процессе начальной загрузки.

В настоящее время в большинстве систем используется одна из форм Flash-памяти, которая называется электронно-перепрограммируемой постоянной памятью (Electrically Erasable Programmable Read-only Memory - EEPROM). Flash-память является по-настоящему энергонезависимой и перезаписываемой, она позволяет пользователям легко модифицировать ROM, программно-аппаратные средства системных плат и других компонентов (таких, как видеоадаптеры, платы SCSI, периферийные Модули и т.п.).

Динамическая оперативная память (Dynamic RAM - DRAM) используется в большинстве систем оперативной памяти современных персональных компьютеров. Основное преимущество памяти этого типа состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большой емкости.

Ячейки памяти в микросхеме DRAM - это крошечные конденсаторы, которые удерживают заряды. Именно так (наличием или отсутствием зарядов) и кодируются биты. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут "стекать" и данные будут потеряны. Регенерация происходит, когда контроллер памяти системы берет крошечный перерыв и обращается ко всем строкам данных в микросхемах памяти. Большинство систем имеют контроллер памяти (обычно встраиваемый в набор микросхем системной платы), который настроен на соответствующую промышленным стандартам частоту регенерации, равную 15 мкс. Ко всем строкам данных обращение осуществляется по прохождении 128 специальных циклов регенерации. Это означает, что каждые 1,92 мс (128? 15 мкс) прочитываются все строки в памяти для обеспечения регенерации данных.

Регенерация памяти, к сожалению, отнимает время у процессора: каждый цикл регенерации по длительности занимает несколько циклов центрального процессора. В большинстве случаев надежнее придерживаться рекомендуемой или заданной по умолчанию частоты регенерации.

Поскольку затраты на регенерацию в современных компьютерах составляют менее 1%, изменение частоты регенерации оказывает незначительное влияние на характеристики компьютера. Одним из наиболее приемлемых вариантов является использование для синхронизации памяти значений по умолчанию или автоматических настроек, заданных с помощью Setup BIOS. Большинство современных систем не позволяют изменять заданную синхронизацию памяти, постоянно используя автоматически установленные параметры. При автоматической установке системная плата считывает параметры синхронизации из системы обнаружения последовательности в ПЗУ (serial presence detect - SPD) и устанавливает частоту периодической подачи импульсов в соответствии с полученными данными.

В модулях DRAM для хранения одного бита используется только один транзистор и пара конденсаторов, поэтому они более вместительны, чем микросхемы других типов памяти. В настоящее время имеются микросхемы динамической оперативной памяти емкостью 512 Мбайт и больше. Это означает, что подобные микросхемы содержат более 256 млн. транзисторов! Дело в том, что в микросхеме памяти все транзисторы и конденсаторы размещаются последовательно, обычно в узлах квадратной решетки, в виде очень простых, периодически повторяющихся структур, в отличие от процессора, представляющего собой более сложную схему различных структур, не имеющую четкой организации.

Транзистор для каждого одноразрядного регистра DRAM используется для чтения состояния смежного конденсатора. Если конденсатор заряжен, в ячейке записана 1; если заряда нет - записан 0. Заряды в крошечных конденсаторах все время стекают, вот почему память должна постоянно регенерироваться. Даже мгновенное прерывание подачи питания или какой-нибудь сбой в циклах регенерации приведет к потере заряда в ячейке DRAM, а, следовательно, и к потере данных. В работающей системе подобное приводит к появлению "синего" экрана, глобальным отказам системы защиты, повреждению файлов или к полному отказу системы.

Динамическая оперативная память используется в персональных компьютерах; поскольку она недорогая, микросхемы могут быть плотно упакованы, а это означает, что запоминающее Модуль большой емкости может занимать небольшое пространство. К сожалению, память этого типа не отличается высоким быстродействием, обычно она намного "медленнее" процессора. Поэтому существует множество различных типов организации DRAM, позволяющих улучшить эту характеристику.

Существует тип памяти, совершенно отличный от других, - статическая оперативная память (Static RAM - SRAM). Она названа так потому, что, в отличие от динамической оперативной памяти (DRAM), для сохранения ее содержимого не требуется периодической регенерации. Но это не единственное ее преимущество. SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры.

Однако для хранения каждого бита в конструкции SRAM используется кластер из шести транзисторов. Использование транзисторов без каких-либо конденсаторов означает, что нет необходимости в регенерации. (Ведь если нет никаких конденсаторов, то и заряды не теряются.) Пока подается питание, SRAM будет помнить то, что сохранено.

По сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее гораздо ниже, а цена довольно высока. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше. Большое число транзисторов и кластеризованное их размещение не только увеличивает габариты микросхем SRAM, но и значительно повышает стоимость технологического процесса по сравнению с аналогичными параметрами для микросхем DRAM. Например, емкость модуля DRAM может равняться 64 Мбайт или больше, в то время как емкость модуля SRAM приблизительно того же размера составляет только 2 Мбайт, причем их стоимость будет одинаковой. Таким образом, габариты SRAM в среднем в 30 раз превышают размер динамической оперативной памяти, то же самое можно сказать и о стоимости. Все это не позволяет использовать память типа SRAM в качестве оперативной памяти в персональных компьютерах.

Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности PC. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной памяти SRAM, которая используется в качестве кэш-памяти. Кэш-память работает на тактовых частотах, близких или даже равных тактовым частотам процессора, причем обычно именно эта память непосредственно используется процессором при чтении и записи. Во время операций чтения данные в высокоскоростную кэш-память предварительно записываются из оперативной памяти с низким быстродействием, т.е. из DRAM. Еще недавно время доступа динамической оперативной памяти было не менее 60 нс (что соответствует тактовой частоте 16 МГц).

Когда процессор персонального компьютера работал на тактовой частоте 16 МГц и ниже, DRAM могла быть синхронизирована с системной платой и процессором, поэтому кэш был не нужен. Однако как только тактовая частота процессора поднялась выше 16 МГц, синхронизировать DRAM с процессором стало невозможно, и именно тогда разработчики начали использовать SRAM в персональных компьютерах.

Именно в этих персональных компьютерах впервые нашла применение так называемая кэш-память, т.е. высокоскоростной буфер, построенный на микросхемах SRAM, который непосредственно обменивается данными с процессором. Поскольку быстродействие кэша может быть сравнимо с быстродействием процессора, контроллер кэша может предугадывать потребности процессора в данных и предварительно загружать необходимые данные в высокоскоростную кэш-память. Тогда при выдаче процессором адреса памяти данные могут быть переданы из высокоскоростного кэша, а не из оперативной памяти, быстродействие которой намного ниже.

Эффективность кэш-памяти выражается коэффициентом совпадения, или коэффициентом успеха. Коэффициент совпадения равен отношению количества удачных обращений в кэш к общему количеству обращений. Попадание - это событие, состоящее в том, что необходимые процессору данные предварительно считываются в кэш из оперативной памяти; иначе говоря, в случае попадания процессор может считывать данные из кэш-памяти.

Неудачным обращением в кэш считается такое, при котором контроллер кэша не предусмотрел потребности в данных, находящихся по указанному абсолютному адресу. В таком случае необходимые данные не были предварительно считаны в кэш-память, поэтому процессор должен отыскать их в более медленной оперативной памяти, а не в быстродействующем кэше. Когда процессор считывает данные из оперативной памяти, ему приходится какое-то время "ждать", поскольку тактовая частота оперативной памяти значительно ниже, чем процессора.

Если процессор со встроенной в кристалл кэш-памятью работает на частоте 2 000 МГц (2 ГГц), то продолжительность цикла процессора и интегральной кэш-памяти в этом случае достигнет 0,5 нс, в то время как продолжительность цикла оперативной памяти будет в шесть раз больше, т.е. примерно 3 или 6 нс для памяти с удвоенной скоростью передачи данных (Double Data Rate - DDR). Таким образом, тактовая частота памяти будет всего лишь 333 МГц.

Следовательно, в том случае, когда процессор с тактовой частотой 2 ГГц считывает данные из оперативной памяти, его рабочая частота уменьшается в шесть раз, что и составляет 333 МГц. Замедление обусловлено периодом ожидания (wait state). Если процессор находится в состоянии ожидания, то на протяжении всего цикла (такта) никакие операции не выполняются; процессор, по существу, ждет, пока необходимые данные поступят из более медленной оперативной памяти. Поэтому именно кэш-память позволяет сократить количество "простоев" и повысить быстродействие компьютера в целом.

Чтобы минимизировать время ожидания при считывании процессором данных из медленной оперативной памяти, в современных персональных компьютерах обычно предусмотрены два типа кэш-памяти: кэш-память первого уровня (L1) и кэш-память второго уровня (L2). Кэш-память первого и второго уровня также называется встроенным или внутренним кэшем; она непосредственно встроена в процессор и фактически является частью микросхемы процессора.

SDRAM - тип динамической оперативной памяти DRAM, работа которой синхронизируется с шиной памяти. SDRAM передает информацию в высокоскоростных пакетах, использующих высокоскоростной синхронизированный интерфейс. SDRAM позволяет избежать использования большинства циклов ожидания, необходимых при работе асинхронной DRAM, поскольку сигналы, по которым работает память такого типа, синхронизированы с тактовым генератором системной платы.

Память SDRAM поставляется в виде модулей DIMM и, как правило, ее быстродействие оценивается в мегагерцах, а не в наносекундах.

Память DDR (Double Data Rate - двойная скорость передачи данных) - это еще более усовершенствованный стандарт SDRAM, при использовании которого скорость передачи данных удваивается. Это достигается не за счет удвоения тактовой частоты, а за счет передачи данных дважды за один цикл: первый раз в начале цикла, а второй - в конце. Именно благодаря этому и удваивается скорость передачи (причем используются те же самые частоты и синхронизирующие сигналы).

Память DDR SDRAM выпускается в виде 184-контактных модулей DIMM. Поставляемые модули DIMM памяти DDR SDRAM отличаются своим быстродействием, пропускной способностью и обычно работают при напряжении 2,5 В.

Выводы

В ответе на теоретический вопрос рассмотрена классификация памяти компьютера, изложены основные понятия, а также приведен подробный обзор видов памяти.

Согласно проведенному исследованию можно выделить следующую классификацию памяти компьютера.

Память является важным объектом компьютера, именно за счет нее можно повысить скорость работы компьютера.

оперативная память персональный компьютер

2. Практическая часть

Общая характеристика задачи

Рассмотрим следующую задачу, которую следует решать с использованием табличного процессора MS Excel.

Предприятие 000 "Энергосбыт" осуществляет деятельность, связанную с обеспечением электроэнергией физических и юридических лиц, и производит расчеты по предоставленным услугам. данные, на основании которых производятся расчеты по оплате, представлены на рис.1.1.

1. Построить таблицу согласно рис.1.1.

2. Результаты вычислений представить в виде таблицы, содержащей данные о расходе электроэнергии и сумму к оплате (рис.1.2), и в графическом виде.

3. Организовать межтабличные связи для автоматического формирования квитанции об оплате электроэнергии.

4. Сформировать и заполнить квитанцию об оплате электроэнергии (рис.1.3).

Описание алгоритма решения задачи

1. Запустить табличный процессор MS Excel.

2. Создать книгу с именем "Расчет электроэнергии"

3. Лист 1 переименовать в лист "Показания счетчика"

4. На рабочем листе Показания счетчика создать таблицу показания электросчетчика

5. Заполнить таблицу показания электросчетчика исходными данными

1. Лист 2 переименовать в лист с названием Расчет оплаты электроэнергии

2. На рабочем листе Расчет оплаты электроэнергии создать таблицу, в которой будет содержаться фамилия и код плательщика.

3. Заполнить таблицу согласно фамилии и коду плательщика.

4. Проведем расчет электроэнергии за месяц, заполнив столбец следующим образом:

=ПРОСМОТР (B4; 'Показания счетчика'! A4: A8; 'Показания счетчика'! E4: E8-'Показания счетчика'! D4: D8)

5. Распространим эту запись на остальные ячейки в столбце Расход электроэнергии за месяц

6. Рассчитаем столбец К оплате по формуле:

=C4*$C$2

7. Распространим формулу на все ячейки столбца Расход электроэнергии.

8. Строку ИТОГО заполним формулами:

в столбце С9=СУММ (C4: C8)

в столбце D9=СУММ (D4: D8)

9. Получим заполненную таблицу:

10. Создадим лист 3, переименуем его в Квитанция на оплату электроэнергии.

11. Зададим бланк квитанции и с помощью ссылок создадим квитанции.

12. Изменяя номер плательщика получим квитанции:

Список литературы

1. Акулов О.А. Информатика: базовый курс. - М.: Омега-Л, 2004. - 551с.

2. Воройский Ф.С. Информатика. Вводный курс по информатике и вычислительной технике в терминах. М.: Либерея, 2001. - 535 с.

3. Информатика: учебник для вузов / Н.В. Макарова и др. М.: Финансы и статистика, 2004. - 768 с.

4. Ковтанюк Ю.С., Соловьян С.В. Самоучитель работы на персональном компьютере - К.: Юниор, 2001. - 560с., ил.

5. Королев Л.Н. Информатика. Введение в компьютерные науки. - М.: Высшая школа, 2003. - 341 с.

6. Микляев А.П., Настольная книга пользователя IBM PC 3-издание М.:, "Солон-Р", 2000, 720 с.

7. Могилев А.В. Информатика. - М.: Academia, 2003. - 810 с.

8. Основы информатики: учебное пособие для вузов. - Минск: Новое издание, 2003. - 543 с.

9. Основы современных компьютерных технологий. Под ред. Хомоненко А.Д. СПб.: Корона-принт, 2008.

10. Романова Ю. Д.; Музычкин П. А.; Лесничная И. Г.; Миссинг И. В.; Шестаков В.И. Информатика и информационные технологии, Эксмо, 2010, 688 с.

11. Степанов А.Н. Информатика: учебник для вузов. - СПб.: Питер, 2005. - 684 с.

12. Ягелло Т.А. Основы информатики. Минск: Изд-во БГУ, 2003. - 195 с.

Размещено на Allbest.ru


Подобные документы

  • Изучение состава и основных характеристик типичного настольного персонального компьютера. Обзор видов памяти ПК. Анализ значения каждого вида памяти для хранения информации. Формирование списков пользователя в MS Excel. Установление межтабличных связей.

    курсовая работа [1,7 M], добавлен 23.04.2013

  • Простейшая схема взаимодействия оперативной памяти с ЦП. Устройство и принципы функционирования оперативной памяти. Эволюция динамической памяти. Модуль памяти EDO-DRAM BEDO (Burst EDO) - пакетная EDO RAM. Модуль памяти SDRAM, DDR SDRAM, SDRAM II.

    реферат [16,1 K], добавлен 13.12.2009

  • Изучение устройства и назначения оперативной памяти как части системы компьютерной памяти, предназначенной для временного хранения данных при выполнении операций процессором ПК. Произвольный доступ и характеристика основных типов ОЗУ: DIMM, DDR, FTM, EDO.

    презентация [3,9 M], добавлен 03.03.2011

  • Обобщение основных видов и назначения оперативной памяти компьютера. Энергозависимая и энергонезависимая память. SRAM и DRAM. Триггеры, динамическое ОЗУ и его модификации. Кэш-память. Постоянное запоминающее устройство. Флэш-память. Виды внешней памяти.

    курсовая работа [1,7 M], добавлен 17.06.2013

  • Классификация компьютерной памяти. Использование оперативной, статической и динамической оперативной памяти. Принцип работы DDR SDRAM. Форматирование магнитных дисков. Основная проблема синхронизации. Теория вычислительных процессов. Адресация памяти.

    курсовая работа [1,5 M], добавлен 28.05.2016

  • Оперативная память как один из главных компонентов компьютера. Роль и значение оперативной памяти в качестве буфера между центральным процессором и винчестером. Факторы, влияющие на производительность всего компьютера. Общая характеристика SRAM и DRAM.

    эссе [25,5 K], добавлен 09.12.2014

  • Понятие, виды и основные функции памяти компьютера - части вычислительной машины, физического устройства для хранения данных, используемых в вычислениях, в течение определенного времени. Принципиальная схема оперативной памяти. Гибкие магнитные диски.

    презентация [947,6 K], добавлен 18.03.2012

  • Оперативная память - часть памяти компьютера: назначение, функции, способ передачи данных процессору. Современные запоминающие устройства: голографическое, молекулярное, на основе графеновой наноленты и нанотрубках; принцип работы и перспективы развития.

    реферат [1,3 M], добавлен 21.04.2011

  • Использование микросхем SRAM при высоких требованиях к быстродействию компьютера для кеширования оперативной памяти и данных в механических устройствах хранения информации. Изучение устройства матрицы и типов (синхронная, конвейерная) статической памяти.

    реферат [71,0 K], добавлен 06.02.2010

  • Память персонального компьютера, основные понятия. Характеристика внутренней и внешней памяти компьютера. Логическое отображение и размещение. Классификация компьютерной памяти по назначению, по удаленности и доступности для центрального процессора.

    контрольная работа [1,8 M], добавлен 27.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.